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Abstract: The recent availability of large data sets of protein- protein-interactions
(PPIs) from various species offers new opportunities for functional genomics and pro-
teomics. We describe a method for exploiting conserved and connected subgraphs
(CCSs) in the PPI networks of multiple species for the prediction of protein function.
Structural conservation is combined with functional conservation using a GeneOntology-
based scoring scheme. We applied our method to the PPI networks of five species, i.e.,
E. coli, D. melanogaster, M. musculus, H. sapiens and S. cerevisiae. We detected sur-
prisingly large CCSs for groups of three species but not beyond. A manual analysis
of the biological coherence of exemplary subgraphs strongly supports a close relation-
ship between structural and functional conservation. Based on this observation, we
devised an algorithm for function prediction based on CCS. Using our method, for
instance, we predict new functional annotations for human based on mouse proteins
with a precision of 70%.

1 Introduction

Protein-protein interactions (PPIs) are fundamental for all biological processes. They are
crucial to cellular function especially in signal transduction, metabolism and assembly
of functional protein complexes. The development of high-throughput technologies for
detecting PPI, such as mass spectrometry [AMO03], co-immunoprecipitation [PF95], and
yeast two-hybrid [WVO01], led to an enormous increase of data in this area, which offers
new opportunities and new challenges for understanding cellular functions, evolutionary
changes, and diseases. For instance, network comparisons help to identify common mo-
tives of cellular interactions and may yield information about the presence and organiza-
tion of functional modules [SMO03].

Especially the analysis of conserved interactions in the networks of different species (also
called interlogs) has recently received considerable attention [SIO6]. These studies are
based on the hypothesis that structural conservation correlates with functional conserva-
tion. Thus, if two orthologous proteins have interactions with the same set of other or-
thologous proteins, it may be speculated that these two proteins also have the same func-
tion. This idea was, for instance, used by Sharan ef al. who compared the networks of
worm, yeast, and fly and derived new annotations with an estimated precision of around
60% [Se05].
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In this paper, we report on initial results on increasing the precision of function predic-
tion based on structural conservation that would also be applicable to human genes. We
present a strategy for exploiting the existence of highly conserved subgraphs within the
PPI networks of multiple species. Our approach first identifies groups of orthologous
proteins in multiple species using sequence similarity. Next, clusters of topologically con-
served and connected subgraphs (CCSs) are detected using a fast algorithm for network
comparisons. We manually analyzed some of these subgraphs, which includes a giant
component of 327 proteins and 413 interactions perfectly conserved between human and
mice, for their biological coherence. We could sustain the hypothesis that structural con-
servation of interactions strongly correlates with functional similarity. Based on this ob-
servation, we devised an algorithm which predicts, for proteins with missing annotations,
GO-terms [Ae00] based on the annotation of other proteins in the same CCS. We eval-
uated our approach using perturbation analysis and cross-validation for all CCSs which
have a certain level of functional coherence of their annotations. Using our method, we
can predict, for instance, 55 new annotations for human proteins based on mouse with an
estimated precision of 70%.

Our method is different from previous approaches to function prediction using struc-
tural conservation of networks in a number of points. The publicly available tool Path-
BLAST [Ke04] searches for high-scoring pathway alignments between pairs of interaction
paths, where proteins of one path are paired with putative orthologous proteins occurring
in the same order in a second path. Evolutionary variations, missing data, and experi-
mental errors are taken into account by allowing gaps and mismatches in the alignment.
This method is different to our approach in three aspects: First, PathBlast considers only
linear pathways, while we also find complex subgraphs. Second, PathBlast is able to
detect approximately conserved paths, while we only strive for perfectly conserved sub-
graphs. Finally, PathBlast can only analyze pairs of networks, while we work on up to five
species. We strongly believe that our approach is more suitable to guarantee high precision
for function prediction — at the cost of lower recall.

Sharan et. al proposed an algorithm for the detection of conserved structures among three
species which they also used for function prediction [Se05]. They build a graph of nodes
representing groups of sequence-similar proteins and edges representing conserved in-
teractions between those protein groups. A search over the alignment graph results in
linear paths of interacting proteins and dense cluster of interactions, modeling protein
complexes. The search algorithm exhaustively detects high-scoring subnetwork seeds and
expands them in a greedy fashion. The prediction of protein function is based on the as-
sumption that a conserved subnetwork in which many proteins are of the same function
suggests that the remaining proteins in the subnetwork will also have this function. They
identified a high number of approximately conserved subgraphs resulting in function pre-
dictions with precisions between 33% and 63% depending on species and ontology. In
contrast to Sharan et al., our prediction is based on annotations of orthologous proteins
and thus transfers annotation across species. Also, GO terms are transferred specifically
between orthologous protein pairs, not in between entire CCSs. Again, our method results
in a lower number of predictions but in a higher precision.
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2 Methods

