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Abstract: Markov models have been proposed for the classification of DNA-motifs
using generative approaches for parameter learning. Here, we propose to apply the
discriminative paradigm for this problem and study two different priors to facilitate
parameter estimation using the maximum supervised posterior. Considering seven sets
of eukaryotic transcription factor binding sites we find this approach to be superior
employing area under the ROC curve and false positive rate as performance criterion,
and better in general using sensitivity. In addition, we discuss potential reasons for the
improved performance.

1 Introduction

The elucidation of gene regulation is one of the main challenges in functional genomics.
One fundamental prerequisite for a gene to be transcribed, or its transcription to be re-
pressed, is the binding of transcription factors (TFs) to their bindings sites (TFBSs) in the
promoter region of the gene. Binding of TFs is facilitated by short DNA motifs of typically
10-20 bp length, which show a considerable degree of variation between different TFBSs
of the same TF. The detection of TFBSs within a promoter region may be re-formulated
as the problem of classifying each subsequence of fixed length.

A wide range of techniques for predicting TFBSs employ statistical models. A success-
ful application of these models requires a problem-specific choice of (i) an appropriate
model family for motifs and non-motifs, called background, and (ii) an appropriate train-
ing procedure for estimating the model parameters from data sets of known TFBSs and
background sequences. Markov models (MMs) have been successfully used for predicting
and discovering TFBSs [KGRT03, TT05], cis-regulatory modules [BNP*02], and other
DNA motifs [ZM93, Sal97], and so we use Markov models in this paper for predicting
TFBSs for seven eukaryotic TFs.

The generative approach ([Bis06]) including maximum likelihood (ML) and maximum
a posteriori (MAP) is commonly used for parameter estimation. Generally speaking, it
aims at an accurate description of the distribution of nucleotides within the TFBSs and
within the background. Technically, this results in a separate estimation of parameters for
both classes of DNA sequences. This approach is called generative because the resulting
distributions allow, amongst others, to generate TFBSs and background sequences from
a probabilistic model. In contrast, the discriminative approach focuses on the problem
of discriminating between sequences of both classes. The resulting distributions are not
intended to be accurate descriptions of the true distributions within each class. However,
the discriminative approach has often shown a superior classification performance. One
example is the maximum conditional likelihood (MCL) principle, which has been applied
successfully to Bayesian network classifiers and Markov models for a wide range of data
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In this paper, we use inhomogeneous Markov models [ZM93, Sal97] for modeling the
class-conditional likelihood of DNA sequences. For a Markov model of order d (MM(d))
each observation at position [ may depend only on its d; = min{d, ! — 1} predecessors,
resulting in

Pyiviga (e, 6) HPz x|@i—ays .., T1—1,6,0) = Hel,xl\c,m,,dl,...,ml,l- (2)

The observations z;_g,, . . ., ;—1 are called the context of position /, which is empty for
[ = 1. In addition to the conditional probabilities 0; ;,|c,a,_ a1 which constitute
the parameters of the Markov model, we denote the prior probability of class ¢ by 6. =
P(c|@). A Markov model of order d = 0 is equivalent to a position weight matrix (PWM)
model [SSGES82, Sta84], which assumes all L positions to be conditionally independent
given the class.

The ML estimates of the parameters of a Markov model are the relative frequencies ob-
served in the data set, i.e. 91 aleb = ZZL ““L: a € A,b € A% where A is the alphabet
and 1y 4| p is the observed absolute frequency of symbol a at position [ given context b of
the predecessors and class c. In addition we have éi‘“‘ = where n. is the number of

N 9
sequences of class c.

