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Abstract: Many traditional and new business applications work with inherently graph-
structured data and therefore benefit from graph abstractions and operations provided
in the data management layer. The property graph data model not only offers schema
flexibility but also permits managing and processing data and metadata jointly. By
having typical graph operations implemented directly in the database engine and
exposing them both in the form of an intuitive programming interface and a declarative
language, complex business application logic can be expressed more easily and executed
very efficiently. In this paper we describe our ongoing work to extend the SAP HANA
database with built-in graph data support. We see this as a next step on the way
to provide an efficient and intuitive data management platform for modern business
applications with SAP HANA.

1 Introduction

Traditional business applications, such as Supply Chain Management, Product Batch
Traceability, Product Lifecycle Management, or Transportation and Delivery, benefit greatly
from a direct and efficient representation of the underlying information as data graphs.
But also not so traditional ones, such as Social Media Analysis for Targeted Advertising
and Consumer Sentiment Analysis, Context-aware Search, or Intangible and Social Asset
Management can immensely profit from such capabilities.

These applications take advantage of an underlying graph data model and the implementa-
tion of core graph operations directly in the data management layer in two fundamental
ways. First, a graph-like representation provides a natural and intuitive format for the
underlying data, which leads to simpler application designs and lower development cost.
Second, the availability of graph-specific operators directly in the underlying database
engine as the means to process and analyze the data allows a very direct mapping of core
business functions and in turn to significantly better response times and scalability to very
large data graphs.

When we refer to data graphs in this paper, we mean a full-fledged property graph model
rather than a subject-predicate-object model, as used by most triple stores, or a tailored
relational schema, for example in the form of a vertical schema, to generically store vertices
and edges of a data graph.

A property graph [RN10] is a directed multi graph consisting of a finite (and mutable) set
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Figure 1: Example data expressed in the relational and the property graph data model

of vertices (nodes) and edges (arcs). Both, vertices and edges can have assigned properties
(attributes) which can be understood as simple name-value pairs. A dedicated property can
serve as a unique identifier for vertices and edges. In addition, a type property can be used
to represent the semantic type of the respective vertex or edge. Properties of vertices and
edges are not necessarily determined by the assigned type and can therefore vary between
vertices or edges of the same type. Vertices can be connected via different edges as long as
they have different types or identifiers.

Figure 1 shows a very small example data set both expressed in the relational model and the
property graph model, which could be the basis for a Targeted Advertisement application.
Customers can rate products, which are organized in categories. If, additionally, the
relationships between customers, the products they bought, and their ratings are stored, the
application can easily recommend products that might be of interest to the customer based
on what other customers bought and rated.
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The property graph model provides the following key characteristics, which distinguish it,
in particular, from the classical relational data model.

o Relationships as First Class Citizens. With the property graph model relationships
between entities are promoted to first class citizens of the model with unique identity,
semantic type, and possibly additional attributes. The relational model focuses on
the representation of entities, their attributes and relational consistency constraints
between them and requires the use of link tables to represent n-to-m relationships
or additional attributes of relationships. In contrast, the concept of an edge provides
an explicit and flexible way to represent interrelationships between entities which is
essential if relationships between entities are very important or even in the center of
the processing and analysis of the data.

e Increased Schema Flexibility. In a property graph edges are specified at the instance
and not at the class level, i.e., they relate two specific vertices, and vertices of the
same semantic types can be related via different types of edges. Similarly, properties
of edges and vertices are not necessarily determined by the semantic type of the
respective edge or vertex, which means that edges or vertices of the same semantic
type can have assigned different sets of properties.

With this the schema of a data graph does not have to be predefined in the form of a
rigid schema that would be cumbersome and expensive to modify but rather evolves
as new vertices are created, new properties are added, and as new edges between
vertices are established.

e No Strict Separation between Data and Metadata. Vertices and edges in a graph
can have assigned semantic types to indicate their intended meaning. These types
can be naturally represented as a tree (taxonomy) or graph (ontology) themselves.
This allows their retrieval and processing as either type definitions, i.e., metadata, or
(possibly in combination with other vertices) as data. By allowing to treat and use
type definitions as regular vertices we can give up a strict and for some applications
artificial separation of data from metadata.

