Using UML Environment Models
for Test Case Generation

Maritta Heisel', Denis Hatebur®2, Thomas Santen®, and Dirk Seifert*

1 University Duisburg-Essen, Faculty of Engineering, Department of Computational and
Cognitive Sciences, Working Group Software Engineering, Germany,{denis.hatebur,
maritta.heisel}@uni-duisburg-essen.de
2 TInstitut fiir technische Systeme GmbH, Germany, d . hatebur@itesys.de
3 Department of Computer Science, Technische Universitit Berlin, Berlin, Germany,
santen@cs.tu-berlin.de
4 LORIA - Université Nancy 2, Campus Scientifique BP 239, F-54506 Vandceuvre lés Nancy
cedex, dirk.seifert@loria.fr

Abstract. We propose a new method for system validation by means of testing,
which is based on environment models expressed as UML state machines. A sun
blind control case study serves to illustrate the method.

1 Introduction

Model-based software development proceeds by setting up models of the software to
be constructed. This approach has proven useful, because it allows developers to first
elaborate the most important properties of the software before proceeding with the im-
plementation. Often, software models are also used for code generation. In this case,
however, a problem arises: it does not make sense any more to test the software against
its models, because these were already used to generate it. We therefore propose to test
the software not only against its specification (i.e., against the models), but also against
its requirements, which describe the how the environment should behave in which the
software will be operating (acceptance testing). For this purpose, we have to set up a
model of the environment, too.

In this paper, we describe how UML state machines (with a corresponding sup-
port tool TEAGER [SS06]) can be used to realize the described approach in the area of
reactive and/or embedded systems. For this kind of system, state machine models are
particularly useful. We elaborate on two different testing approaches:

On-the-fly testing: Here, generating and executing test cases is intertwined. This has
the advantage that state explosion is not a problem, but the disadvantage that for non-
deterministic systems the tests may not be repeatable.

Batch testing: Here, test cases are generated and stored for later execution. This has the
advantage that regression tests become possible but the disadvantage that all possible
behavior variants must be computed.

In Sect. 2, we introduce Jackson’s terminology [Jac01], which clarifies the notions
used in the rest of the paper. The sunblind example is presented in Sect. 3. In Sect. 4,
we describe our testing approach, presenting different test architectures. In Sect. 5, we

399

present state machine patterns that help to set up environment models. Some experimen-
tal results are given in Sect. 6. Sect. 7 discusses related work, and Sect. 8 summarizes
our contributions.

2 Terminology

Jackson’s [JacO1] terminology serves to clearly distinguish the different notions that
have to be taken into account when developing software:

Machine is the thing we are going to build; it may consist of software and hardware.
Environment is the part of the real world where the machine will be integrated.
System consists of the machine and its environment.’

Requirements are optative statements; they describe how the environment should be-
have when the machine is in action.

Specifications are implementable requirements; they describe the machine and form
the basis for its construction.

Domain knowledge is needed to transform requirements into specifications. It is ex-
pressed as indicative statements. We distinguish between facts and assumptions:
Facts describe what holds in the environment, no matter how we build the ma-
chine. Assumptions describe things that cannot always be guaranteed, but which
are needed to fulfill the requirements, e.g., rules for user behavior.

The domain knowledge D consists of both the facts F' and the assumptions A: D =
F A A. The relation between requirements and specifications is S A D = R, i.e.,
we have to show that if we build the machine such that it satisfies the specification S
and integrate it into an environment for which D holds, then the requirements R are
satisfied.

3 Example

We illustrate our testing approach with the example of a sunblind control system. The
task is to write software that controls a sunblind, taking into account user commands,
wind, and sunshine: The sunblind can manually be lowered or pulled up. It is automati-
cally lowered on sunshine for more than one minute. The sunblind can be destroyed by
heavy wind, which should be avoided. The environment consists of user, sun and wind.

To illustrate the difference between requirements and specifications and to stress
the importance of explicitly modeling the environment, we transform one requirement
concerning the sunblind control problem into a specification, making use of domain
knowledge.