2.3 Maximum conditional likelihood
The discriminative analogue of the ML principle is the maximum conditional likelihood
(MCL) principle,

N
oMCL = argmaxP(c|D 0) = argmax H P(ep|xn, 0) 3)
n=1
N
= argmax log P(cy|x,,0), @
g n; g P(culzn,6)

which has been successfully applied to Bayesian network classifiers [WGRT02, GSSZ05,
GDO04] and Markov models [YSHO5]. The MCL principle is more directly linked to the
classification rule (1) than the ML principle because it focuses on the posterior probabil-
ities P(cy,|@,,0). For maximizing the conditional likelihood, the posterior probabilities
are expressed in terms of the class-conditional and prior probabilites,

P(x|c, 0)P(c|6)
deec P(x]c,0)P(cl0)

In contrast to ML estimators, MCL estimators cannot be obtained analytically for several
popular models including Markov models. Hence, numerical optimization techniques,
such as gradient ascent, are used for the MCL estimation of HMCL Unfortunately, neither
the conditional likelihood nor the log conditional likelihood are concave functions of €
[WGR™02]. Hence, numerical optimization techniques often converge only to local max-
ima or saddle points. To solve this problem, an alternative parameterization is proposed

P(c|x,0)

&)
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in [WGRT02] which has also been used for general Bayesian networks [GSSZ05]: Using
new parameters 3 the following functions () are defined:

L
QMM(d) (Cv .’B|ﬁ) = €xp (ﬂc + Z ﬂl,xlc,wldlyc,...,xll> (6)

=1

where d; .. is the order of the Markov model of class c at position [.
Choosing ﬁl,fﬂllcyll—dl T = log 917xl|07x17dl7cw7x171 it is easy to verify, that

QMM(d) (c;z|B) = PMM(d)($|Ca B)P(c|B).

Inserting (6) into (4) the log conditional likelihood in the 3-parameterization is given as:

log P(c|D, B3) = Z |:10g QMM(an (cn, zn|B) — log (Z Ql\{M(dg)(E7xn|ﬁ)>:| @)

n=1 cec

As [WGRT02] prove, the log conditional likelihood is a concave function of 3 € R/AI
for chordal graphs, which are a subclass of Bayesian networks, and which include Markov
models. For a two class problem, this property also follows from the relation to logis-
tic regression [WGR™02, NJ02, GSSZ035, FI06], because logistic regression results in a
concave objective function [Min03].

We reduce the number of parameters by using a modification of the (3-parameterization
proposed by [MP99]. This modification exploits that only A — 1 of the A parameters at
any position possibly given one or more predecessors are free parameters. Without loss of
generality we choose the last parameter 3 | 4|, not to be free. In the parameterization
of [MP99] this corresponds to fixing this parameter to 0. This reduction of the number of
parameters does not affect the concavity of the conditional likelihood, because we consider
linear sub-spaces of the full space of parameters 3. Additionally, we can show that for any
admissible parameter @ we find corresponding parameters in the reduced 3 space defining

ol,ac,b 96
—Leleb g~ log b

Bl,ale,b = log 8)

bl
01, Allc,b

We use the parameterization of [MP99] for all of the models and training approaches in
the rest of the paper. It can be shown that the ML estimates of both parameterizations
coincide.

2.4 Maximum a posteriori

The maximum a-posteriori (MAP) principle is another common principle for generative
parameter learning. In this case, the objective is to choose those parameters 3 that maxi-
mize the posterior P(3|D, ¢). Decomposing the posterior yields

BMAP — argmax P(B|D, ¢, o) = argmax P(D, ¢|3)P(8|a),
3 B8

where a denotes the hyperparameters of the prior P(3|c).
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sets, €.g. data sets from the UCI machine learning repository [NJ02, RWG'05, GSSZ05],
text categorization and protein sequences [ YSHO5].

In [NJO2] it has been shown for a range of data sets that the performance of MCL clas-
sifiers diminishes as the size of the training data available decreases. This demands for
approaches employing priors on the parameters in a similar manner as e.g. the MAP ap-
proach does for generative learning. Such an approach, called maximum supervised pos-
terior (MSP) approach, has been proposed by [WGR'02, GKM*02, CAMO5]. To the best
of our knowledge we are among the first who apply MSP to bioinformatical problems.
Here, we study if this approach could possibly be useful for the recognition of eukaryotic
TFBSs.

2 Methods

In this section we introduce the statistical background and the different principles for learn-
ing the parameters of the models.

2.1 Classification
The well-known Bayes classifier assigns a sequence © = z1x5 ...z, of length L to class
¢* € C using

¢® = argmax P(c|z) = argmax P(c, z), (1)
ceC ceC

where P(c|x) denotes the posterior probability of class ¢ given sequence x, and P(c, x)
denotes the joint probability.