For example, in the context of context-aware search a given search request can be
extended or refined not only by considering related content (i.e., vertices that are
related to vertices directly referred to by the request) but also related concepts or
terms (i.e., vertices that are part of the underlying type system used in the search).

In recent years, another graph model has gained a lot of popularity: the Resource Description
Framework (RDF [CKO04]). At its core is the concept that statements about resources can be
made in the form of triples consisting of a subject, a predicate and an object. The subject
and the predicate are always resources, whereas the object of such a statement can be
either a resource or a literal. This simple concept, with almost no further constraints, offers
an extremely flexible way of representing information — and hence heavily depends on
what conventions individual applications use to encode and decode RDF data. All triples
of a dataset form a labeled graph, which represents a network of values. An entity is
decomposed into a set of statements and application logic is required to reassemble them
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upon retrieval. In contrast, the property graph model provides intrinsic support for entities
by permitting vertices and edges to be attributed. RDF therefore does not offer inherent
means to represent an entity as a unit and requires applications to provide this semantics.

The use of a dedicated set of built-in core graph operators offers the following key perfor-
mance and scalability benefits.

o Allow Efficient Execution of Typical Graph Operations. An implementation of
graph operators directly in the database engine allows the optimization of typical
graph operations like single or multi-step graph traversal, inclusive or exclusive
selection of vertices or edges, or to find the shortest or all paths between vertices.
Such optimizations are not possible in for example relational database systems since
the basic operators are unaware of concepts like vertex and edge. In particular,
depending on the physical representation of graph data in the system vertices can
act like indexes for their associated vertices which allow the performance of graph
traversals to be independent of the size of the overall data graph. In contrast, the
realization of traversal steps in a relational database system requires join operators
between tables whereby the execution time typically depends on the size of the
involved tables.

e Provide Support for Graph Operations Difficult to Express in SQL. Similarly,
the direct implementation of graph-specific operations in the database allows the
support of operations that otherwise are very hard or even impossible to express for
example in standard SQL. Relational databases are good at straight joins but are
not good or are unable to execute joins of unpredicted length that are required to
implement transitive closure calculations in graph traversals. Another example is
sub-graph pattern matching, which is very difficult to express in general with the
means of standard SQL.

In this paper we describe how we extended the SAP HANA [FCP*12] database with native
graph data support. In the following section we present different classes of business
applications and how they benefit from a dedicated graph support in the database engine.
The key components of our technology in the context of the SAP HANA database architecture
are introduced in Section 3. Section 4 details the graph data model and our declarative query
and manipulation language WIPE, and Section 5 presents the underlying graph abstraction
layer and the graph function library. In Section 6 we exemplary evaluate the performance
of our approach compared to the traditional SQL-based implementation. Finally, Section 7
summarizes the presented work.

2 Use Cases

In the following paragraphs we illustrate the use of the property graph model and a dedicated
graph database management system by different business applications.
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Transportation and Logistics. Transportation and logistics are important components
of supply chain management. Every company that sells goods relies on materials or
products being transported via motor carrier, rail, air or sea transport from one location to
another. Therefore, accurate representation and management, as well as visibility into their
transportation options and logistics processes are vital to businesses. A typical scenario
would include both inbound (procurement) and outbound (shipping) orders to be managed
by a transportation management module which can suggest different routing options. These
options are evaluated and analyzed with the help of a transportation provider analysis
module to select the best route and provider based on cost, lead-time, number of stops,
risk, or transportation mode. Once the best solution has been selected, the system typically
generates electronic tendering and allows to track the execution of the shipment with the
selected carrier, and later supports freight audit and payment. A graph data model supports
a flexible and accurate representation of the underlying transportation network. Efficient
graph operations enable the fast execution of compute intensive graph operations like
identification of shortest or cheapest paths or multi-stop transportation routes.

