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Abstract: MicroRNAs (miRNAs) have rapidly become the focus of many cancer
research studies. These small non-coding RNAs have been shown to play
important roles in the regulation of oncogenes and tumor suppressors. It has also
been demonstrated that miRNA expression profiles differ significantly between
normal and cancerous cells, which indicates the possibility of using miRNAs as
markers for cancer diagnosis and prognosis. However, not much is known about
the regulation of miRNA expression. One of the issues worth investigating is
whether deregulations of miRNA expression in cancer cells occur according to
some pattern or in a random order. We therefore selected two approaches,
previously used to derive graph models of oncogenesis using chromosomal
imbalance data, and adapted them to miRNA expression data. Applying the
adapted algorithms to a breast cancer data set, we obtained results indicating the
temporal order of miRNA deregulations during tumor development. When
analyzing the specific deregulations appearing at different time points in the
derived model, we found that several of the deregulations identified as early events
could be supported through literature studies.

1 Introduction

One of the important issues that have dominated cancer research during the last decade
has been to identify molecular biomarkers [Lu05], i.e., indicators of cancer staging and
tumor subtypes. MicroRNAs (miRNAs) have been seen as potential biomarkers that not
only may serve for diagnostic and prognostic purposes, but are also assumed to have a
great therapeutic potential in cancer [Sa08].

MicroRNA expression profiles have been used in previous work to classify tumors and
differentiate between normal and cancerous tissue [Io05][Lu05][Vo06]. To the best of
our knowledge, however, there are no existing approaches that consider changes in
miRNA expression patterns during cancer progression, in order to reveal the possible
temporal ordering of aberrant miRNA expression. Therefore, we selected two existing
methods for deriving graph models of oncogenesis, previously applied to comparative
genomic hybridization data, and applied them to miRNA expression data. The purpose
with the adapted methods is to derive models illustrating the temporal order of events
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during cancer progression. A deeper understanding of miRNAs during tumor
progression, including the temporal order of their deregulations, may lead to novel
methods regarding the prediction of survival of cancer patients and the choice of
treatment, as well as for cancer subtype prediction.

2 Method

2.1 Data set

To perform temporal analyses of miRNAs a data set generated in [Io05] was used. It
contains the expression levels of 157 human miRNAs and 69 human precursor miRNAs
in 109 breast cancer samples (primary tumor samples as well as human breast cancer cell
lines) and in normal breast tissue. The normal samples consisted of six pools of five
normal breast tissues each and four additional single breast tissues, of which we used
only two because of an observed unreasonable deviation of the other two. Further details
about the used data set can be obtained from [Io05]. The raw data can be obtained from
ArrayExpress [Br03], which can be accessed via http://www.ebi.ac.uk/microarray-
as/aer/. The ID of the used data set is E-TABM-23. For our analyses, we used the
normalized data set kindly provided by Marilena V. Iorio.

2.2 Determining aberrant expression

The first step of the analysis was to determine the subset of miRNAs that are most likely
to have aberrant expression in breast cancer compared to normal tissue. In all further
analyses we focused only on this subset of miRNAs. To derive this set, the two-sample
Kolmogorov-Smirnov test as well as the Wilcoxon rank sum test was applied to each
miRNA's expression profile. For both tests, the null hypothesis is that the expression
values of a certain miRNA are derived from the same distribution for the normal as well
as the cancer samples. All microRNAs with p < 0.05 in both tests were considered as
deregulated and included into the subset. The reason for choosing the Kolmogorov-
Smirnov and Wilcoxon rank sum tests is that they do not make any assumptions
concerning the value distribution.

The next step was to determine in which breast cancer tumor samples each miRNA was
aberrantly expressed. The assumption is that expression values in tumor samples which
differ by more than two standard deviationsσ from the mean expression value µ in

normal tissue can be considered as deregulated. This method is commonly used in
microarray analysis to identify differentially expressed genes [CQB03][Ka06].