To apply this classification rule, either the posterior or the joint distribution must be deter-
mined. Typically, an appropriate family of distributions is chosen, and its parameters 0 are
inferred from the data. We assume a data set of [V independent and identically distributed
(i.i.d.) data points (x,,c,), and we denote D = (z1,...,zx) and ¢ = (c1,...,CN).
In the remainder of this section, we consider generative and discriminative approaches for
the training of parameters and present their application to Markov models.

2.2 Maximum likelihood

Using the generative approach, the popular maximum likelihood (ML) principle suggests
to choose those parameters @ that maximize the likelihood P (D, ¢|@) of the complete data
set (D, ¢),

N
M = argmax P(D,c|f) = argmax H P(xp,cn|0)
) o

= argglaxﬂp(cw) Il P@nlc0).

ceC n,where ¢, =c

Assuming the parameters of the class-conditional likelihoods P(x|c, @) to be pairwise
independent allows to determine the ML estimate for each class separately. This approach
is called generative because it aims at an accurate estimation of the underlying probabilities
P(x|c,0).
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For an inhomogeneous Markov model, we choose a transformed Dirichlet prior, because it
is conjugate to the likelihood represented by Markov models. This results in the MAP es-

. 2 _ N ale,b+% alc,b Ao neta
timates 3 4|5 = log Al ceFar A and 3. = log 7n‘c‘+a|cc‘ [MP99], We choose the
ess

hyperparameters o o) = 77, e = €ssc, where ess. denotes the equivalent sample
size of class ¢ [Bun91]. We choose essg; = 16 and essy, = 256. The hyperparame-
ters o can be interpreted as pseudo counts stemming from uniformly distributed pseudo
data within each class. Another view on pseudo counts is that they compensate for zero
frequencies. These are often encountered when only a limited amount of training data is
available, such as in the case of TFBSs.

2.5 Maximum supervised posterior

The maximum supervised posterior (MSP) principle [CdMO05, WGR ™02, GKM™02] sug-
gests using a prior for discriminative learning in the same way as the MAP principle sug-
gests using a prior for generative learning. The MSP principle closely resembles the transi-
tion from the ML principle to the MAP principle, multiplying the conditional likelihood (4)
by a prior P(3|av),

BMSP — argmax P(c|D, 8, a) P(B|c). ©))
B8

One technical advantage of MSP estimators over MCL estimators is that they compensate
for zero frequencies. In the (B-parameterization, zero frequencies result in parameters
approaching +oo, which also causes numerical problems.

Here, we propose to use two different priors in conjunction with the MSP principle for
Markov models of different orders, namely a Gaussian prior and a Laplace prior, which are
used for logistic regression [MGL 105, CTG07, GLMO05] and maximum entropy models
[CR99].

We assume all parameters of 3 to be statistically independent, i.e., we choose as prior a
product of univariate densities for each parameter. For the Gaussian prior, we denote the
vector of the means by u and the vector of the variances by o2, resulting in

ICl-1

PEIe’) = 1 W (Hﬁ;u))

IC\ L [Al-1

1 (ﬂl,a\c,b - ,u‘l,a\c,b)Q
T I 11— (5% :
c=11=1pcAdl a=1 27T0-la\cb l,ale,b

The parameters (3 4)|c,p and B¢ do not need to be considered here, because they are
fixed to 0.

We determine the hyper-parameters o2 and 1. for the classes from prior knowledge about
the occurrence of the DNA-motifs of interest. This will be explained in detail in section 3.
The means (i 4|c,p for the parameters of observational random variables are set to 0. This
corresponds to the a-priori assumption that all symbols at every position occur with the
same probability. The same assumption was employed for the Dirichlet prior for MAP
estimation.
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We define the variances as aia‘ b = koAl — g A%+l The rationale behind this
heuristic is the assumption that the variance of the parameter prior increases exponentially
with the (local) order d;. This assumption stems from the intuition that, on average, the
number of samples per parameter decreases exponentially with the order of the model.
Consequently, the effect of the prior on the parameters increases with increasing order,
which may be balanced by a higher variance. This is again in analogy to the abovemen-
tioned choice of the transformed Dirichlet prior. Additionally, we assume that a deviation
from the mean of 0 becomes more likely with increasing order. Since we do not have
a-priori knowledge about the values of x¢; and kg, we will choose their values in a pre-
study described in section 3.