Product Batch Traceability. End-to-end product traceability is key in global manufac-
turing to monitor product quality and to allow efficient product recall handling to improve
customer safety and satisfaction. It supports complete product batch tracing of all materials
purchased, consumed, manufactured, and distributed in the supply and distribution network
of a company. Backward traceability allows companies to identify and investigate problems
in their manufacturing process or plants as well as in their supply chain. Forward trace-
ability, on the other hand, allows to respond fast to encountered problems to comply with
legal reporting timelines, and to minimize cost and corporate risk exposure. A graph data
model allows for a direct and natural representation of the batch relation network. Graph
processing capabilities in the data management layer are a prerequisite to guarantee fast
root cause analysis and to enable timely product recalls and withdrawals as required by law
in many industries.

Targeted Advertisement. The goal of targeted advertising is to deliver the most relevant
advertisement to target customers to increase the conversion rate of customers who see the
advertisements into actual buyers. Decisions of which advertisements to send to which
customers can be done based on user profile, behavior, and social context. This matching
process includes, in particular, customer segmentation or the creation of personas (like
“sports car fan”) based on social and interest graphs that describe who the respective user
knows or follows and what the user has shown interest in or likes. This information can be
derived from publicly available sources that people volunteer or captured by opt-in applica-
tions, like Facebook interests, product reviews or blogs, or what they tweet or re-tweet. A
data graph model and data graph processing capabilities support the flexible combination
of data from the multitude of relevant sources and allows an efficient representation and
management of large and frequently changing social graphs. Fast graph analytics operations
on this data are a prerequisite to enable large-scale real-time targeted advertisement.
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Bill of Materials. Complex products are usually described with the help of a hierarchical
decomposition into parts, sub-components, intermediate assemblies, sub-assemblies and raw
materials together with the quantities of each, a so-called bill of materials (BoM [ISO12]).
Manufacturing industries, such as the automotive and aeronautics sectors, use BOMs to plan
the assembly processes. Two important operations on BOMs are linking pieces to assemblies
(“implosion”) and breaking apart each assembly into its component parts (“‘explosion”).
Since hierarchies are directed acyclic graphs with a single start node, applications working
with BOMs can benefit from a natural graph representation and fast graph processing.

3 Architecture Overview

The SAP HANA database [SFL™12] is a memory-centric database. It leverages the capabili-
ties of modern hardware, in particular very large amounts of main memory, multi-core CPUS,
and SSD storage, to increase the performance of analytical and transactional applications.
Multiple database instances may be distributed across multiple servers to achieve good
scalability in terms of data volume and number of application requests. The SAP HANA
database provides the high-performance data storage and processing engine within the SAP
HANA Appliance product.

The Active Information Store (AIS) project aims at providing a platform for efficiently
managing, integrating, and analyzing structured, semi-structured, and unstructured in-
formation. It was originally started as an extension to SAP’s new in-memory database
technology [BKL™'12] and has now evolved into a part of it. By tightly integrating the
graph processing capabilities into the SAP HANA database rather than providing a separate
system layer on top of it, we can directly leverage the fast infrastructure and efficiently
combine data from the relational engine and the text engine with graph data in one database
query. We tried to build on the existing database engine infrastructure for the new graph
capabilities by re-using or extending existing physical data structures and query execution
capabilities as much as possible. This helped to keep complexity manageable, both in terms
of the number of new system components and in terms of new concepts introduced.

Figure 2 shows the integration of the different ATS components in the architecture of the
SAP HANA database. WIPE is the declarative query and manipulation language of the AIS
and uses a property graph model extended with semantic information. Database clients can
pass in WIPE statements via ODBC or JDBC. Both the language and the AIS data model
are described in more detail in the following section. For the execution of WIPE relational
operations are re-used where applicable. The basic graph abstractions, operations, and the
library of built-in graph processing functionality used to realize the non-relational aspects
of WIPE are presented in Section 5. Complex processing tasks are encapsulated as operators,
which are implemented on top of the in-memory column store primitives with very little
overhead and therefore profit from the efficient information representation and processing
of compression and hardware-optimized instructions, respectively.
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Figure 2: Integration of the Active Information Store in the SAP HANA database

4 The Active Information Store Runtime and WIPE

The AIS data model has been designed such that it permits the uniform handling and
combination of structured, irregularly structured, and unstructured data. It extends the
property graph model [RN10] by adding concepts and mechanisms to represent and manage
semantic types (called Terms), which are part of the graph and can form hierarchies.
Terms are used for nominal typing: they do not enforce structural constraints, such as the
properties a vertex (called Info Items) must expose. Info Items that have assigned the same
semantic type may, and generally do, have different sets of properties, except for a unique
identifier that each Info Item must have. Info Items and Terms are organized in workspaces,
which establish a scope for visibility and access control. Data querying and manipulation
are always performed within a single workspace and user privileges are managed on a
per-workspace basis. Finally, Terms can be grouped in domain-specific taxonomies.