R1 The sunblind is not destroyed by wind.

To make this requirement implementable, we must know when wind can destroy the
sunblind, and how a destruction can be avoided:

5 In the literature, the term “system” is used interchangeably for the software (i.e., the machine)
as well as for the machine in its environment. Jackson’s terminology establishes a clear dis-
tinction.

400

F1 Heavy wind for more than 30 sec is destructive.
Al Heavy wind for less than 30 sec is not destructive.
F2 [f the sunblind is up, it cannot be destroyed by wind.
Using this domain knowledge, we can replace R1 by
R1’ The sunblind is up if there is heavy wind for more than 30 sec.
because F1 A A1 A F2 A R1' = R1. Next, we use
F3 It takes less than 30 sec to pull up the sunblind.
to obtain
R1” If there is heavy wind and the sunblind is not up, it is pulled up.
because F'3 A R1” = R1’. Using the facts
F4 There is heavy wind if and only if the wind sensor generates
more than 75 pulses per sec.
F5 Turning the motor left pulls up the sunblind.
we finally obtain the specification
S1 If the wind sensor generates more than 75 pulses per sec
and the last signals to the motor have not been turn left, followed by motor left
blocked and stop motor, then the turn left signal is sent to the motor.
(because F4 A F'5 A S1 = R1"), which is quite different from the requirement we
started out with. All in all, we have shown F1AF2AF3ANF4NF5ANA1NS1 = R1.

4 Test approach

How would the sunblind control software (SUT, system under test) be tested? Usually,
conformance with the specification would be checked. In our example, we would have
to verify that the machine generates the furn left signal. However, if the specification
was not correctly derived from the requirements, the SUT passes the test nevertheless.

We therefore propose to test the SUT against the requirements. This means that
we check whether the sunblind can enter a state where it would be destroyed. Besides
detecting errors made in transforming requirements into specifications, testing against
requirements allows us to verify that customer needs are satisfied (acceptance test).

In order to test the SUT against its requirements, we need a model of the envi-
ronment, because the requirements refer to the environment and not to the machine.
Much like the SUT, the environment can be modeled using UML state machines. The
model explicitly contains the facts and the assumptions about the environment. The
environment model consists of adapters and the input event generator: Adapters trans-
form abstract events such as pull up sun blind into concrete ones, such as turn motor
left. The input event generator produces abstract events. To capture stochastic properties
of the environment probabilistic state machines of TEAGER can be used. This reduces
the number of inadequate test cases.

The requirements are translated into state machines, too. These state machines serve
to inform the tester whether a requirement is violated. They observe the stimuli and SUT
outputs at an adequate level of abstraction. As shown in Fig. 1, the Test Case Generator
component of the tool TEAGER can be used to simulate the environment model and to
check the requirements. To calculate test cases, for each tick (1) an abstract stimulus is
generated by the Input-Event-Generator in the environment model. Adapters transform

401

State Case Generator
Violation SUT System
9 -- -1+ Requirements Model Under
Test
Violation
[I B AS [AO cs |co cs |co
- | 3b [8a 4a IS
Environment Model | B C
2 co C Cs
Input — AS gaO 6b A Test
o =1 Test Case Allowed Execution =
Event — Adapters Generator ! Result
N Traces Unit
Generator AO cS cs co D
8b 3a b C >
? A
tick 1

CO: Concrete Observation CS: Concrete Stimulus tick: Request for new Stimulus
AO: Abstract Observation ~ AS: Abstract Stimulus Violation: Test Result

Fig. 1. Test architecture for batch testing.

the abstract stimuli into concrete stimuli for the Test Case Generator (3a) and send the
abstract stimuli to the Requirements (3b). The Test Case Generator sends the concrete
stimuli to the SUT Model, which determines suitable responses (4a, 5), and it stores
the conrete stimuli and the determined concrete observations (4b, 6b). The Adapters
transform the concrete observations (6a) into abstract observations that are checked by
the Requirements (8a) and used to generate reasonable stimuli (8b, e.g., isLowered only
after LoweredSunBlind). Violations can be detected by checking the requirements (9)
and while transforming concrete stimuli into abstract stimuli (7). After the requirements
are checked, a new tick (1) is generated. The generated Test Cases can be used to test
the SUT with the Test Execution Unit. Concrete stimuli and observations in the allowed
traces (A) are used to stimulate the SUT (B) and check the responses (C). Test results
(D) are the output of the Test Execution Unit.