For the further work, we classified each miRNA in each tumor sample as under-, normal,
or over-expressed, depending on whether the expression value was lower than µ-2σ,
between δµ 2− and δµ 2+ , or greater than δµ 2+ .
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2.3 Creating a set of events

The approach to determine aberrant expression described in section 2.2 results in a
matrix D showing single deregulations, i.e., single cases of under- and over-expression.
Assuming k as the number of deregulated miRNAs (i.e., the size of the miRNA subset)
and m as the number of tumor samples, matrix D is defined by:

mj
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where dij = -1 if miRNA i is under-expressed in sample j, dij = 0 if it is normally
expressed, and dij = 1 if it is over-expressed.

For further analyses, we distinguished between deregulations (i.e., the combination of a
particular miRNA and the kind of deregulation) instead of just miRNAs, because a
miRNA may be over-expressed in some tumor samples and under-expressed in some
others. This distinction is necessary since there might be different causes for the different
kinds of deregulations. Each pair of a miRNA and a type of deregulation is also referred
to as an event. Thus, instead of k miRNAs, 2k events are considered.

Since it is quite difficult to make reliable assumptions about events which occur very
rarely we restricted the further analyses to events that were present in at least 15% of the
tumor samples. This resulted in an event matrix E:
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where eij = 1 if event i is present in sample j, and eij = 0 otherwise. Furthermore, n

denotes the number of events and ∑ =
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m
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2.4 Temporal analysis and generating graph models of oncogenesis

Following the approaches by Höglund et al. [Hö01][Hö05] and Beerenwinkel et al.
[Be05], the miRNA data set was analyzed and graph models representing the events
during cancer progression generated. The following text explains the steps of the
methods.

The approach for analyzing temporal relations described here is adapted from [Hö01].
Considering all tumor samples that show a certain deregulation, the average number of
simultaneously observed events is calculated. If there are only a few such events, the
considered deregulation is assumed to be an early event in the oncogenesis. Otherwise,
i.e., if there are many simultaneously occurring events, it is assumed to be a late event.
This reasoning is based on the well-established knowledge that tumors in late stages
have usually accumulated a large number of mutations, leading to genomic instability
[To02].

Instead of considering gains and losses of chromosomal parts, as in [Hö01], we
considered the over- and under-expression of miRNA genes as events. First, for each
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tumor sample, the number of miRNAs which are considered to have aberrant expression
in the sample is calculated. In the following, this number is called NDPT - number of
deregulations per tumor sample. Secondly, for each event, the NDPT is recorded for
every tumor sample in which the event is present. By determining the median NDPT, the
time of occurrence (TOC) of an event can be estimated.

To identify possible patterns in the data set, we performed a principal component
analysis (PCA). PCA is a multivariate method frequently used to search for underlying
structures in the data. It is a technique to reduce multidimensional data sets to lower
dimensions. Briefly, principal components are linear combinations of the original
variables, orthogonal, and ordered with respect to their variance so that the first principal
component has the largest variance. The idea of applying PCA is to retain just those
characteristics of a data set that contribute most to its variance. We performed the PCA
with the deregulations as variables and the tumor samples as observations. To show the
results we plotted all deregulations in relation to the first two principal components,
which explain more than 40% of the total variance in the miRNA data set.

As the third analysis, we built oncogenetic tree mixture models, a graph-based
representation of oncogenetic pathways, using the approach proposed by Beerenwinkel
et al. [Be05a]. In addition to the temporal ordering, tree models also indicate possible
alternative pathways of tumor development, characterized by different combinations
(and/or orderings) of events. They thus have the potential to provide insights about
tumor subtypes. Details about the approach by Beerenwinkel et al. can be found in
[Be05a][Ra05]. It is a further development of an approach originally proposed by Desper
et al. [De99], which is based on an algorithm for finding minimum weight branching
trees. We used the software package mtreemix [Be05b] (http://mtreemix.bioinf.mpi-
sb.mpg.de/) to learn the tree models with the event matrix E as input.