A pair of Info Items can be connected by directed associations, which are labeled with a
Term indicating their semantic type and can also carry attributes. As for Info Items, the
number and type of these attributes is not determined by the semantic type of the association.
The same pair of Info Items can be related via multiple associations of different types.
Figure 3 visualizes the relationships between these concepts as a UML diagram.

WIPE is the data manipulation and query language built on top of the graph functionality in
the SAP HANA database. “WIPE” stands for “Weakly-structured Information Processing
and Exploration”. It combines support for graph traversal and manipulation with BI-like
data aggregation. The language allows the declaration of multiple insert, update, delete,
and query operations in one complex statement. In particular, in a single WIPE statement
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Figure 3: UML [Obj11] class diagram of the Active Information Store data model

multiple named query result sets can be declared and are computed as one logical unit of
work in a single request-response roundtrip.

The WIPE language has been designed with several goals in mind [BKL*12]. One is the
ability to deal with flexible data schemas and with data coming from different sources.
Not maintaining metadata separately from the actual data, the AIS permits introspecting
and changing type information in an intuitive way. WIPE offers mass data operations for
adding, modifying, and removing attributes and associations, thereby enabling a stepwise
integration and combination of heterogeneous data. While navigational queries can be used
for data exploration, WIPE also supports information extraction with the help of grouping
and aggregation functionality. A rich set of numerical and string manipulation functions
helps in implementing analytical tasks.

Like the other domain-specific languages provided by the SAP HANA database, WIPE is
embedded in a transaction context. Therefore, the system supports the concurrent execution
of multiple WIPE statements guaranteeing atomicity, consistency, durability, and the required
isolation.

Listing 1 shows an example WIPE query on the data set presented in Figure 1 returning all
books that have received the highest rating at least once. In the first step the graph to operate
on is chosen. Thereafter, the set containing the single Info Item representing the “Books”
category is assigned to a local name for later use. The third line computes the transitive
closure over the “partOf” associations starting from the set specified in the previous step
and thereby matches all subcategories of the “Books” category. From there, all Info Items
connected via “in” associations are selected and assigned to another local name. Finally, a
result is declared that consists of the Info Items matched by the existence quantification,
which accepts all Info Items having a “rated” association with a “rating” attribute of value 5.

410



Listing 1: Example WIPE statement

//Tell WIPE which graph data to consult
USE WORKSPACE uri:AIS;

//Save a reference to the "Books" category in a local variable
$booksCategory = { uri:books };

//Traverse to all products in the "Books" category
//The transitive closure (1, *) reaches all arbitrarily nested categories
$allBooks = $booksCategory<-uri:partOf(l, *)<-uri:in;

//Return the books with at least one highest rating using a quantification
RESULT uri:bestBooks FROM $b : $allBooks WITH ANY $b<-uri:rated@uri:rating = 5;

5 The Graph Abstraction Layer and Function Library

Modern business applications demand support for easy-to-use interfaces to store, modify
and query data graphs inside the database management system. The graph abstraction layer
in the SAP HANA database provides an imperative approach to interact with graph data
stored in the database by exposing graph concepts, such as vertices and edges, directly to
the application developer. Its programming interface, called Graph API, can be used by the
application layer via remote procedure calls.

The graph abstraction layer is implemented on top of the low-level execution engine of the
column store in the SAP HANA database. It abstracts from the actual implementation of the
storage of the graph, which sits on top of the column store and provides efficient access to
the vertices and edges of the graph. The programming interface has been designed in such
a way, that it seamlessly integrates with popular programming paradigms and frameworks,
in particular the Standard Template Library (STL, [Jos99]).

Figure 4 shows the basic concepts of the Graph API and their relationships as a simplified
UML class diagram. Method and template parameters as well as namespaces have been
omitted for the sake of legibility.