Data We used the PPI networks of Escherichia coli, Homo sapiens, Mus musculus,
Saccharomyces cerevisiae and Drosophila melanogaster. Protein-protein interaction data
were obtained from the Database of Interacting Proteins [Se04], BIND [BBH03], Mam-
malian MIPS [Pe05], IntAct [He04] (all April 06) and the Human Protein Reference
Database [Pe03] (August '06). The data sets were merged based on UniProt-IDs. In-
formation about the experimental evidence underlying an interaction was ignored (see
Discussion). The total numbers of proteins and interactions of the different species are
shown in Table 1 as well as the median number of GO terms per protein. The evolution-
ary relationships between these species, which should have an impact on the degree of
conservation between interactions, are shown in Figure 1.

Table 1: Total number of proteins and interactions, and the median number of GO terms per protein
for five species.

Species #Proteins #PPIs GO terms/
Protein

E. coli 2235 7703 0

S. cerevisiae 5864 25527 3

H. sapiens 9695 34979 2

M. musculus 3247 3116 2

D. melanogaster 10232 41332 1

We also used protein sequences and protein domain information (for determining groups
of orthologous proteins) and functional annotations (for measuring functional conservation
and coherence). We obtained 31273 protein sequences, 6760 InterPro domains, and 6370
Gene Ontology annotations from the UniProt Knowledge Base [Be03].

Detection of Orthologous Protein Groups We used a rather simple two-step method
for detecting putative orthology between two or more proteins (see Discussion). In the first
step, we consider proteins enzyme classes, InterPro domains, and sequence alignments to
detect potential orthology relationships. In a second step, we apply a global optimization
algorithm for determining the optimal assignment of proteins to ortholog groups.

We first partitioned proteins into groups of potential orthologs using EC numbers and
InterPro domains. EC numbers form a numerical classification system divided into six
classes that characterize enzymes based on the chemical reactions they catalyze. Thus,
proteins of different EC classes cannot share the same function and we considered them
as non-orthologous. Furthermore, we assumed that orthologs must share at least one In-
terPro domain. The sequences of all proteins within one partition were compared to each
other using global sequence alignment [NW70]. If the sequence identity was above 40%,
we saved this value and considered the pair of proteins as potentially ortholog. We also
performed the same procedure for all pairs of proteins with missing EC classes and/or
InterPro information.
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In the second step, we formed a graph from the proteins and their potential relationships.
Edges are labeled with the percentage of sequence identify between the proteins they con-
nect. This graph is bipanite if only two species ane considered and muliipasiite if three
of mone specics are considered, because the proteing of one specics are never connecied
by edges. Thus, finding an assignment of nodes fo ortholog groups which maximizes
the overall sequence identity is an instance of the lincar or multidimensional assignment
problem (LAPaMAPs), respectively.

For two species, the LAP (also known as bipartite matching) can be solved optimally
in ©(n*) using the Hungarian algorithm [Kuh35] (where n is the number of nodes of
the larger partition). For more than two species, the problem is MP-complete and cam
anly be solved approximately for nos-trivial instances [BCS9%4, BS91). In those cases,
wie used an iterative greedy hewristic to assign proteins into onthologous groups. We firse
onder the species according to their phylogenctic relationship (sec Fig. 1) We randomly
chose a protein Xy from the first specics and find the protein Xz with maximum sequence
similarity to Xy in the sccond species. and o on until Xs. Once such a complete group of
proteins was identified. all invodved proteins were removed from the graph and the group
wits slored os orthalogous, 1F the search did not find an orhaelog mone of the steps (hecmiss
in the next species no protein with sufficient similar sequence existed ), we also removed
the proteins but formed no erthologous group. This was repested until all prideins of any
of the species involved had been remaoved,
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Figure |: Phylogenetic tree of the considered species.