Alternatively, the environment model can be directly connected to the SUT, and
within the simulated environment the requirements are checked at runtime. In this case
no SUT model is necessary. This scenario is especially useful for acceptance tests. Here,
regression tests can be performed by saving the generated event sequences. Then, the
State Machine Executor recalculates the test events by simulating the environment and
checks the observed behavior according to the requirements. The test system architec-
ture — annotated with sample observations and stimuli for the sunblind example and
with the execution order — for this “on the fly”-testing approach is shown in Figure 2.

5 Patterns for environment models

Setting up the state machines for the environment model is not a trivial task. However,
we can identify different patterns for setting up environment models, especially for
expressing requirements as state machines. The overall structure of the state machine
consists of parallel regions. That is, the environment model is in all of the parallel
machines R;, Input-Event-Generator and Adapter at the same time, and the different
sub-machines communicate with each other via common events. The left-hand side
of Figure 4 shows an example of an input event generator. Note that assumption A/
(namely, that heavy wind for less than 30 sec is not destructive) is modeled explicitly.

402

State Machine Executor

=\

Pre

Violation
i Req“i'emen's lowerSunBlind,
pullUpSunBlind,
— FulfilledR ;
Violation Wind, pulledUp, .. turnMotorRight,
R i = = stopMotor,
Environment Model | W) [T TTTTTTTTTTTTmoTmomoooooooooooomooooooooooo
CO | System Post .,
tick | | Input— AS Und checkR ¢
'S D (23] nder satisfactionR ;
Event — Adapters ~ | Test N
I cs DesiredStateR ;
Generator AO N
6b windPulse,

motorLeftBlocked,

checkR /
inconclusiveR;

checkR {
violationR ;

Fig. 2. Test architecture for on-the-fly testing. N

Fig. 3. Patterns for environment models

Moreover, probabilities for the different transitions are given. These can be processed
by the TEAGER tool. As an example of an adapter, we present the motor adapter, which
transforms concrete observations into abstract ones in the right-hand side of Fig. 4. It
specifies how motor commands correspond to events that are visible in the environment.

For modeling requirements, we have developed different patterns, of which we can
present only one for reasons of space. The pattern is usable when the requirement
has the form “When [eventR;] happens, [controlled domain] should be in [desired-
StateR;]”. Its representation as a state machine is shown in Fig. 3. When the event of
interest happens, then the precondition of the requirement is fulfilled, and the event
checkR; is generated. The state machine representing the postcondition contains the
desired state and may also contain other states. Only if it is in the desired state, the
test passes; otherwise, a violation is determined, or the test is inconclusive. The latter
happens, for example, if the actual state of the system is not known. Then, the result
of checking a requirement should neither be pass nor fail. In our example, we do not
initially know the (physical) state of the sunblind. Hence, we introduced an “unknown
state” (denoted by “?””) expressing this situation. Checking requirement R; in this state
yields an inconclusive result.

Wind_Input

<<interface>>

/noHeavy
Wind()

‘WeakWind

0.3/
noHeavyWind()

0.2/

heavyWind(), timer.start(30)

/heavyWind(), | HeavyWind

timer.start(30)

07/
LD ¢
~ __-{>80km/h

timer.timeout()/
destructiveWind()

abstr_motor_event

stopMotor ()
turnMotorRight ()
turnMotorLeft ()

\ <<provides>>

Motor_
Adapter

<<uses>>

<<interface>>
concr_motor_event

stopSunBlind ()
pullt ind ()