Beside basic retrieval and manipulation functions, the SAP HANA database provides a set
of built-in graph operators for application-critical operations. All graph operators interact
directly with the column store engine to execute very efficiently and in a highly optimized
manner. Well-known and often used graph operators, such as breadth-first and depth-first
traversal algorithms, are implemented and can be configured and used via the Graph API.
Beside the imperative interface, all graph operators can also be used in a relational execution
plan as custom operators.

In the following, we summarize the key functions and methods that are being exposed to
the application developer.

e Creation and deletion of graphs. The graph abstraction layer allows to create a
new graph by specifying minimal database schema information, such as an edge store
name, a vertex store name, and a vertex identifier description. This information is
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Figure 4: UML [Obj11] class diagram of the Graph API

encapsulated in a graph descriptor object. The creation of a graph is atomic, i.e., if
an error occurs during the creation of the graph store object, an exception is thrown
and the creation of the graph is aborted.

A graph can be deleted by specifying the corresponding graph descriptor. The
deletion process removes the vertex and the edge store from the database system and
invalidates the corresponding graph object in the graph abstraction layer.

Access to existing graphs. An existing graph can be opened by specifying the edge
store and the vertex store of the graph. All missing information, such as the edge
description, are automatically collected from the store metadata. If the graph does
not exist in the database management system, an exception is thrown.

Addition, deletion, and modification of vertices and edges. Vertices and edges
are represented by light-weight objects that act as an abstract representative of the
object stored in the database. The objects in the graph abstraction layer only point
to the actual data of the object and hold the internal state during processing. If the
graph abstraction layer executes a function call that requests data from the objects, it
gets loaded on demand.

Retrieval of sets of vertices based on a set of vertex attributes. Vertices can have
assigned multiple properties. These properties can be used to filter vertices, for
example, in graph traversal operations.

Retrieval of sets of edges based on a set of edges attributes. Similarly, properties
on edges can be leveraged to select possible paths to follow in a graph traversal.
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Listing 2: Example pseudo code showing how old ratings can be purged from the data set

//0pen an existing graph specified with a description object
GraphDescriptor descriptor("VERTEX_TABLE", "EDGE_TABLE");
Graph graph = Graph::open(descriptor);

//Find a specific vertex assuming that the product title is the unique identifier
Vertex vertex = graph.getVertex("Shakespeare_in_Love");

//Iterate over all incoming edges (those from ratings)
for (Edge incoming : vertex.getIncoming()) {
Vertex source = incoming.getSource();

//Find old ratings and delete them

if (source.getAttribute("created") < threshold) {
//All incoming and outgoing edges will be removed as well
graph.deleteVertex(source);

o Configurable and extensible graph traversals. Efficient support for configurable
and extensible graph traversals on large graphs is a core asset for business applications
to be able to implement customized graph algorithms on top of the Graph API. The
SAP HANA database provides native and extensive support for traversals on large
graphs on the basis of a graph traversal operator implemented directly in the database
kernel.

The operator traverses the graph in a breadth-first manner and can be extended by
a custom visitor object with user-defined actions that are triggered during defined
execution points. At any execution point, the user can operate on the working set
of vertices that have been discovered during the last iteration. Currently, only non-
modifying operations on the working set of vertices are allowed to not change the
structure of the graph during the traversal.

Listing 2 illustrates the use of these functions in a C++-like pseudo code. Header file
includes, qualified identifiers, exception handling, and STL iterators have been deliberately
omitted from the example for the sake of simplicity. In the first line a graph descriptor
object is created; it consists of the names of the vertex and edge tables to work with. This is
passed to the static open method to obtain a handle to the graph in the next line. Thereafter,
a handle to the vertex with the identifier “Shakespeare in Love” is retrieved. The for-loop
then iterates over all incoming edges of that vertex and for each edge obtains a handle
to the source vertex. The value of the “created” attribute of that vertex is compared to
some threshold and if it is less, the vertex is removed. All edges connecting the vertex are
removed automatically as well.