Detection of CCS Based on the compuied groups of onthologous proteins, we used a
modification of the algorthm for frequent subgraph discovery described in [KAGS4] for
detecting CCSs. Our procedure consists of two steps:

I. Identification of conserved inferactions.

2, Assembly of conserved interactions 1o maximally connected subgraghs.
For two species, we first identified all pairs of interactions between proteins Xy, ¥ in the
first species and Xz, ¥5 in the second species were Xy ond Xz and ¥y and ¥5 were pre-
viewsly identified as onthodogs, Thus, only interactions contained in bath PPE graphs were

considered further, Out of this se1, one interaction was chosen as seed edge of a subgraph
and all interactions adjacent 1o this subgraph were added recursively, I a subgraph could
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ned be extended further we stored this maximal and connected subgraph as CCS. All s in-
ieractions were removed from ihe sei of imeractions and the procedure stared over again,
uniil no more interactions remained.

For mare than two species, the same procedure was applied but only imersctions present
in all species were considersd,

Assessing the Functional Coherence of CCSs  To assess the functiona] conservation of
the detected CC5s we analyeed the GO annotations of the ohologous proteins in esch
CCS using the miethod described in [Lin958]. calculating 2 separate score for each of the
three GO ontologies {processes, function and localization), Lin's approsch is based on the
information content JC of o GO term ¢ defined as:

Gk JSreglt)
100) = ~tos ( freatons ) M

where the frequency of a term is defined as the number of times a term or any of i1s
descendants pocurs, Thus, less frequent terms and terms with few occurring descendants
are considered more informanve.

Based on this memsaire, the semantic similarity between two termes is defined as the ratio of
the information content of their maost informative common ancestor and the sum of the -

formatian contents of both terms [Lin98]. The information comtent of the most imformative
COMMOnN ancestor is given by:

sharefC(ty, tz) = maz {IC(t)|t € CAlty, 2]}, (23

where £ AL, B2) 15 the et of all common ancestors between terms & and 5. The simi-
larity score Between two terms is then defined as:

2w sharel C(ty, tz)

e, + ICl) (3

sim(fy, t2) =

We want to apply this idea 10 score CCS based on the annotations of the proteins in exch
orthologous prodein groups, Since often proteins are annadsted with more than oneg lem
the similarity Sim{p, g) of o protein poio o group g of 1ems is defined as the average
similanity of its 1erms 1o their most similar terms in g [CSCOT7] {where t{p) means the see
of terms annodated 1o protein gl

5 mar {sim(t;, t2))ts € g}
tEHp)
[t(p)|

We use the definition of Couto &1 af, [CRC07] o define the GO similariny between two
proteins is the average similasity of their GO wrms [CSCOT]

~ Sim{py. t(pa)) + Sim(ps, t{p))
= - 2 E—

Sim(p,g) = {41

GOSimi{p;, pa)

(31
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3.1 Comparisons of multiple PPI networks

Within five or four species we detected only a very small number of orthologs and inter-
logs, probably due to our strict criterion for orthology. Among five species 72 groups of
orthologous proteins but only one conserved interaction were detected. For the different
combinations of four species the number of orthologous protein groups ranged between 72
and 407 and the number of conserved interactions varied between 0 and 5 (see Table 2).
Also for three species, only few conserved interactions are found (see also Table 2), but the
number increased considerably compared to the four-species cases. The numbers for HS-
MM-DM, HS-MM-SC and HS-DM-SC differ clearly from the rest of the results, showing
the only procaryote in our data set has a large impact.

As expected, the outcomes of the different comparisons are roughly in accordance with
their evolutionary relationships (see Figure 1). This means that network comparisons of
closer related species resulted in a higher number of orthologous protein groups (e.g. HH-
MM-DM) than comparisons of more distant species (HS-SC-EC). However, the differ-
ences are by no means proportional to the true evolutionary distance due to the incom-
pleteness of PPI data.

In the following, we briefly discuss results for HS-MM-DM and HS-MM-SC to show the
relationship between structural and functional conservation and to hint on the usefulness
of our scoring scheme.

Table 2: Results of multiple network comparisons between three and four species.
# Orthologs  # Conserved PPIs  Largest CCS

HS-MM-DM-SC 407 4 2
HS-MM-DM-EC 87 1 1
HS-MM-SC-EC 67 2 1
HS-DM-SC-EC 139 5 1
MM-DM-SC-EC 72 0 0
HS-MM-DM 1209 22 3
HS-MM-SC 476 20 5
HS-MM-EC 95 7 1
HS-DM-SC 1001 40 3
HS-DM-EC 201 9 1
HS-SC-EC 169 10 1
MM-SC-EC 72 2 1
MM-DM-SC 432 4 2
MM-DM-EC 97 0 0
DM-SC-EC 191 10 1