0

Motor_Adapter

stopMotor () /
stopSunBlind ()

turnMotorLeft () /
pullUpSunBlind ()

N
|

WaitForMotorSig

turnMotorRight () /
lowerSunBlind ()

Fig. 4. Input generator and adapter for the sunblind

403

R1

Pre ' Post g

checkR1)/
satisfactionR1 ()

lowerSunBlind

0

pulledUp ()

pullUpSun

Blind()
? PullingUp
stopSunBlind (), pullUpSunBlind()
lowerSunBlind ()

lowerSun
Blind ()

Fulfilled |

I

destructiveWind () /
checkR1 ()

checkR1 () /

violationR1 ()
checkR1 () /

inconclusiveR1 ()

checkR1 () /
violationR1 ()

Fig. 5. State machine for requirement R

Requirement R; of Sect. 3 is an instance of this pattern: whenever there is destruc-
tive wind, the sunblind must be up. Figure 5 shows the instantiated pattern. Whenever
the event destructive Wind occurs, the event checkR1 is generated. If the sunblind is in
state up, the requirement is satisfied. Otherwise, it is violated. The Fail state corresponds
to a state where the sunblind would be destroyed.

All in all, to completely model the sunblind control problem, 4 input event gener-
ators, 4 adapters, and 7 requirement state machines have to be set up. All the require-
ments are instances of patterns.

6 Experimental results

To evaluate our approach, we used the tool suite TEAGER [SS06, Sei08]. The tool suite
allows its users to generate and execute test cases or to directly stimulate the SUT.
TEAGER logs the stimuli it sends to the SUT and the reactions of the SUT. During
execution, these reactions are compared to the pre-calculated possible correct reactions
to evaluate the test execution process. Table 1 shows some generation times for several
experiments. Here, the number of triggers controls the length of test cases, while the
search depth controls the exploration of the model’s state space. The results show that
no state explosion occurs, which makes the approach applicable in practice.

No. of Test Cases‘ No. of generated Triggers ‘ Search Depth ‘ Generation Time

50 100 500 10 10 10 5 5 5 4sec Ssec 18sec
50 100 500 100 100 100 5 55 15sec 32sec 150 sec
50 100 500 100 100 100 10 10 10|105sec 180sec 943 sec

Table 1. Test case generation times for several experiments.

404

7 Related work

To our knowledge, there neither exist approaches for testing requirements expressed as
UML state machines, nor approaches for combining conformance testing on unit testing
level with testing requirements on acceptance testing level.

A detailed overview of the fundamental literature for classical formal testing can
be found in Brinksma’s and Tretmans’ annotated bibliography [BT01]. De Nicola and
Hennessy [DH84] introduce a formal theory of testing on which Brinksma [Bri88] and
Tretmans [Tre96] build approaches to derive test cases from a formal specification. In
contrast to our work, these approaches assume that a testing process can communi-
cate synchronously with the system under test. The developed tool TorX (fmt.cs.
utwente.nl/tools/torx) also allows conformance testing of reactive systems.

Belli at al. (see [BHO7] and the work cited there) base their testing methodology
on a variant of state machines. In contrast to our approach, they do not test against
requirements, but against a fault model that has to be set up explicitly. Moreover, they
do not execute the state machines directly, but represent them as event sequence graphs.

Auguston et al. [AMSO05] use environment models for test case generation. In con-
trast to our approach, they do not use state machines, but attributed event grammars.

While these works have their merits, we think that the combination of environment
models and UML state machines for testing is a particularly attractive one.

Besides the work from academia, an increasing number of CASE Tool manufactur-
ers offer components for model based testing. I-Logix Rhapsody, for example, offers
two add-on products, Test Conductor and Testing and Validation, for testing state ma-
chines (www.telelogic.com). Simulink Verification and Validation generates test
cases in Simulink and Stateflow, and measures test coverage for Statecharts (www.
mathworks . com). Conformiq Software Ltd. offers a Test Generator which accepts
“extended UML state charts” as the model of the system under test for dynamic testing
(www.conformiqg.com). AsmL 2 by Microsoft provides an executable specification
language based on the theory of Abstract State Machines (research.microsoft.
com/fse/asml). The AsmL Test Tool supports parameter generation and test se-
quence generation based on interface automata.