3 Results

3.1 Determining aberrant expression

The subset of miRNAs that are most likely to be deregulated in breast cancer was first
selected, as explained in section 2.2. The two statistical tests, applied to find significant
deregulations, identified 48 miRNAs that are significant according to both tests. This set
of miRNAs was used in further analysis. The next step was to determine in which of the
breast cancer tumor samples a certain miRNA is aberrantly expressed, as explained in
section 2.2. The distribution of the number of deregulations per miRNA (NDPM) as well
as the distribution of the number of deregulations per tumor sample (NDPT) is shown in
Figure 1. A table showing the p-values and the number of tumor samples in which each
miRNA is considered as over- or under-expressed is available from the authors.

Figure 1 and the table resulted in some observations regarding specific miRNAs. The
miRNA mir-210 has the lowest p-value in both tests. The most down-regulated miRNA
is mir-19a, while the most up-regulated miRNA is mir-21. It is also apparent that the
variance in the number of deregulations per miRNA is large.
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(a) (b)

Figure 1: Distribution of the number of deregulations per miRNA (a) and the number of
deregulations per tumor sample (b). No distinction was made between over- and under-expression.

In the following, we examined events, instead of considering only the miRNAs. As
already described, an event is defined as a pair consisting of a specific miRNA and a
specific kind of deregulation, i.e., either over- or under-expression. Events are here
denoted by the miRNA name followed by a plus or minus sign. Thus, mir-125b-1−
signifies the event that mir-125b-1 is under-expressed. Note that an event is not the same
as an observation, since the same event (e.g., mir-125b-1−) may be observed in a large
number of tumor samples. As we only considered events that were observed in at least
15% of the samples, the resulting set used in further analysis consisted of 36 events.

3.2 Temporal analysis

We here adapted the approach from [Hö01], with the aim to reveal the temporal ordering
of miRNA deregulation events. As described in 2.4, the events are ordered according to
the time of occurrence, estimated by the number of co-occurring events. The results,
shown in Figure 2, indicate an evident temporal ordering of the events. On average,
events like mir-125b-1− co-occur with significantly fewer events than, for instance,
event mir-208−. Thus, it can be assumed that mir-125b-1− is an early event compared to
mir-208−, which indicates that mir-125b-1 may play an important role in the onset of
tumor development.

PCA was performed to determine the underlying structure behind the data. The aim is to
calculate the largest principal components which can describe most of the overall
variance shown in the data. The number of principal components equals the number of
variables, i.e., in our case the number of events. The PCA resulted in 36 components, of
which the first two explain about 45% of the total variance, and the first three
components explain more than the half of the total variance. All considered events are
plotted in relation to the first two components in Figure 3. It can be seen that most events
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Figure 2: Estimated time of occurrence of the events. The sign ‘+’ after a miRNA name indicates
over-expression, while ‘−’ indicates under-expression. Vertical bars indicate the median of the
number of deregulations per tumor (NDPT) of the corresponding samples, boxes show the
boundaries of the 25th and 75th percentiles, and the outer lines indicate the non-outlier minimum
and maximum values.

differ only in relation to the second component, except for the events we assumed to
occur as a cluster (see Figure 3). Further, there are also sets of events with almost
identical values regarding the first two components.

3.4 Building oncogenetic tree mixture models

As a final step in the analysis, we built oncogenetic tree mixture models [Be05a] using
the software package mtreemix developed by Beerenwinkel et al. [Be05b]. The first tree
model that we derived shows all considered events. The second model shows a subset of
events generated by a method proposed in [Br82]. These two models are not shown due
to space limitations, but are available from the authors on request. The third model
shows a subset of 15 events (Figure 4), which were selected because they were more
separated in the PCA-plot (Figure 3) and because they were also identified in [Io05]. The
number of trees K in the mixture model was set to two (i.e., one non-noise component)
for the first two models. In the third model K was set to three according to the estimation
of mtreemix select.
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Figure 3: Considered events plotted in relation to the first two components of the PCA. An
interesting observation is that in the co-occurrence statistics (data not shown) mir-206+, mir-210+,
let-7d-v1−, mir-125a−, and mir-125b-1− are separated and form a cluster, i.e., they occur very
often together, but rather seldom in the presence of other deregulations.