Comparison between HS, SC, and MM Comparing the PPI data from human, yeast,
and mouse resulted in 476 orthologous proteins and 20 conserved interactions. The largest
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For onhologous protein groups with more than two proteins we considered all protein
pairings within the group, We added all paireise prodein similarities and dividied the sum
by the number n of protein comparisons within the group e (n = *‘—‘“;;" and k = |e|h.
which yields an average score for ¢

i GOSimipi, p)

GOSim(e) = T—"— (6

Finally, we derive a score fior a OCS, which consisis of multiple onhologous groups, All
singhe prodein soores of each group are added and divided by the number m of groups i
the CCS:

¥ GOSime)
GOSim(CC8) = 582 = (n

Depending on the similanity of the GO annotations of the groups of o OCS, this score
ranges between 0 and 1, whereby | indicoted functional equality and O indicates maxi-
mal functional distance. CCSs licking profein annadations result in a decrensed semantic
similanty due [o missing annofiuions,

Whenever we wanded to characterize the function of a OCS, we used o hypergeometnic tese
o determing statistically overrepresented GO terms.

Predicting Protein Funclions  For function prediction, we consadered all ©C8s with ag
least three inferactions and a similanty score exceeding a variable threshold, For qual-
ifying CCSs we determined onhologous prodein groups that differ significanly in their
single protein scores from the average similanty score of the CCS using a standardized
z-score [FPPOR).

In particular, we are interested in those proteins which caused the significant difference
(p=value < 0,003 The reasons might be different or missingfunknown annotations, For
those prodeins, we predicted the functions annotated to their onhologous panner proteins.
Ax a baseline, we also considered transferring annotations w orthologs without fillering
for conserved interactions first {(sce Resulis),

3  Results

We performed several multiple and pairwise PPl network comparisons among the species
E. coli (EC), H. sapiens, M, muscnlns (MM), 5. cerevisioe (SC) and 2. melanogaster
(DM} The detected CCSs differ considerable in number and size, depending on the num-
ber of species considerad, their evelutionary distances, and the amount of PP data avail-
able (see Tables 2 and 3} Note that especially the mouse data set i very small, compased
1o their ¢losest retative (humian): = 30K versus ~ 35000 interactions,
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MOME) and yeast (MCMZ, MOCM2, MOM3, CINC7, CDCT related PK) only subsels over-
lapping in only one protein (MOM2) were detected.  We checked if the missing factors
were missing in the data or if they were not identified as orthologs by our methed, We
found that in Ay, our data contains only a shor fragment of MCM3 with 35AA (instead of
~B20AA) and that the fly MCMS homologs was not detected as otholog. Similarly. the
MOCMG factor in yeast was present inthe data but was not detected as ortholeg. In contrast,
the MCMT prodein is missing in the PPI data of Ay and yeast.

A2 Pairwise PPl network comparisons

Table 3 shows the resulis of all pairwise comparisons. Clearly, the numbers of arthalo-
pous prodeins are much higher excep for comparisons involving E. cali. Accordingly, the
mmber of detected conserved interactions and CCSs increased significantly. In particular,
the pairs of HS-MM, HS-DM, HS-SC, DM-MM and DM-5C vicld many and large CCSs.
W discuss twio compadisens in more detail.

Pairwise Com parison between HS and SC This companson vielded 1660 ohologows
proteins and 410 conserved interactions forming 129 CCSs. 21 OCSs comprise more than
three intersctions (see Figure 1), Besides a few linear pathway-like structures the mapority
of the CCSs among human and veast are complicated structures with denselv-conmected
components hinting on the formation of prodein compleses,

Table 3: Results ol pairwise comparisons. The upper-right ireangle gives the mumbser off identified
arthologos protein, amd the lower-bkel inangle shows the number of highly comserved ieractions,
the nomber of detected OCSs, and ibe sipe of ihe lagest CCS {in parembseses),

EC MM s HS ot

EC - 132 an w7 172
MM BD o= 1020 - &7 28T 1550
sC = 5201 A5 = 265} - Tt )
HS 65— 63 (1) 053230327y 410 - 120 (28) N 2260
(B 45 = 44 (1) 37 =k 4B (5} IS = BT (4]} 2640 =4 2100 (i -

# pruleins

im data sel 2235 1247 SK64 D65 10232

Two examples, chosen by their high functional simalarity {(scores between (L45 and (.74
for MF and BP), are discussed in more detul, The first one, shawn in Figure 4, consists
of the Us snENA-associsted Sm-like proteins L3ml, LSm2, LSm3, LSmiLSmE, LSm?
and a small nuclear ribonucleoprodein Sm D2 binding and stabilizing the spliceasomal
L6 snBEMA 1o facilitates the splicing process. Again, the CCS has a clear and conserved
function in the cellular machinery, The second one is the largest CCS berween human
and yeast and involves 23 proteins and 31 conserved interactions, It represents a complex
of imerscting proteins whose members are DNA-directed RMNA polymerases 1. 1 and 111,
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subgraph is composed of five proteins and eight conserved interactions (see Figure 2(a)).