The Laplace prior is defined as

ICl-1

P(B|N7b) — H %Cexp (_'ﬂcb_cﬂcl)

c=1
1 ( ‘ﬁl,a|c,b - /’Ll,a|c,b|>
exp | — .

2bl,a|c,b bl,a\c,b

ICl L [Al-1

AT IT 11

c=11=1pcAd a=1

We choose , be and by 4,5 such that the Laplace prior has the same mean vector and the
same vector of variances as the Gaussian prior, resulting in b, = /02/2 and b; 4|cp =

A /aﬁa‘cﬁb /2. The Laplace prior entails two properties that are disadvantageous from a

theoretical point of view: its logarithm is not strictly concave, but only concave, and its
derivative with respect to any of the s is discontinuous at its maximum. We consider both
disadvantages relatively mild for numerical optimization, because the first at worst results
in a slower convergence, and the second is only relevant if we exactly hit the maximum,
which will almost never be the case.

3 Results and Discussion

In this section we compare the classification accuracy of generatively and discriminatively
trained models for the TFBSs of seven eukaryotic TFs.

3.1 Data

We consider seven sets of vertebrate TFBSs of length L = 16 collected from the TRANSFAC®
database (rel. 8.1, 2004), namely AP1 (112 sequences), AR/GR/PR (104 sequences),
C/EBP (149 sequences), GATA (110 sequences), NF1 (96 sequences), Sp1 (257 sequences),
and thyroid hormone receptor-like factors (Thyroid, 127 sequences). All sets consist of ex-
perimentally verified TFBSs collected from the scientific literature. The majority of the
TFBSs stems from human, mouse, and rat and cover three of the four superclasses of TFs:
AP1 and C/EBP belong to the class of basic domain factors, where the latter contains
at least two subfamilies; NF1 belongs to the beta-scaffold factors with minor grove con-
tacts; GATA, Spl, and Thyroid are factors with zinc-coordinating DNA-binding domains,
and AR/GR/PR comprises three steroid hormone receptors from the same class of factors.
The background data set consists of 267 sequences from second exons of human genes
with 68, 141 bp in total.
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3.2 Analyses

We use three measures for the accuracy of a classifier, namely the area under the ROC
curve (AUC), the sensitivity (Sn = TPZ%) for a fixed specificity (Sp = %) of
99.9%, and the false positive rate (FPR = 1 — Sp = %ﬁ,lg) for a fixed sensitivity
of 95%. AUC indicates the overall performance of a classifier. Sn measures the fraction
of correctly classified foreground sequences if a classifier erroneously predicts one out
of 1000 background sequences to be a TFBS. FPR measures the fraction of incorrectly
classified background sequences if a classifier correctly predicts 95 out of 100 TFBSs.
We use a k-fold stratified holdout sampling procedure [BGSGT05] for obtaining these
measures in a robust way together with estimates of their standard errors.

In the following analyses, we consider only the MAP and the MSP principle, since the
number of binding sites is small for all TFs, and zero frequencies occur even for lower-
order MMs, resulting in a low classification accuracy for ML and MCL (data not shown).

3.2.1 Choice of hyper-parameters

To determine appropriate values of the hyperparameters uf, and O'ng, we exploit prior
knowledge from a study by Stepanova et al. [STSBO05], who estimate the relative fre-
quencies of occurrence of 184 different TFs in mammalian genomes. We transform these
184 relative frequencies to the 3-parameter space using (8). Assuming the 184 -values
to be statistically independent realizations of a normal density, we estimate g, = —8.634
and o7, = 5.082.