The graph abstraction layer has to be used from within a transaction context. All modifying
and non-modifying operations on the graph data are then guaranteed to be compliant to the
ACID properties offered by the SAP HANA database. To achieve this goal, multi version
concurrency control (MVCC) is used internally.
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Many applications using the graph abstraction layer are built around well-known graph
algorithms, which are often only slightly adapted to suit their application-specific needs.
If each application bundles its own version of the algorithms it uses, a lot of code will be
duplicated. Furthermore, not every application always provides an implementation that is
optimal with regards to the data structures the graph abstraction layer offers.

To avoid these problems, the SAP HANA database also contains a graph function library built
on top of the core graph operations, which offers parameterizable implementations of often-
used graph algorithms specifically optimized for the graph abstraction layer. Applications
can reuse these algorithms, which are well-tested, to improve their stability and thereby
reduce their development costs.

For example, the graph function library currently contains implementations of algorithms
for finding shortest paths, vertex covers, and (strongly) connected components, amongst
others. As new applications are built in the future, more algorithms will be supported.

6 Evaluation

In this section we present the first experimental analysis of the integration of the AIS and its
query and manipulation language WIPE into the SAP HANA database. In our experiments we
show that the AIS is an advantageous approach for supporting graph processing and handling
of large data graphs directly within the SAP HANA database. Beside the comparison of
WIPE against a pure relational solution for graph traversals using SQL, we also show the
scalability of the AIS engine to handle very large graphs efficiently.

6.1 Setup and Methodology

All experiments are conducted on a single server machine running SUSE Linux Enterprise
Server 11 (64-bit) with Intel Xeon X5650, 6 cores, 12 hardware threads running at 2.67 GHz,
32 KB L1 data cache, 32 KB L1 instruction cache, 256 KB L2 cache and 12 MB L3 cache
shared and 24 GB RAM.

We generated five graph data sets that represent multi-relational, directed property graphs
using the R-MAT graph generator [CZF04]. Since the R-MAT generator does not support
multi-relational graphs, we enhanced the graph data generation process and labeled edges
according to collected edge type distribution statistics from a set of examined real-world
batch traceability data sets. We distributed the edge labels randomly across all available
edges whereby we labeled edges with types a, b, and c. The selectivities for the edge types
are 60 % for type a, 25 % for type b, and 15 % for type c, respectively. Table 1 lists all
generated data sets as well as graph statistics that characterize the graph topology. For the
remainder of the experimental analysis we will refer to the data sets by their Data Set ID.

Further, we use a real-world product co-purchasing graph data set that has been prepared and
analyzed by Leskovec et al. [LAHO7]. Figure 1 shows an example derived from this data
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Table 1: Statistical information for generated graph data sets G1-G5.

Data Set ID # Vertices #Edges  Avg. Vertex Max. Vertex
Out-Degree Out-Degree

Gl 524 306 4989 244 22.4 453

G2 1048 581 9985178 25.3 5621

G3 2097122 19979 348 27.2 9865

G4 4192893 29983311 28.1 14867

G5 15814630 39996191 28.3 23546

set. The co-purchasing data set models products, users, and product categories as vertices.
Ratings, relationships between product categories, and product category memberships
are modeled as edges. Table 2 depicts the most important graph statistics that can be
used to describe the graph topology of the data set. Since the co-purchasing graph is a
multi-relational graph with highly varying subgraph topologies, we gathered the statistical
information for each subgraph separately. The three subgraphs are described by the three
edge type labels that exist in the data set. The subgraph User-Product contains all users and
products as vertices and shows the relationship between these two vertex types via ratings.
The subgraph Product-Category describes the membership of certain products to product
categories. The third subgraph describes the category hierarchy of the co-purchasing graph.

Please note that we do not show the relationships between products, which are also known
as co-purchasing characteristics here for the sake of simplicity. Additionally, it is worth to
mention that vertices in the data sets contribute to multiple subgraphs. Because of this, the
summation of number of vertices from all subgraphs is larger than the actual number of
vertices in the complete graph.

We loaded the data sets into two tables, one for storing the vertices and one for storing
the edges of the graph. Thereby, each vertex is represented as a record in the vertex table
VERTICES and each edge is represented as a record in the edge table EDGES. Each edge
record comprises a tuple of vertex identifiers specifying source and target vertex as well as
an edge type label and a set of additional application-specific attributes.