(a) CCS HS-MM-SC (b) CCS HS-MM-DM

Figure 2: Largest CCSs among M. musculus (rectangles), H. sapiens (circles) and S. cerevisiae
(hexagons) and D. melanogaster (rhombus) respectively. (Solid lines represent conserved PPIs
within a species. Dotted lines connect orthologous proteins.)

By manually checking the literature, we identified these proteins as four DNA licensing
factors MCM3, MCM5, MCM7, MCM4/MCM?2 and a cell division control protein CDC
7. DNA licensing factors are proteins which compose protein complexes to regulate the
DNA replication. The factors control the start of a replication at the origin of replication
and ensure only one DNA replication per cell cycle. Thus, the CCS represents a highly
conserved protein complex with a clear biological role important for all species under
study. However, the functional similarity scores of the CCS are not very high (0.2, 0.35,
and 0.30 for MF, BP, and CC, respectively) due to missing annotation. 3 of 5 proteins in
mouse are not annotated at all. When neglecting mouse proteins, the functional similarity
increase to 0.59, 0.72 and 0.65 for MF, BP, and CC, respectively. This is important to be
kept in mind when our results on cross-validating function prediction are presented.

Comparison between HS, DM, and MM The comparison of human, mouse and fly
yielded the largest number of orthologous protein groups among the comparisons of three
species. Approximately one third (1209) of the considered mouse proteins had orthologous
proteins in human and fly according to our criterion. 22 conserved interactions and one
CCS with the required minimum size were detected (see Figure 2(b)).

Again, all proteins of this CCS are DNA licensing factors (MCM2, MCM4, MCM®6). The
functional coherence scores are higher than in the previous case, but still do not adequately
represent to obvious strong functional conservation. Again, this effect was created from
missing annotations.

Other comparisons Surprisingly, there were no CCSs detected among human, mouse,
fly and yeast comprising those just described DNA licensing factors. The PPI data sets
of human and mouse contained the factors MCM2 - MCM?7, but for fly (MCM2, MCM4,
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Figure 3: Detected conserved subgraphs between H. sapiens and S. cerevisiae.

TATA-box-binding proteins and associated factors, and transcription initiation/elongation
factors or subunits of those. Thus, the biological relevance of the CCS is closely connected
with the initiation of the transcription.

Figure 4: CCS between H. sapiens and S. cerevisiae representing a protein complex involved in
mRNA splicing.

Comparison between HS and MM Among H. sapiens and M. musculus, 2879 ortholo-
gous proteins and 953 conserved interactions were detected forming 239 non-overlapping
CCSs (see Figure 5). Beside many small and medium-sized CCSs we detected one aston-
ishing large subgraph composed of 327 proteins and 413 perfectly conserved interactions.
This subgraph consists of several linear and complex substructures which may represent
independent biological processes. Clearly, such large CCSs are not reasonably analyzed
using our method because they certainly perform more than one function. It has been
shown that most biological processes involve only between 5 and 25 proteins [SMO3].

However, there are also several smaller CCSs consisting of 3 to 4 proteins with high func-
tional similarity scores. The biological processes of these CCSs are fundamental cellular
processes such as co-repression of transcription, regulation of signalling pathways, and
regulation mechanisms of translation and transcription. Four examples are shown in Fig-
ure 6 and their semantic similarities are specified in Table 4.
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Figure 5: Detected CCSs among human and mouse.

Table 4: Similarity scores of selected CCSs (Fig. 6) between human and mouse.
MF BP CcC

HS-MM1 0.63 052 042
HS-MM2 092 047 0.75
HS-MM 3 094 0.82 0.71
HS-MM 4 090 046 0.73

3.3 Evaluation of Function Prediction

Because of the few conserved interactions for more than two species, our method could
only be tested systematically for pairs of species. Comparing three networks results in the
prediction of 3 terms in HS-MM-DM and 4 terms in HS-MM-SC, with an estimated pre-
cision of 100% for human and mouse in both cases but less for yeast and fly, respectively.
The results are somewhat promising, but should be treated with great care since they are
based on one subgraph only. We are currently collecting more PPI data sets to evaluate
our ideas on more than two species.