To determine appropriate values of x., we perform a pre-study using the data set of Spl,
which is the largest of the seven data sets of TFBSs. For this set, we perform a grid
search on g (0.001 to 5, 12 values) and kg (0.0005 to 0.5, 10 values), where we fix the
order of the TFBS (foreground) model to df, = 0 and vary the background order from
dpg = 0 to dpg = 3. For each combination we use a 100-fold stratified holdout sampling
procedure to determine the resulting AUC. For each pair (kfg, kbg), We then compute
the mean AUC over all background orders and choose that (/{}kg, ngg) which yields the
maximum AUC. We choose AUC as the measure of accuracy, expecting AUC to be more
stable than Sn or FPR, as it integrates over the complete ROC curve. This results in kg, = 2
and 7, = 0.005 for the Gaussian prior and £z, = 0.005 and xy, = 0.002 for the Laplace
prior. We use these values of the k¢, and ki, in all further analyses, which implicates that
the results for Sp1 and the results for AUC are biased by the pre-study.

3.2.2 Comparison of MAP and MSP

Based on the results of the pre-study, we compare the accuracy of MAP, MSP with Gaus-
sian prior (MSP-G), and MSP with Laplace prior (MSP-L) for each of the seven TFs. We
employ MMs of order dg; = 0 and dg; = 1 as foreground models combined with MMs
of order dps = 0 to dps = 4 as background models. For each of the seven data sets,
each of the ten model combinations, and each of the three principles, we record the mean
values of the accuracy measures AUC, FPR, and Sn together with their standard errors as
obtained from a 1000-fold stratified holdout sampling procedure. We regard a difference
of performance as significant if it exceeds twice the standard error.
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Figure 1: AUC, FPR, and Sn for 7 eukaryotic TFBSs. In each plot, the first column shows the best
result for MAP, the second column for MSP-G, and the third column for MSP-L. The optimal orders
of the foreground and background model are given on the abscissa as fg / bg. The whiskers indicate
a deviation by the twofold standard error in each direction.

Figure 1 shows the results for MAP, MSP-G, and MSP-L for each of the seven TFs. Com-
paring the AUC obtained by MAP and MSP, we observe a significant improvement for
MSP for both priors and for each data set, with the exception of MSP-L applied to C/EBP.
Comparing the results of MSP-G and MSP-L, we cannot see a clear preference. Out of
the seven data sets, MSP-G performs significantly better than MSP-L for AP1 and C/EBP,
significantly worse for NF1 and Sp1, and comparable for the remaining three data sets.

For FPR, we see a significant improvement, a decrease in this case, regardless of the
prior for five of the seven TFs. For the remaining two data sets, MSP performs better
than MAP for one of the priors. Comparing the MSP approaches, again no clear pattern is
evident: MSP-G yields a significantly lower FPR compared to MSP-L for AP1 and C/EBP,
a significantly higher FPR for AR/GR/PR, GATA, and NF1, and a similar FPR for Sp1 and
Thyroid.

Considering Sn, we again see an improvement for many cases, although the pattern is
less clear. On the one hand, we observe a significant improvement for both discriminative
approaches only for C/EBP and Sp1. On the other hand, MSP-G is superior to MAP for
AP1, AR/GR/PR, C/EBP, and Sp1, and MSP-L is superior to MAP for C/EBP, Spl and
Thyroid. For NF1, only MSP-L performs as well as MAP, whereas, for GATA, MSP-G and
MSP-L perform worse than MAP. Interestingly, we see the most impressive improvements
in Sn for AR/GR/PR (2.3 %) and C/EBP (7.8 %), which are known to comprise the binding
sites of different subfamilies of TFs.

For Sn, and to a minor extend for FPR and AUC, we observe that MSP works especially
well for higher model orders for some of the TFBSs. One possible explanation might be
that for these TFBSs long-distance dependencies exist, which can be captured by higher-
order models, suggesting the use of models that can capture non-adjacent dependencies,
such as Bayesian trees, in the future.
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Figure 2: AUC, FPR, and Sn for the GATA set. The models considered are MM(0)/MM(d) (wwepm )
and MM(1)/MM(d) (- ) for MAP, and MM(0)/MM(d) for MSP-G (—8—) and MSP-L (—=—).

