
Towards Effective Management of Software Knowledge

Exploiting the Semantic Wiki Paradigm

Walid Maalej
1
, Dimitris Panagiotou

2
, Hans-Jörg Happel

3

1
Technische Universität München,

Boltzmannstraße 3, D-85748 Garching, Germany

maalejw@in.tum.de

2
National Technical University of Athens,

9 Iroon Politechniou, 15780 Athens, Greece

dpana@mail.ntua.gr

3
FZI Forschungszentrum Informatik,

Haid-und-Neu-Str. 10-14, D-76131 Karlsruhe, Germany

happel@fzi.de

Abstract: The increasing number of distributed software projects together with the

success of agile development methodologies raise new challenges for collaboration

and knowledge sharing. While traditional centralized knowledge management so-

lutions fail to address these challenges, Semantic Wikis bring new potentials, pro-

viding lightweight, incremental and machine-readable knowledge articulation and

sharing facilities. In this paper we survey the state-of-the-art of Semantic Wikis.

We then discuss how they can cope with difficulties of conventional Wikis to effi-
ciently manage knowledge created in software engineering projects.

1 Introduction

The increasing distribution of software projects together with the success of agile devel-

opment methodologies raise new challenges for collaboration and knowledge sharing for

software teams [PL06, Ram06]. On the one hand, distributed development hinders

knowledge sharing due to reduced communication bandwidth. Context information is

often not shared, e.g., problems encountered by a team member before making a specific

design decision. Research has shown that distributed teams are less efficient than collo-

cated ones [HM03]. On the other hand, agile methodologies embrace tight collaboration

and informal communication [Be01], manifesting in practices such as frequent Scrum

meetings [SB01] or pair programming [WK02]. Such practices dismiss “unnecessary”,

formal overhead as extensive documentation. Traditional knowledge management solu-

tions like experience repositories [Ba92] or Rationale Management [DM06] fail to ad-

dress these challenges. They require large upfront configuration and investment, as well

as stable, long-term environments. In dynamic software projects, however, developers

avoid spending extra effort for following formal and extensive knowledge management

183



policies. A lightweight and continuously evolving knowledge articulation and sharing

facilities are required. Semantic Wikis bring new potentials to address these issues.

Conventional Wikis have already been deployed successfully in software projects as

interlinked web sites that can be collaboratively edited by anyone. The content is written

in a simple syntax and can be easily edited even by novice users. The syntax consists of

simple tags for creating links to other Wiki pages as well as textual markups such as lists

and headings. Though the main disadvantage is that information accumulated in Wikis is

unstructured. This makes the navigation and the retrieval of the right information diffi-

cult. Semantic Wikis should overcome these problems by combining Semantic Web and

Wiki technologies. In this paper we present the state-of-the-art of Semantic Wikis, fo-

cussing on how they can be used in software engineering to overcome new knowledge

management challenges for agile and/or distributed teams. First, we introduce Semantic

Wikis (Section 2) and compare popular implementations (Section 3). Thereafter, we

discuss advantages of Semantic Wikis over conventional ones to facilitate software en-

gineering activities, proposing example of usage scenarios (Section 4). Finally, we con-

clude by discussing remaining problems in the State-of-the-Art (Section 5), giving an

overview of our findings and proposing future research directions (Section 6).

2 The Ingredients

This section introduces Wikis, Ontologies and Semantic Web that make main ingredients

of the Semantic Wiki. The latter is then described by its major features and advantages.

2.1 Wikis

The first Wiki, WikiWikiWeb, was introduced by Cunningham [LC01]. Wikis were

increasingly adopted in enterprises as collaborative software. Their common uses in-

clude project communication, documentation and management of intranet sites. Wikis

are interlinked web sites that can be collaboratively edited by anyone [Or05]. Pages are

written in a simple syntax and can be edited even by novice users. The user interface of

most Wikis consists of two modes: reading and editing modes. In reading mode users

can navigate conventional web pages that can contain images, links, textual markup, etc.

In editing mode, an editing box displays the page in the Wiki syntax.

There is a fast evolution in Wiki engines over the last few years. Most of them are open

source and freeware, thus enabling every single user to setup a Wiki with zero cost.

Many organizations and user communities capitalize on Wikis as a mean of collabora-

tion. A typical example is a Wiki of an open source project, where users collaborate to

add documentation about the project. In this manner, the “tedious” task of editing the

content is shared among the members of the whole community, while still allowing

everyone to quickly find relevant documentation. A popular Wiki like Wikipedia
1
can

1 http://www.wikipedia.org/

184



grow at very fast rates, since any interested visitor can edit and create pages at will.