Listings 3 and 4 depict a qualitative comparison between a WIPE query performing a graph
traversal and the equivalent SQL query that heavily relies on chained self-joins. Please note
that both queries are based on the same physical data layout (vertex and edge table). While
the SQL query addresses the storage of vertices and edges explicitly via table name and
schema name, a WIPE query only needs to specify a workspace identifier. The table names
for vertices and edges are preconfigured in the database configuration and do not need to be
specified during query execution.

Both queries perform a breadth-first traversal starting from vertex A, following edges with

Table 2: Statistical information for co-purchasing graph data set A1.

Subgraph # Vertices # Edges Avg. Vertex Max. Vertex — Avg. Vertex  Max. Vertex
Out-Degree Out-Degree In-Degree In-Degree

User-Product 832574 7781990 5.4 124 6.3 237
Product-Category 588 354 2509422 3.1 13.3 53.4 23121
Category-Category 23647 7263 2.1 78 2.1 78
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Listing 3: SQL statement Listing 4: WIPE statement

SELECT DISTINCT V.id USE WORKSPACE uri:AIS;
FROM AIS.EDGES AS A, AIS.EDGES AS B, $root = { uri:A };

AIS.EDGES AS C, AIS.EDGES AS D, $t = $root->uri:a(4,4);

AIS.VERTICES AS V RESULT uri:res FROM $t;

WHERE A.source = "A"

AND D.target = V.id

AND A.type = "a"
AND A.target = B.source
AND B.target = C.source
AND C.target = D.source

type label a, and finally return all vertices with a distance of exactly 4 from the start vertex.
The SQL query executes an initial filter expression on the edge type label a to filter out
all non-matching edges. Next, the start vertex is selected and the corresponding neighbor
vertices are used to start the chained self-joins. For n = 4 traversal steps, n — 1 self-joins
have to be performed.

In contrast, the WIPE query selects the start vertex A and binds the result to a temporary
variable $roor. Next, a traversal expression evaluates a breadth-first traversal from the start
vertex over edges with edge type label a and performs 4 traversal steps. Finally, the output
of the traversal expression is returned to the user. For more examples of WIPE queries, we
refer to [BKLT12].

Both queries are functionally equivalent and return the same set of vertices. However, a
WIPE query provides a much more intuitive and compact interface to directly interact with
a graph stored in the database.

6.2 Experiments

The first experiment shows a comparison of the scalability of SQL queries performing graph
traversals versus their corresponding WIPE query counterpart and is depicted in Figures 5.
For the experiment in Figure 5, we varied the number of path steps between 1 and 10 and
randomly chose a start vertex for each graph traversal run. We ran each query 10 times and
averaged the execution time after removing the best and the worst performing query. We
restricted the number of path steps to 10 since all graphs exhibit the small-world property
that can be found in many real-world data graphs [Mil67]. In this experiment, we showcase
how the execution time evolves when more path steps are to be performed during the graph
traversal. To illustrate the behavior, we use the graph traversal over one path step as baseline
and relate subsequent queries traversing over multiple path steps to this one-step graph
traversal. Consequently, the execution time of queries over multiple path steps is always a
multiple of the execution time of a one-step traversal.

Figure 5 shows the gained relative execution factor when comparing a one-step traversal as
baseline against a multi-step traversal in subsequent queries. The relative execution factor is
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plotted with logarithmic scale to the base 2. The green-colored plot with the circle markers
shows the relative execution factor for the SQL query traversal with respect to the one-step
traversal. The plot reflects the poor behavior for multi-step traversals of SQL queries with a
number of path steps larger than 2. The blue-colored plot with square markers shows the
relative execution factor of the WIPE query with respect to the one-step traversal baseline.
The relative execution factor of WIPE grows much slower than the relative execution factor
of the equivalent SQL statement. Thereby, a linear and slow rise is better in terms of
scalability to the number of path steps to perform. The WIPE implementation shows for
data set G4 a maximum relative execution factor of 3 and the SQL implementation shows a
maximum relative execution factor of 91.