3.2.3 Priors and orders

In the following we study to which degree the performance of MSP-G and MSP-L may
vary from model to model. Although MSP-L yields a higher accuracy than MSP-G on the
GATA set considering AUC and FPR using the best combination of models (see figure 1),
this could possibly not be the case for all model orders. Figure 2 presents the results of
MAP, MSP-G, and MSP-L for different orders of the MMs and this TF. We find that MSP-
L is more sensitive to the order of the models employed than MSP-G. Interestingly, the
performance of MSP-L significantly decreases for AUC and FPR with increasing order,
whereas that of MSP-G stays relatively constant. This observation is in agreement to the
observation that MSP-G, in contrast to MSP-L, shows a comparable or a better perfor-
mance than MAP for any model order considering AUC and FPR. Both observations also
hold for the other data sets (data not shown) and suggest the future use of MSP-G for the
classification of eukaryotic TFBSs.

3.2.4 Differences between generative and discriminative learning

With the goal to understand to some degree why MSP shows a superior classification per-
formance in many cases, we compare the parameter values obtained by MAP and MSP-G
training. We transform the parameter estimates of the MM (0) into the f-parametrization
and compute the log ratios of the parameters between the foreground and background
model. This results in log ratios Ir(l, a) for each position [ and symbol a. As we com-
pute these values for the MAP and the MSP-G principle, we obtain two sets of values
{Ir(1, a)MSP=GY} and {Ir(1, a)MAP ). The difference of the corresponding values d(I, a) =
Ir(1, a)MSP=G —1r(1, a)MAP then provides an insight into the reasons of differing classifi-
cation.

We present the results of this analysis for AR/GR/PR in the lower plot of figure 3, while
the upper plot shows the sequence logo of the AR/GR/PR foreground data set [SS90]. In-
terestingly, we find the most noticeable differences d(l, a) between the MSP and the MAP
classifier for those positions [ with the greatest nucleotide conservation according to the
sequence logo. We might speculate that these positions are the most important for the
binding of AR/GR/PR to its TFBSs. Interestingly, it is exactly these conserved positions
on which the MSP-G principle focuses even more strongly than the MAP principle. This
might explain the superior performance of the MSP-G principle.

For most of the positions with high nucleotide conservation (7, 8, 10, and 11) the pa-
rameters of the MSP-G classifier compared to MAP more strongly tend to the consensus
nucleotide (G,T,C, and T, respectively). In figure 3 this shows as large negative differ-
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Figure 3: Sequence logos for AR/GR/PR. The upper plot shows the sequence logo (created with
segLogo R-package [Bem0O7]) and the lower plot shows the difference of the log ratios of the
parameters of the MSP-G and the MAP classifier at each position.

ences d([,a) for the non-consensus nucleotides. As the consensus nucleotides are very
conserved at these positions, this can be explained by the general tendency of discrimina-
tive principles to concentrate on the differences between the classes. On the other hand,
we observe an increased probability for nucleotide C at position 6 compared to the MAP
parameters, which cannot be explained by this means, but still might to some extend be
responsible for an improved classification performance.

These results are related to those of Mirny and Gelfand [MGO02], who find that for protein-
DNA interactions the number of contacts between the protein and a nucleotide is highly
correlated with its conservation, supporting our speculation. The findings of [MGO02] are
(amongst others) used by Keles et al. [KvdLD03] to improve the de-novo identification
of TFBSs. As MSP classifiers to some extend seem to focus on positions with nucleotide
conservation, it might be worthwhile to apply the MSP approach to the problem of de-novo
motif identification.

4 Conclusion

Several approaches exist for improving the computational recognition of TFBSs. One ap-
proach, which is very popular as measured by the number of publications over the last
decade, focuses on finding more appropriate statistical models for modeling both the mo-
tifs and the DNA background. A complementary approach focuses on improving meth-
ods for parameter estimation from small data sets. While generative training approaches
attempt to model each sequence class (motifs and DNA background) as accurately as pos-
sible, discriminative training approaches attempt to choose those parameters that discrim-
inate the sequence classes from each other as accurately as possible.

One discriminative parameter estimation approach proposed in the machine learning com-
munity is the maximum supervised posterior principle. In this paper, we study if the
recognition of eukaryotic TFBSs can be improved by using the MSP principle for param-
eter estimation.