Since the highest amount of information in a Wiki is an unstructured and accumulated

text, the only way to find it is through a keyword-search. Thus information retrieval

easily gets inefficient in a large Wiki. Structural queries such as “Wiki pages describing

lessons learned from projects conducted in the last year” are not supported. In addition

the poor semantic support in Wiki might lead to problems in knowledge management

and productivity in general. Consider for example a newcomer who is trying to find

information in the Wiki about check-in policies, but who is not familiar with the syno-

nym term “commit” used by the team. The only semantic of Wiki pages lies in the links

between them. Most Wiki engines generate navigational structures from these links.

Users can query pages that link to the current one and navigate to them. Nevertheless,

navigation through related pages often fails to address advanced information retrieval

needs, since only a single navigation path can be followed. It is therefore not possible for

users to combine several retrieval criteria, e.g. browsing components developed together

by Alice and Bob, if pages describing components are organized by single developers.

2.2 Ontologies

In the last decades ontologies won on popularity in several fields of computer science,

mainly artificial intelligence, multi-agent systems, and Web technologies. The term

ontology is borrowed from philosophy, where it stands for a systematic account of exis-

tence. In computer science ontology is formal, explicit specification of shared conceptu-

alization [Gr93]. In other words, ontologies are models that explicitly define in machine-

readable way concepts, their types and constraints on their use in a domain of interest.

This domain might be a part of reality or an entirely fictitious environment. The universe

of objects and the relationships that hold in the ontology are expressed in a declarative,

formal vocabulary that collectively constitutes the knowledge about the domain [GN87].

The main difference between ontologies and conceptual models, such as entity-

relationship-models or UML models, is the scope. Models are usually used in one par-

ticular project, not referring to areas beyond the project scope. Differently, ontologies

supply a much bigger clientele, or even computer programs, which do not have to belong

to the same project or same organization. As a result, ontologies represent universally

valid truth, i.e. knowledge, about a restricted domain. It encompasses future projects and

developments including potential, possibly still unknown users [Pr04].

2.3 Semantic Web

According to W3C [W3C07] the Semantic Web is about two things: “It is about com-

mon formats for integration and combination of data drawn from diverse sources, while

the original Web mainly concentrated on the interchange of documents. It is also about

language for recording how the data relates to real world objects. That allows a person,

or a machine, to start off in one database, and then move through an unending set of

databases which are connected not by wires but by being about the same thing.” The

Semantic Web effort [DF04] provides standards and technologies for the definition and

exchange of metadata and ontologies. Available standard proposals provide ways to

185



define the syntax (RDF
2
) and semantics of metadata based on ontologies (OWL

3
). There

is an ongoing research covering data transfer, privacy and security issues.

2.4 Semantic Wikis

Semantic Wikis try to overcome the problems related to information retrieval by com-

bining Semantic Web standards such as RDF/S and OWL with the Wiki paradigm. One

idea is to annotate structure in the Wiki by providing metadata for existing features such

as links and pages. These annotations are formal representation of additional resources

that assist in describing the main resources in a Wiki page. In addition, one can strive to

completely represent the Wiki content using instances of the respective ontology lan-

guage [Ki06]. While the authoring effort is similar to that of regular Wikis, the main

difference is that a Semantic Wiki enables users to additionally describe resources in a

formal language, instead of natural language.

The formal annotation of resources allows Semantic Wikis to offer additional features.

Users can query the annotations directly, e.g. “show me all authors”, or create views

from such queries. In addition, users can navigate the Wiki using the annotated relations,

e.g. “go to other books by Grady Booch”, and introduce background knowledge to the

system, e.g. “all books are publications; show me all publications” [OB06].

The potential benefits of Semantic Wikis relative traditional ones are summarized in

[Da06]. First, they provide concept-based rather than language-based searching, enabling

question answering rather than simple information retrieval. Second, they provide rich-

structured content navigation, including multiple perspectives, multiple levels of abstrac-

tion and relationships. Third, easy visualization and direct editing of content structure

(categories, taxonomies, semantic nets) is possible in Semantic Wikis. Fourth, semantic

relationships can be externalized from text-based content, e.g. by using data mining

techniques, and then formalized as new knowledge. Fifth, Wiki content is linked to dy-

namic models, simulations and visualizations, as well as to external repositories and file

systems such as personal desktop, enterprise servers, web sources or RSS feeds. Finally

Semantic Wikis provide richer user access/rights models, including reputation systems.

3 Semantic Wiki: State-of-the-Art

In a separate survey [PM07], we have gathered relevant features of a variety of Semantic

Wikis. We identified five types of activities that cover the whole operational lifecycle of

a Semantic Wiki, being authoring, navigation, retrieval, reuse and social collaboration.

Table 1 summarizes our findings. The following conclusions can be derived.