Baseline We defined a baseline for the precision of function prediction by using only or-
thology relationships, ignoring structural conservation. Therefore, we randomly selected
500 orthologous protein pairs, removed annotations from one protein, and predicted its
function using only its ortholog. Table 5 shows the results averaged over 100 runs. For
human-yeast we obtained a precision of 19% for human and 22% for yeast. For human-
mouse, this method yielded a precision of 32% for mouse and 35% for human. Since
these numbers are considerable lower than those for predicting function using also struc-
tural conservation, we conclude that considering PPI data may considerable enhance the
performance of function prediction.
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(b) CCS HS-MM 2

(c) CCS HS-MM 3 (d) CCS HS-MM 4

Figure 6: Four conserved subgraphs between H. sapiens and M. musculus.

Table 5: Baseline for function prediction using only orthology.

Precision Recall

HS-SC 0.21 0.3
HS 0.19 0.33
SC 0.22 0.28

HS-MM 0.33 0.47
HS 0.35 0.49
MM 0.32 0.46

Cross-Validation We evaluated the expected precision and recall of our method using
cross-validation. Therefore, we first removed known annotations from randomly selected
proteins and then applied our method. We selected CCS based on their (now probably arti-
ficially low) score, using three different thresholds. We predicted GO terms in the selected
clusters for outliers as described in Methods. The predicted terms were compared with
the original annotations to determine the amount of correctly predicted annotations. We
counted an original term as correctly predicted if the proposed term was a direct ancestor
or descendant of the original term or the term itself.

In Table 6, the number of predicted terms and their estimated precision and recall for
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the pairs HS-SC and HS-MM are given, using similarity thresholds of 0.3, 0.5 and 0.7,
respectively. In general, the higher the conservation threshold, the higher is the precision
of the prediction. The precision for predicted human terms based on mouse increased
from 61% for 0.3 to 70% for 0.5 to 100% for 0.7 — at the expected cost of fewer and fewer
predictions. As expected, predictions are more precise for closer related species, such as
human and mouse, than for human and yeast.

Table 6: Results of the cross-validation between human, mouse and yeast. The table shows the total
number of predicted terms and precision and recall of the predictions for three different thresholds.

0.3 0.5 0.7
# terms P R # terms P R # terms P R

total 405 0.36 041 200 037 044 14 0.83 0.71

HS 192 034 05 90 0.38 0.58 7 0.83 0.71
SC 213 037 0.33 110 037 031 7 0.83 0.71
total 198 0.62 0.67 119 0.77 0.78 6 1 1
HS 95 0.61 0.68 55 0.70 0.8 3 1 1
MM 103 0.64 0.66 64 0.87 0.76 3 1 1

total 10 027 0.6
HS 4 0.15 0.75
DM 6 06 05

3.4 Prediction Results

All together, our method predicts 319 new annotations for 149 different proteins from all
species but E. coli. Comparisons including the procaryote resulted in subgraphs with less
than three interactions and thus do not provide the possibility for function prediction. We
therefore predicted GO terms separately for each GO-ontology using a similarity threshold
of 0.5 to ensure high precision. The comparisons of HS-SC (14 CCSs), HS-MM (9 CCSs)
and HS-DM (3 CCSs) contributed to a different amount to the prediction of novel terms.
The number of suggested GO annotations and the number of proteins receiving novel
annotations are shown in Table 7, and some concrete examples are shown in Table 8. The
complete list of predictions is available in the supplementary Table 9.

4 Discussion

We developed a method for predicting protein function based on structural and functional
conservation. Our approach proceeds in several phases. First, putative orthologs are iden-
tified using sequence similarity, EC classification, and InterPro domains. Next, conserved
and connected subgraphs are detected across multiple species. After filtering for functional
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Table 7: Mumber of newly derived temms and the number of proteins that are annetated,
# Terms & Proteins
H5 134 i