8 Conclusion

We have developed a novel approach to testing reactive and embedded systems, based
on environment models and using UML state machines. The approach is supported by
the TEAGER tool. Using Jackson’s terminology, we have defined uniform architectures
and procedures for on-the-fly as well as batch testing that have the following character-
istics:

— Requirements, facts, and assumptions are modeled explicitly.

— We have defined patterns for the different state machines: For requirements, a par-
allel state machine is set up for each precondition. When all preconditions are ful-
filled, the postcondition is checked. Input generators and adapters also consist of
parallel state machines, one for each item of the environment that generates stimuli
or receives observations, respectively.

405

— Once these models have been set up manually (but systematically), the tests are
performed automatically, using the tool TEAGER.

Our approach has the following advantages: When requirements change, in the test
case generator only the state machine describing those requirements must be changed.
On the other hand, changed requirements will lead to a new SUT model. The new
SUT model can be validated while the test cases are generated. Modeling the facts and
assumptions about the environment supports the validation of requirements. For ex-
ample, it can be discussed if heavy wind can be destructive to the sunblind within the
time that a sunblind needs to be pulled up. Although the model of the environment
has nearly the same complexity as the model of the machine, a structured approach to
develop the environment model helps to identify subproblems that can be treated sep-
arately. Sometimes, states like “sunblind destroyed” are not modeled in the machine,
but must be modeled in the environment to verify that this state cannot be reached. On
the other hand, states can be left out in the environment model if the machine imple-
ments features that are not part of the requirements. The same environment model can
be (re-)used for a sunblind control that can stop at an arbitrary height and a sunblind
control that can only open or close the sunblind completely. Modeling the environment
adds diversity to the development process and thus helps to avoid that the same mistake
occurs for test development and SUT development. This is because the test developers,
who model the environment, must think in terms of the environment rather than the
SUT behavior. In the environment model, a reasonable test case selection strategy can
be defined, so that no inadequate test cases are generated. Atypical behavior can be
identified and tested using a dedicated environment model.

References

[AMS05] M. Auguston, J. B. Michael, and M.-T. Shing. Environment behavior models for
scenario generation and testing automation. In Proc. First International Workshop
on Advances in Model-Based Testing, ICSE 2005, pages 1-6. ACM, 2005.

[BHO7] Fevzi Belli and Axel Hollmann. Holistic testing with basic statecharts. In W.-G.
Bleek, H. Schwentner, and H. Ziillighoven, editors, Software Engineering 2007 —
Beitrdge zu den Workshops, LNI 106, pages 91-100. Ges. f. Informatik, 2007.

[Bri88] Ed Brinksma. A Theory for the Derivation of Tests. In Protocol Specification, Testing
and Verification. North-Holland, 1988.

[BTO1] Ed Brinksma and Jan Tretmans. Testing Transition Systems: An Annotated Bibliog-
raphy. Lecture Notes in Computer Science, pages 187-195, 2001.

[DH84] Rocco De Nicola and M. C. B. Hennessy. Testing Equivalences for Processes. The-
oretical Computer Science, pages 83—133, 1984.

[JacO01] Michael Jackson. Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, 2001.

[Sei08] Dirk Seifert. The TEAGER Tool Suite. test execution and generation framework for
reactive systems, 2008. swt .cs.tu-berlin.de/~seifert/teager.html.

[SS06] Thomas Santen and Dirk Seifert. Teager - Test Automation for UML State Machines.
In B. Biel, M. Book, and V. Gruhn, editors, Software Engineering 2006, LNI P-79,
pages 73-83. Gesellschaft fiir Informatik, 2006.

[Tre96] Jan Tretmans. Test Generation with Inputs, Outputs and Repetitive Quiescence.
Software—Concepts and Tools, 17(3):103-120, 1996.

406