Figure 5: Scalability of SQL and WIPE for G4
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The next experiment illustrates the scalability of WIPE and the AIS engine with respect to
growing graph data sets. Figure 6 depicts the results for given data sets G1-G5. As for the
first experiment, we varied the number of path steps between 1 and 10 and chose a start
vertex randomly for each graph traversal run. We used the one-step traversal as baseline
and related all subsequent multi-step traversal queries to it.
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Table 3: Real-world queries from the co-purchasing domain.

Query ID Description
1 Select all super categories from product category “Movies."
2 Find all users which rated “Hamlet" and “Romeo and Juliet" with 5 stars.
3 Find all books that are in category “Fiction" or sub categories and have been released to DVD.

The results indicate a good scalability of WIPE and the AIS engine with respect to increasing
data set sizes and varying number of path steps. For all examined data sets, we found
maximum relative execution factors between 2.6 and 3.2. Thereby, we saw only marginal
variations between the different data sets which are mainly caused by differences in the
underlying graph topologies. Independent from the graph topology present in the examined
data set, the traversal operator scales very well with respect to large graph data sets as well
as increasing number of path steps to perform.

Figures 7 and 8 depict the speedup in execution time of WIPE queries compared to an
equivalent SQL query. Here, we relate the execution time of the SQL query to the execution
time of the equivalent WIPE query.

Figure 7 illustrates the speedup factor between SQL and WIPE for data set G4. We obtain a
maximum speedup factor of 46 when comparing and relating the execution times of SQL
queries to their equivalent WIPE query performing the same number of path steps.

For graph traversals with a path length of one or two, the gained speedup for WIPE was
between 1.03 and 1.24. For one-step traversals, the SQL query can directly return the
neighbors of the given start vertex without the need to perform expensive self-joins. For
two-step traversals, a self-join has to be performed to retrieve vertices with path distance 2
from the root vertex. In general, for graph traversals with a larger number of path steps, a
built-in operator clearly outperforms a functionally equivalent SQL query on average by a
factor of 30 in our experiments.

For the SQL variant of the graph traversal, the execution time is highly dependent on the
number of vertices that are being discovered at each level of the graph traversal algorithm.
When a large fraction of all reachable vertices has been discovered, the speedup between
SQL and WIPE will decrease slightly as can be seen for graph traversals with three or more
path steps. However, WIPE still performs about 30 times as fast as the SQL implementation
of the graph traversal algorithm.

In Figure 8, we compare the relative execution time for three real-world queries from the
co-purchasing domain. The queries are described in Table 3. The figure shows a relative
execution factor of WIPE against the equivalent SQL implementation between a factor of
about 4 and 20. The most beneficial query is query 3 since it involves the most complex
traversal execution and cannot be handled efficiently by the relational engine. If there are
only a limited number of path steps to perform (as for query 2), the results are similar
to those obtained in the other experiments. Since the execution time of the SQL query is
dependent on the number of self-joins to perform (the number of path steps to traverse), the
relative execution factor is lower for simple graph traversals.
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7 Summary

A variety of business applications work with inherently graph-structured data and therefore
profit from a data management layer providing an optimized representation of graph data
structures and operators optimized for this representation. Within this paper, we outlined
the SAP HANA Active Information Store project with its query and manipulation language
WIPE and a property graph model as the underlying data representation. The general goal
of the project on the one hand is to provide built-in graph-processing support leveraging the
performance and scalability of the SAP HANA main-memory database engine. On the other
hand, the project aims at providing a powerful and intuitive foundation for the development
of modern business applications.

Therefore, we first motivated the project by presenting different scenarios ranging from
classical graph-processing in social network analytics to the domain of supply chain
management and product batch traceability. We then briefly touched the overall architecture
of SAP HANA with respect to the functionality related to graph processing. The original
design of SAP HANA allows to operate on multiple language stacks in parallel with local
compilers exploiting a common set of low-level column-store primitives running in a
scalable distributed data-flow processing environment.

In the second part of the paper, we described the graph abstraction layer using an practical
example and presented results of extensive experiments. The experiments were conducted
on several synthetic graph data sets to show the effects of different topologies with respect
to certain query scenarios. Overall, the optimized graph-processing functionality performs
significantly better than the comparable SQL representation using only relational operators.
The specific support for graph-structured data sets and the matured distributed query
processing engine of SAP HANA provides a superb solution for complex graph query
expressions and very large graph data sets.
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