From the figures it can be seen that the mixture model that includes all events is not very
stable (several edges were not present in any of the 1000 bootstrap iterations). Also, it
may be observed that there are several edges which are present in all three or at least two
models. For instance:

wild type → mir-021+ wild type → mir-102+ mir-125a− → mir-125b-1−

The edge “wild type → mir-021+” is present in all models. This applies also to the edge
between mir-125a− and mir-125b-1−; however, in this case both directions are present.

3.5 Evaluation

We evaluated our results by applying the methods to randomly altered data sets. For
each miRNA the order of expression values (tumor samples) was randomly altered.
Figure 5 shows the results of temporal order analysis and PCA for the randomized data.
In contrast to the original data set, it can be easily seen that there is no detectable
temporal order of events (Figure 5a). There is only a difference of about 2 between the
median numbers of deregulations per tumor (NDPT) of the “earliest” and the “latest”
event, compared to a difference of about 27 when considering the original data set.
Additionally, there are two large sets of events (14 and 15 items, respectively) which
have the same median NDPT, and thus considered as simultaneously occurring, which
also indicates the absence of a significant temporal order.
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Figure 4: Oncogenetic tree mixture model of 15 events selected based on the PCA results. The
star-shaped noise component is not shown. Edges are annotated with the transition probability
(with confidence interval, CI) and the bootstrap samples count as a measure of stability. The
weight of each mixture component (with CI) is given at the top of the box.

Also the PCA of the altered data shows much less underlying structure (Figure 5b). The
events plotted in relation to the first two components are more uniformly distributed. The
first three components explain only ~19% of the total variance, which is much less than
in the original data set, where the first three components explained >50% of the variance.

4 Discussion

We performed several analyses to derive information about temporal and occurrence
relations between miRNA deregulations. All analyses, especially the comparison to
randomized data set, show that there is an underlying structure behind the used data set.
This means that the observed events do not occur randomly.

There is an agreement between the derived temporal order (i.e., the results from the
temporal analysis according to [Hö01][Hö05]) as well as the oncogenetic trees built
according to [Be05a] and the principal component analysis. The order of the events in
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(a) (b)

Figure 5: Results of the different analyses of the randomized data set.

relation to the second principal component correlates slightly with the observed time of
occurrence. A high value of the second component indicates early occurrence, whereas a
low value indicates a later occurring event. According to all three analyses, mir-21+ and
mir-191+ are, among others, considered as the initial events in tumor progression. This
assumption is also supported by literature [Io05][Vo06], because both miRNAs have
been identified to be consistently over-expressed in cancer.

The events mir-206+, mir-210+, let-7d-v1−, mir-125a−, and mir-125b-1− are peculiar in
some of the analyses (including the co-occurrence statistics, which are not shown). For
instance, they are slightly separated in the PCA plots (Figure 3). These are among the
very few events which show a variation in the first principal component compared to the
other events. We assume that these events form a cluster, i.e., they occur very often
together, but rather seldom in the presence of other deregulations. For all these miRNAs
important roles in cancer have already been shown [Ad07][Ca08][Io05][Vo06].

There are also some disagreements in the results. For example, it is obvious that only
small parts of the oncogenetic tree models agree with each other. Examples include
edges like “wild type → mir-021+” or “wild type → mir-102+”. But many events occur
in totally different places within the trees, i.e., in some as early and in some as late
events, and always with different events as predecessor and successor. It is likely that the
data set, although sufficiently large and informative to derive the temporal order, is not
sufficiently large to derive accurate tree models. Since tree models branch out in
different directions from the root node, the corresponding subsets of data become
increasingly small, which rapidly leads to a lack of data for accurate modeling. Thus, it
is to be expected that only the edges closest to the root will show consistency between
different trees, unless a very large data set is used. The most important future work will
therefore be to evaluate the tree models on larger data sets, as well as on different types
of cancer.
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