


In this paper, we report on initial results on increasing the precision of function predic-
tion based on structural conservation that would also be applicable to human genes. We
present a strategy for exploiting the existence of highly conserved subgraphs within the
PPI networks of multiple species. Our approach first identifies groups of orthologous
proteins in multiple species using sequence similarity. Next, clusters of topologically con-
served and connected subgraphs (CCSs) are detected using a fast algorithm for network
comparisons. We manually analyzed some of these subgraphs, which includes a giant
component of 327 proteins and 413 interactions perfectly conserved between human and
mice, for their biological coherence. We could sustain the hypothesis that structural con-
servation of interactions strongly correlates with functional similarity. Based on this ob-
servation, we devised an algorithm which predicts, for proteins with missing annotations,
GO-terms [Ae00] based on the annotation of other proteins in the same CCS. We eval-
uated our approach using perturbation analysis and cross-validation for all CCSs which
have a certain level of functional coherence of their annotations. Using our method, we
can predict, for instance, 55 new annotations for human proteins based on mouse with an
estimated precision of 70%.

Our method is different from previous approaches to function prediction using struc-
tural conservation of networks in a number of points. The publicly available tool Path-
BLAST [Ke04] searches for high-scoring pathway alignments between pairs of interaction
paths, where proteins of one path are paired with putative orthologous proteins occurring
in the same order in a second path. Evolutionary variations, missing data, and experi-
mental errors are taken into account by allowing gaps and mismatches in the alignment.
This method is different to our approach in three aspects: First, PathBlast considers only
linear pathways, while we also find complex subgraphs. Second, PathBlast is able to
detect approximately conserved paths, while we only strive for perfectly conserved sub-
graphs. Finally, PathBlast can only analyze pairs of networks, while we work on up to five
species. We strongly believe that our approach is more suitable to guarantee high precision
for function prediction – at the cost of lower recall.

Sharan et. al proposed an algorithm for the detection of conserved structures among three
species which they also used for function prediction [Se05]. They build a graph of nodes
representing groups of sequence-similar proteins and edges representing conserved in-
teractions between those protein groups. A search over the alignment graph results in
linear paths of interacting proteins and dense cluster of interactions, modeling protein
complexes. The search algorithm exhaustively detects high-scoring subnetwork seeds and
expands them in a greedy fashion. The prediction of protein function is based on the as-
sumption that a conserved subnetwork in which many proteins are of the same function
suggests that the remaining proteins in the subnetwork will also have this function. They
identified a high number of approximately conserved subgraphs resulting in function pre-
dictions with precisions between 33% and 63% depending on species and ontology. In
contrast to Sharan et al., our prediction is based on annotations of orthologous proteins
and thus transfers annotation across species. Also, GO terms are transferred specifically
between orthologous protein pairs, not in between entire CCSs. Again, our method results
in a lower number of predictions but in a higher precision.
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2 Methods

Data We used the PPI networks of Escherichia coli, Homo sapiens, Mus musculus,
Saccharomyces cerevisiae and Drosophila melanogaster. Protein-protein interaction data
were obtained from the Database of Interacting Proteins [Se04], BIND [BBH03], Mam-
malian MIPS [Pe05], IntAct [He04] (all April ’06) and the Human Protein Reference
Database [Pe03] (August ’06). The data sets were merged based on UniProt-IDs. In-
formation about the experimental evidence underlying an interaction was ignored (see
Discussion). The total numbers of proteins and interactions of the different species are
shown in Table 1 as well as the median number of GO terms per protein. The evolution-
ary relationships between these species, which should have an impact on the degree of
conservation between interactions, are shown in Figure 1.

Table 1: Total number of proteins and interactions, and the median number of GO terms per protein
for five species.

Species # Proteins # PPIs GO terms/
Protein

E. coli 2235 7703 0
S. cerevisiae 5864 25527 3
H. sapiens 9695 34979 2
M. musculus 3247 3116 2
D. melanogaster 10232 41332 1

We also used protein sequences and protein domain information (for determining groups
of orthologous proteins) and functional annotations (for measuring functional conservation
and coherence). We obtained 31273 protein sequences, 6760 InterPro domains, and 6370
Gene Ontology annotations from the UniProt Knowledge Base [Be03].

Detection of Orthologous Protein Groups We used a rather simple two-step method
for detecting putative orthology between two or more proteins (see Discussion). In the first
step, we consider proteins enzyme classes, InterPro domains, and sequence alignments to
detect potential orthology relationships. In a second step, we apply a global optimization
algorithm for determining the optimal assignment of proteins to ortholog groups.