We compare the classification accuracy of the MAP and MSP principles applied to seven
data sets of eukaryotic TFBSs. As models for motifs and the DNA background, we choose
Markov models, which are at the heart of most of the TFBS recognition algorithms. For
parameter estimation, we use the MAP principle using transformed Dirichlet priors and the
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MSP principle using Gauss (MSP-G) and Laplace (MSP-L) priors. As measures of accu-
racy, we use the area under the ROC curve, the false positive rate for a fixed sensitivity of
95%, and the sensitivity for a fixed specificity of 99.9%. Performing a 1000-fold stratified
holdout sampling procedure, we find that the recognition of TFBSs can be improved sig-
nificantly for most of the studied data sets and measures of classification accuracy by using
the MSP approach in favor of the MAP approach. Although the MSP approach achieves
an impressively higher sensitivity for a subset of the studied TFs including AR/GR/PR and
C/EBP, we do not see an improvement as measured by the sensitivity for all of the factors.
With respect to varying the orders of the Markov models MSP-G is more stable, even
though MSP-L yields a higher accuracy than MSP-G in a few cases. In all of the studied
cases, MSP-G achieves a comparable or a better classification performance than the MAP
approach considering area under curve and false positive rate regardless of the orders of
the Markov models. This suggests that the MSP approach using Gaussian priors could
be useful for the prediction of other TFBSs or other DNA motifs, such as nucleosomal
binding sites, splice sites, or splicing enhancers.

Acknowledgements

We thank André Gohr and Yvonne Poschl for valuable discussions and the German Min-
istry of Education and Research (BMBF Grant No. 0312706A/D) for financial support.

References

[BemO7] O. Bembom. seqLogo: An R package for plotting DNA sequence logos. http:
//cosmoweb.berkeley.edu/software.html, January 2007.

[BGSGT05] I Ben-Gal, A. Shani, A. Gohr, J. Grau, S. Arviv, A. Shmilovici, S. Posch, and
I. Grosse. Identification of transcription factor binding sites with variable-order
Bayesian networks. Bioinformatics, 21(11):2657-2666, 2005.

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[BNPT02] B. P. Berman, Y. Nibu, B. D. Pfeiffer, P. Tomancak, S. E. Celniker, M. Levine, G. M.
Rubin, and M. B. Eisen. Exploiting transcription factor binding site clustering to iden-
tify cis-regulatory modules involved in pattern formation in the Drosophila genome.
Proc Natl Acad Sci USA, 99(2):757-762, Jan 2002.

[Bun91] W. L. Buntine. Theory Refinement of Bayesian Networks. In Uncertainty in Artificial
Intelligence, pages 52—62. Morgan Kaufmann, 1991.

[CAMO5] J. Cerquides and R. Lépez de Mantaras. Robust Bayesian Linear Classifier Ensem-
bles. In ECML, pages 72-83, 2005.

[CR99] S. Chen and R. Rosenfeld. A Gaussion Prior for Smoothing Maximum Entropy Mod-
els. Technical report, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, February 1999.

[CTGO7] G. Cawley, N. Talbot, and M. Girolami. Sparse Multinomial Logistic Regression
via Bayesian L1 Regularisation. In B. Scholkopf, J. Platt, and T. Hoffman, editors,
Advances in Neural Information Processing Systems 19. MIT Press, Cambridge, MA,
2007.

[FI06] A. Feelders and J. Ivanovs. Discriminative Scoring of Bayesian Network Classifiers:
a Comparative Study. In Proceedings of the third European workshop on probabilistic
graphical models, pages 75-82, 2006.

[GD04] D. Grossman and P. Domingos. Learning Bayesian network classifiers by maximizing
conditional likelihood. In ICML, pages 361-368. ACM Press, 2004.

[GKM+02] P. Griinwald, P. Kontkanen, P. Myllymaiki, T. Roos, H. Tirri, and H. Wettig. Super-
vised posterior distributions. Presented at the Seventh Valencia International Meeting
on Bayesian Statistics, 2002.