MM 4 12
SC [ 10 52
(Bl | 11 5

Table 8: Examples for sugpested G0 terms,
UniProt I} Species  Ontology  Terms

PS5O0 HS  MF GO:D00500
PS50 108 H5 cC GOD0SEA3, GO0 3614

Q3526 H5 MF GOADATE L, GOANRTSS, GO004 2802
Q76007 H% BP GOODDRERR, GO0

P33307 SC CC GO:0005634, GO:0005737

Q12149 SC  MF GO:004674, GO:0042802

P2O46S SC BP GO:0006260, GO0007049

POTIIN MM BP GO:D006260, GO:D007 307, GO-O00903
QUWL42 MM MF GO:00037 14, GO:0005112

POGSTE MM CC GO:0016363

DOVRTY 38 5 RO, GO NG M0, GOR000G402
OVILYS {55 ] i i GODD0SGRE, GOOMNSGRS, GOO0A540
02748 3 MFE GOD0Ns5 15

coherence, we can tmnsfer annststions between prodeins in the same OCS across species
boundaries. Depending on the thresheld for coberence, this methad reaches an estimaged
precision between 60K and 1004 between human and mouse, which is two (o three limes
better than using enly sequence comservation, Our results are consistent with our expecta-
tions in several points, such as better and meore predictions Tfor evolutionary closer species
and better results for higher demands on functional coherence of subgraphs.

We also applied 4 text mining method to use information aboul prodein function a8 men-
tioned in the litersture as another way of confirming our predictions (data nod shown herel,
The results are promising. and a subset of the so-predicted protein funclions are o unden
revision o the GO team,

There are also shorcomings conceming the data and the methods. In the following. we
discuss these shortcomings and suggest possible improvements,

In gemeral, the numbers of othologs and conserved imeractions wene lower than expected,
especially when mone than 2 species were invelved. These low numbers probably have
sevieral reasons:

® We used o very strict eriteria for deciding onhalogy, Our threshold of 40°% sequence
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identity that two proteins must have to be at least considered as potential onthelogs
is very conservative. The reason for this siriciness is our goal to reach high preci-
sion in predictions rather than high recall. For test purpose, we performed muliiple
comparisons with a lower threshold of 20€%, which vielded a much larger number of
orthalogous protein groups (resulis not shownl

® Also, our demand on OCSs to be perfectly conserved is very sirict. This is a crit-
ical point, especially when more than two species are compared and when thooghs
together with the current incompleteness of PP doa sets (see pext point). A single
missing imerlogs might destroy networks that in reality are perfectly conserved. On
the other hand, demunding perfect conservation might be too strict initself from an
evelutionary point of view, However, we have not vel performed o systematic study
which would proof sur assumption that more stictness (in terms of strectural and
seqquence conservation beads to higher precisson,

# The incompleteness and the sheer difference in sizes of the PP data sets from dif=
ferent species nawrally hinders the detection of more and larger CCSs, This influ-
ence is especially obvious for all companisons with mouse, for which we oaly wsed
=~ 3200 proteins and ~3 100 imeractions, This weafold difference compared 1o the
human data set (in terms of ineractions) clearly limis our resulis. [t is the mone
surprising that we detected a gigantic and perfectly conserved subgraph of ~320
proteins and ~400 interlogs, which contains more than 10FE of the entire mowse
interaction set,

We are currently working on solutions 1o these shortcoming, First, we are investigating
several special onthology databases, such as Inparaneid [ORS05] or COG [TeD2], as a po-
tential source for orthologs, rather than computing these oursell, Using a special database
could also remove the problem of paralogs, which we essentially ignored. Second, we
are scanning additional dua sources, especially species-specific databases such as Fly-
Base [Con97] and MGD [Bef9), 1o increase our data basis. We alio arive to inclsde mone
apecies into our studics o be able wo guantify the relationship between sinectural conserva-
tion and evolutionary distance mare precisely. Thind, we are currently investigating other
algonithms for the Multiple Assignment Problem that would improve on our very simiple
heuristic.

Apan from stll being incomplete, PP data sets are also somewhat famous for comaining
many false positives because inferactions are ofien derived under very specific conditions.
For example, of ~80K) ineractions currently known for veast that were detected with
high-throughput methods only 2400 are supposted by more than one methed [Me(2]. In
wipuld ke worthwhile to inclode measures for the reliability of interactions (and thus inter-
logs) into the scoring scheme. For instance, one could demand thar a CCS for two species
must completely contain all interactions in any of the two species with a reliability above
a given threshold, and be less strict conceming interactions with lower thresholds. This
wiptld be o natural way of introducing more flexibility in the definition of CCS.,

Finally, our method currently favors groups of proteins that ane homogeneously annotated.
Therefore, larger subgraphs comprising more than one bicdogical function receive an un-
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favorable score. For those, functionally conserved sub-subgraphs within the structurally
conserved subgraphs should be studied instead of the entire subgraph.

Acknowledgements

We would like to thank Philip Groth for critical reading of the manuscript and the EBI/Dr.
Rebholz-Schuhmann and his group for providing text mining methods to cross-check func-
tion predictions.

References

[Ae00] M Ashburner et al. Gene ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nature Genetics, 25(1):25-29, May 2000.