We first partitioned proteins into groups of potential orthologs using EC numbers and
InterPro domains. EC numbers form a numerical classification system divided into six
classes that characterize enzymes based on the chemical reactions they catalyze. Thus,
proteins of different EC classes cannot share the same function and we considered them
as non-orthologous. Furthermore, we assumed that orthologs must share at least one In-
terPro domain. The sequences of all proteins within one partition were compared to each
other using global sequence alignment [NW70]. If the sequence identity was above 40%,
we saved this value and considered the pair of proteins as potentially ortholog. We also
performed the same procedure for all pairs of proteins with missing EC classes and/or
InterPro information.
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3.1 Comparisons of multiple PPI networks

Within five or four species we detected only a very small number of orthologs and inter-
logs, probably due to our strict criterion for orthology. Among five species 72 groups of
orthologous proteins but only one conserved interaction were detected. For the different
combinations of four species the number of orthologous protein groups ranged between 72
and 407 and the number of conserved interactions varied between 0 and 5 (see Table 2).
Also for three species, only few conserved interactions are found (see also Table 2), but the
number increased considerably compared to the four-species cases. The numbers for HS-
MM-DM, HS-MM-SC and HS-DM-SC differ clearly from the rest of the results, showing
the only procaryote in our data set has a large impact.

As expected, the outcomes of the different comparisons are roughly in accordance with
their evolutionary relationships (see Figure 1). This means that network comparisons of
closer related species resulted in a higher number of orthologous protein groups (e.g. HH-
MM-DM) than comparisons of more distant species (HS-SC-EC). However, the differ-
ences are by no means proportional to the true evolutionary distance due to the incom-
pleteness of PPI data.

In the following, we briefly discuss results for HS-MM-DM and HS-MM-SC to show the
relationship between structural and functional conservation and to hint on the usefulness
of our scoring scheme.

Table 2: Results of multiple network comparisons between three and four species.

# Orthologs # Conserved PPIs Largest CCS

HS-MM-DM-SC 407 4 2
HS-MM-DM-EC 87 1 1
HS-MM-SC-EC 67 2 1
HS-DM-SC-EC 139 5 1
MM-DM-SC-EC 72 0 0

HS-MM-DM 1209 22 3
HS-MM-SC 476 20 5
HS-MM-EC 95 7 1
HS-DM-SC 1001 40 3
HS-DM-EC 201 9 1
HS-SC-EC 169 10 1
MM-SC-EC 72 2 1
MM-DM-SC 432 4 2
MM-DM-EC 97 0 0
DM-SC-EC 191 10 1

Comparison between HS, SC, and MM Comparing the PPI data from human, yeast,
and mouse resulted in 476 orthologous proteins and 20 conserved interactions. The largest
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subgraph is composed of five proteins and eight conserved interactions (see Figure 2(a)).
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Figure 2: Largest CCSs among M. musculus (rectangles), H. sapiens (circles) and S. cerevisiae
(hexagons) and D. melanogaster (rhombus) respectively. (Solid lines represent conserved PPIs
within a species. Dotted lines connect orthologous proteins.)

By manually checking the literature, we identified these proteins as four DNA licensing
factors MCM3, MCM5, MCM7, MCM4/MCM2 and a cell division control protein CDC
7. DNA licensing factors are proteins which compose protein complexes to regulate the
DNA replication. The factors control the start of a replication at the origin of replication
and ensure only one DNA replication per cell cycle. Thus, the CCS represents a highly
conserved protein complex with a clear biological role important for all species under
study. However, the functional similarity scores of the CCS are not very high (0.2, 0.35,
and 0.30 for MF, BP, and CC, respectively) due to missing annotation. 3 of 5 proteins in
mouse are not annotated at all. When neglecting mouse proteins, the functional similarity
increase to 0.59, 0.72 and 0.65 for MF, BP, and CC, respectively. This is important to be
kept in mind when our results on cross-validating function prediction are presented.

Comparison between HS, DM, and MM The comparison of human, mouse and fly
yielded the largest number of orthologous protein groups among the comparisons of three
species. Approximately one third (1209) of the considered mouse proteins had orthologous
proteins in human and fly according to our criterion. 22 conserved interactions and one
CCS with the required minimum size were detected (see Figure 2(b)).

Again, all proteins of this CCS are DNA licensing factors (MCM2, MCM4, MCM6). The
functional coherence scores are higher than in the previous case, but still do not adequately
represent to obvious strong functional conservation. Again, this effect was created from
missing annotations.

Other comparisons Surprisingly, there were no CCSs detected among human, mouse,
fly and yeast comprising those just described DNA licensing factors. The PPI data sets
of human and mouse contained the factors MCM2 - MCM7, but for fly (MCM2, MCM4,
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Figure 3: Detected conserved subgraphs between H. sapiens and S. cerevisiae.

TATA-box-binding proteins and associated factors, and transcription initiation/elongation
factors or subunits of those. Thus, the biological relevance of the CCS is closely connected
with the initiation of the transcription.
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Figure 4: CCS between H. sapiens and S. cerevisiae representing a protein complex involved in
mRNA splicing.

Comparison between HS and MM Among H. sapiens and M. musculus, 2879 ortholo-
gous proteins and 953 conserved interactions were detected forming 239 non-overlapping
CCSs (see Figure 5). Beside many small and medium-sized CCSs we detected one aston-
ishing large subgraph composed of 327 proteins and 413 perfectly conserved interactions.
This subgraph consists of several linear and complex substructures which may represent
independent biological processes. Clearly, such large CCSs are not reasonably analyzed
using our method because they certainly perform more than one function. It has been
shown that most biological processes involve only between 5 and 25 proteins [SM03].