133



[GLMO5]

[GSSZ05]

[KGRT03]

[KvdLD 03]

[MGO02]

[MGL105]

[Min03]

[MP99]

[NJO2]

[RWGT05]

[Sal97]
[SS90]

[SSGES2]

[Sta84]

[STSBOS]

[TT05]

[WGR102]

[YSHOS]

[ZM93]

A. Genkin, D. D. Lewis, and D. Madigan. Sparse Logistic Regression for Text Cate-
gorization. Project Report, Center for Discrete Mathematics & Theoretical Computer
Science, April 2005.

R. Greiner, X. Su, B. Shen, and W. Zhou. Structural Extension to Logistic Regres-
sion: Discriminative Parameter Learning of Belief Net Classifiers. Machine Learning
Journal, 59(3):297-322, 2005.

A.E. Kel, E. Gossling, I. Reuter, E. Cheremushkin, O. V. Kel-Margoulis, and E. Win-
gender. MATCH: A tool for searching transcription factor binding sites in DNA se-
quences. Nucleic Acids Res, 31(13):3576-3579, July 2003.

S. Keles, M. J. van der Laan, S. Dudoit, B. Xing, and M. B. Eisen. Supervised
detection of regulatory motifs in DNA sequences. Stat Appl Genet Mol Biol, 2(1),
2003.

L. A. Mirny and M. S. Gelfand. Structural analysis of conserved base pairs in protein-
DNA complexes. Nucl. Acids Res., 30(7):1704-1711, 2002.

D. Madigan, A. Genkin, D. D. Lewis, S. Argamon, D. Fradkin, and L. Ye. Author
Identification on the Large Scale. In Joint Annual Meeting of the Interface and the
Classification Society of North America, June 2005.

T. P. Minka. Algorithms for maximum-likelihood logistic regression. Technical Re-
port 758, Carnegie Mellon University, Department of Statistics, 2001, revised Sept.
2003.

M. Meila-Predoviciu. Learning with Mixtures of Trees. PhD thesis, Massachusetts
Institute of Technology, 1999.

A. Ng and M. Jordan. On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes. In T.G. Dietterich, S. Becker, and Z. Ghahramani,
editors, Advances in Neural Information Processing Systems, volume 14, pages 605—
610. MIT Press, Cambridge, MA, 2002.

T. Roos, H. Wettig, P. Griinwald, P. Myllyméki, and H. Tirri. On Discrimina-
tive Bayesian Network Classifiers and Logistic Regression. Machine Learning,
59(3):267-296, June 2005.

S. L. Salzberg. A method for identifying splice sites and translational start sites in
eukaryotic mRNA. Comput. Appl. Biosci., 13(4):365-376, 1997.

T. D. Schneider and R. M. Stephens. Sequence Logos: A New Way to Display Con-
sensus Sequences. Nucleic Acids Res., 18:6097-6100, 1990.

G. D. Stormo, T. D. Schneider, L. M. Gold, and A. Ehrenfeucht. Use of the ’per-
ceptron’ algorithm to distinguish translational initiation sites. NAR, 10:2997-3010,
1982.

R. Staden. Computer methods to locate signals in nucleic acid sequences. Nucleic
Acids Research, 12:505-519, 1984.

M. Stepanova, T. Tiazhelova, M. Skoblov, and A. Baranova. A comparative analysis
of relative occurrence of transcription factor binding sites in vertebrate genomes and
gene promoter areas. Bioinformatics, 21(9):1789-1796, 2005.

M. Tompa et al. Assessing computational tools for the discovery of transcription
factor binding sites. Nature Biotechnology, 23(1):137 — 144, 2005.

H. Wettig, P. Griinwald, T. Roos, P. Myllymaiki, and H. Tirri. On Supervised Learning
of Bayesian Network Parameters. Technical Report HIIT Technical Report 2002-1,
Helsinki Institute for Information Technology HIIT, 2002.

O. Yakhnenko, A. Silvescu, and V. Honavar. Discriminatively Trained Markov Model
for Sequence Classification. In ICDM ’05: Proceedings of the Fifth IEEE Interna-
tional Conference on Data Mining, pages 498-505, Washington, DC, USA, 2005.
IEEE Computer Society.

M.O. Zhang and T.G. Marr. A weight array method for splicing signal analysis.
Comput. Appl. Biosci., 9(5):499-509, 1993.

134