[AMO3] R Aebersold and M Mann. Mass spectrometry-based proteomics. Nature, 422(6928):198—
207, Mar 2003.

[BBHO3] GD Bader, D Betel, and CWV Hogue. BIND: the Biomolecular Interaction Network
Database. Nucleic Acids Research, 31(1):248-250, 2003.

[BCS94] HJ Bandelt, Y Crama, and FCR Spieksma. Approximation algorithms for multi-
dimensional assignment problems with decomposable costs. Discrete Appl. Math., 49(1-
3):25-50, 1994.

[Be99] JA Blake et al. The Mouse Genome Database (MGD): genetic and genomic information
about the laboratory mouse. The Mouse Genome Database Group. Nucleic Acids Research,
27(1):95-98, 1999.

[Be03] B Boeckmann et al. The SWISS-PROT protein knowledgebase and its supplement
TrEMBL in 2003. Nucleic Acids Research, 31(1):365-370, 2003.

[BS91] E Balas and MJ Saltzman. An algorithm for the three-index assignment problem. Opera-
tions Research, 39(1):150-161, 1991.

[Con97] The FlyBase Consortium. FlyBase: a Drosophila database. Nucleic Acids Research,
25(1):63-66, 1997.

[CSCO07] FM Couto, M Silva, and P Coutinho. Measuring semantic similarity between Gene On-
tology terms. Data & Knowledge Engineering, 61(1):137-152, 2007.

[FPP98] D Freedman, R Pisani, and R Purves. Statistics, Third Edition. New York: W.W. Norton
and Company, 1998.

[HeO4] H Hermjakob et al. IntAct: an open source molecular interaction database. Nucleic Acids
Research, 32(Database-Issue):452-455, 2004.

[KAGS04] M Koyutiirk, A Ananth-Grama, and W Szpankowski. An efficient algorithm for detect-
ing frequent subgraphs in biological networks. In ISMB/ECCB (Supplement of Bioinfor-
matics), pages 200-207, 2004.

161



[Ke04] BP Kelley et al. PathBLAST: a tool for alignment of protein interaction networks. Nucleic
Acids Res, 32(Web Server issue): W83—-W88, Jul 2004.

[Kuh55] Kuhn HW. The Hungarian Method of Solving the Assignment Problem. Naval Res.
Logistics Quart., 2:83-97, 1955.

[Lin98] D Lin. An Information-Theoretic Definition of Similarity. In Proceedings of the 15th
ICML, pages 296-304, Madison WI, 1998.

[Me02] C Mehring et al. Comparative assessment of large-scale data sets of protein-protein inter-
actions. Nature, 417(6887):399-403, May 2002.

[NW70] SB Needleman and CD Wunsch. A General Method Applicable to the Search for Similarity
in the Amino Acid Sequences of Two Proteins. J. Mol. Biol., 48:443-453, 1970.

[ORS05] KP O’Brien, M Remm, and ELL Sonnhammer. Inparanoid: a comprehensive database of
eukaryotic orthologs. Nucleic Acids Res, 33(Database issue):D476-D480, Jan 2005.

[Pe03] S Peri er al. Development of human protein reference database as an initial platform for
approaching systems biology in humans. Genome Res, 13(10):2363-2371, Oct 2003.

[Pe05] P Pagel ef al. The MIPS mammalian protein-protein interaction database. Bioinformatics,
21(6):832-834, 2005.

[PF95] EM Phizicky and S Fields. Protein-protein interactions: methods for detection and analy-
sis. Microbiol Rev, 59(1):94—123, Mar 1995.

[Se04] L Salwinski et al. The Database of Interacting Proteins: 2004 update. Nucleic Acids
Research, 32(Database-Issue):449-451, 2004.

[Se05] R Sharan et al. Conserved patterns of protein interaction in multiple species. PNAS,
102(6):1974-1979, February 2005.

[SI06] R Sharan and T Ideker. Modeling cellular machinery through biological network compar-
ison. Nat Biotechnol, 24(4):427-433, Apr 2006.

[SMO03] V Spirin and LA Mirny. Protein complexes and functional modules in molecular networks.
PNAS, 100(21):12123-12128, 2003.

[Te03] RL Tatusov et al. The COG database: an updated version includes eukaryotes. BMC
Bioinformatics, 4:41, Sep 2003.

[WVO01] AJ Walhout and M Vidal. High-throughput yeast two-hybrid assays for large-scale protein
interaction mapping. Methods, 24(3):297-306, Jul 2001.

162