However, there are also several smaller CCSs consisting of 3 to 4 proteins with high func-
tional similarity scores. The biological processes of these CCSs are fundamental cellular
processes such as co-repression of transcription, regulation of signalling pathways, and
regulation mechanisms of translation and transcription. Four examples are shown in Fig-
ure 6 and their semantic similarities are specified in Table 4.
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Figure 5: Detected CCSs among human and mouse.

Table 4: Similarity scores of selected CCSs (Fig. 6) between human and mouse.

MF BP CC

HS-MM 1 0.63 0.52 0.42
HS-MM 2 0.92 0.47 0.75
HS-MM 3 0.94 0.82 0.71
HS-MM 4 0.90 0.46 0.73

3.3 Evaluation of Function Prediction

Because of the few conserved interactions for more than two species, our method could
only be tested systematically for pairs of species. Comparing three networks results in the
prediction of 3 terms in HS-MM-DM and 4 terms in HS-MM-SC, with an estimated pre-
cision of 100% for human and mouse in both cases but less for yeast and fly, respectively.
The results are somewhat promising, but should be treated with great care since they are
based on one subgraph only. We are currently collecting more PPI data sets to evaluate
our ideas on more than two species.

Baseline We defined a baseline for the precision of function prediction by using only or-
thology relationships, ignoring structural conservation. Therefore, we randomly selected
500 orthologous protein pairs, removed annotations from one protein, and predicted its
function using only its ortholog. Table 5 shows the results averaged over 100 runs. For
human-yeast we obtained a precision of 19% for human and 22% for yeast. For human-
mouse, this method yielded a precision of 32% for mouse and 35% for human. Since
these numbers are considerable lower than those for predicting function using also struc-
tural conservation, we conclude that considering PPI data may considerable enhance the
performance of function prediction.
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Figure 6: Four conserved subgraphs between H. sapiens and M. musculus.

Table 5: Baseline for function prediction using only orthology.

Precision Recall

HS-SC 0.21 0.3
HS 0.19 0.33
SC 0.22 0.28

HS-MM 0.33 0.47
HS 0.35 0.49

MM 0.32 0.46

Cross-Validation We evaluated the expected precision and recall of our method using
cross-validation. Therefore, we first removed known annotations from randomly selected
proteins and then applied our method. We selected CCS based on their (now probably arti-
ficially low) score, using three different thresholds. We predicted GO terms in the selected
clusters for outliers as described in Methods. The predicted terms were compared with
the original annotations to determine the amount of correctly predicted annotations. We
counted an original term as correctly predicted if the proposed term was a direct ancestor
or descendant of the original term or the term itself.

In Table 6, the number of predicted terms and their estimated precision and recall for
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the pairs HS-SC and HS-MM are given, using similarity thresholds of 0.3, 0.5 and 0.7,
respectively. In general, the higher the conservation threshold, the higher is the precision
of the prediction. The precision for predicted human terms based on mouse increased
from 61% for 0.3 to 70% for 0.5 to 100% for 0.7 – at the expected cost of fewer and fewer
predictions. As expected, predictions are more precise for closer related species, such as
human and mouse, than for human and yeast.

Table 6: Results of the cross-validation between human, mouse and yeast. The table shows the total
number of predicted terms and precision and recall of the predictions for three different thresholds.

0.3 0.5 0.7
# terms P R # terms P R # terms P R

total 405 0.36 0.41 200 0.37 0.44 14 0.83 0.71
HS 192 0.34 0.5 90 0.38 0.58 7 0.83 0.71
SC 213 0.37 0.33 110 0.37 0.31 7 0.83 0.71

total 198 0.62 0.67 119 0.77 0.78 6 1 1
HS 95 0.61 0.68 55 0.70 0.8 3 1 1

MM 103 0.64 0.66 64 0.87 0.76 3 1 1
total 10 0.27 0.6
HS 4 0.15 0.75
DM 6 0.6 0.5

3.4 Prediction Results

All together, our method predicts 319 new annotations for 149 different proteins from all
species but E. coli. Comparisons including the procaryote resulted in subgraphs with less
than three interactions and thus do not provide the possibility for function prediction. We
therefore predicted GO terms separately for each GO-ontology using a similarity threshold
of 0.5 to ensure high precision. The comparisons of HS-SC (14 CCSs), HS-MM (9 CCSs)
and HS-DM (3 CCSs) contributed to a different amount to the prediction of novel terms.
The number of suggested GO annotations and the number of proteins receiving novel
annotations are shown in Table 7, and some concrete examples are shown in Table 8. The
complete list of predictions is available in the supplementary Table 9.

4 Discussion

We developed a method for predicting protein function based on structural and functional
conservation. Our approach proceeds in several phases. First, putative orthologs are iden-
tified using sequence similarity, EC classification, and InterPro domains. Next, conserved
and connected subgraphs are detected across multiple species. After filtering for functional
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favorable score. For those, functionally conserved sub-subgraphs within the structurally
conserved subgraphs should be studied instead of the entire subgraph.
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