Commonalities and differences: Only few features are common and provided by most

surveyed Semantic Wikis. Context-aware navigation and full-text search are implemen-

2 http://www.w3.org/RDF/
3 http://www.w3.org/TR/owl-features/

186



Table 1: Overview of state-of-the-art features of Semantic Wikis (● = supported)

Semantic

Feature Wiki

C
O
W

Ik
eW
ik
i

K
au
k
o
lu

M
ak
n
a

O
n
to
W
ik
i

O
p
en
R
e
co
rd

P
la
ty
p
u
s

W
ik
i

R
h
iz
o
m
e

S
em
an
ti
c

M
ed
ia
W
ik
i

S
em
p
e
rW
ik
i

S
w
ee
tW
ik
i

W
ik
S
A
R

Authoring

ACID
4
transactions (4)

5
● ● ● ●

Auto-completion (6) ● ● ● ● ● ●

Ontology editor (4) ● ● ● ●

WYSIWYG editor (4) ● ● ● ●

Navigation

Context-aware navigation (9) ● ● ● ● ● ● ● ● ●

Different views (3) ● ● ●

Faceted browsing (2) ● ●

Interactive graph visualization (1) ●

Ontology browser (3) ● ● ●

Retrieval

Embedded query (2) ● ●

Full-text (12) ● ● ● ● ● ● ● ● ● ● ● ●

Inference (5) ● ● ● ● ●

Query templates (2) ● ●

Using query language (6) ● ● ● ● ● ●

Reuse

Ontology export (5) ● ● ● ● ●

Ontology import (3) ● ● ●

Social collaboration

Change tracking (5) ● ● ● ● ●

Commenting (3) ● ● ●

Popularity (1) ●

Rating (2) ● ●

mented by 9 respectively 12 from all 12 surveyed engines. All other features are not

provided by more than half of the systems. We also observed that 10 from 12 surveyed

Semantic Wikis provide at least two alternative ways for information retrieval. Some of

them strive to provide alternative ways of navigation as well, such as interactive graph

visualisation, ontology browsing or faceted browsing. In addition, from the release his-

tory of the surveyed systems we can conclude a trend for supporting auto-completion,

inference, query-language-based search, ontology export and change tracking.

The surveyed Semantic Wikis take different approaches concerning authoring, naviga-

tion and retrieval. Four of them provide WYSIWYG editors complementing the func-

4 Atomicity, consistency, isolation and durability
5 The number of Semantic Wikis supporting the feature from 12 surveyed systems

187



tionality of regular text editors. Wiki-based, easy content evolution is combined with

ontology-based formal knowledge representation in various ways. For example, in COW

[Fi06] users manipulate the ontology outside the Wiki, while OntoWiki [ADR06] offers

an inline mode for editing RDF content and interactively propose already defined con-

cepts to be added to the knowledge base. Besides OntoWiki, there is only a poor support

for collaboration and social features. OntoWiki fosters collaboration by keeping track of

changes, allowing commenting and discussing every single peace of knowledge, enab-

ling to rate and measure the popularity of content and honouring the activity of users.

Open issues: From our survey we observed three main issues in current implementa-

tions. First, there seems to be no Semantic Wiki that allows true import of RDF data.

Some Wikis allow usage of ontologies, but integration into the Wiki concepts seems to

be amendable. For example, loaded ontologies typically do not show up in the Wiki

since they are loaded into a separate repository. Thus, ontologies are deemed to remain

static and cannot be edited by users. Tolksdorf and Simperl [TS06] argue that an essen-

tial limitation in conventional Wikis – which in our opinion, exists in Semantic Wikis as

well – is the design decision considering a Wiki as a closed system with no interaction

possibilities with other services. Second, several existing Semantic Wikis consider the

URI of a page about a concept as its URI. This simplification is reasonable while work-

ing with Wiki based encyclopaedias such as Wikipedia. Typically, such Wikis have one

page per concept. Thus making a link to a Wiki page expresses semantic statements

about a concept. In addition, if users do not explicitly state what resource the statement

is about, it can be assumed that it refers to the concept of the page where the statement

appears. However, when using RDFS, Wiki pages must be both of the type wiki:page

and of the resource type the Wiki page is supposed to describe. While this approach can

be handy for generating RDF data of “shallow'' ontologies with few classes and many

relations, it reaches its limits as soon as more elaborate ontologies and structures are

used. The simplified model restricts the granularity of possible annotations, since only

the concept of the page and no fragment can be referenced. Finally, while few existing

Semantic Wikis allow addition of semantic features to existing content, e.g. by typing

previously untyped links in the Wiki, no one seems to assist users to extract further se-

mantics from plain text. Besides, the only mean of querying semantics is either by sim-

ple queries built with a user interface, such as “Show a list of all publications to me”, or

complex queries entered manually in a query language such as SPARQL.

Conclusion. While we observed a broad feature spectrum in surveyed Semantic Wikis,

common feature are still rare. The only common feature, full-text search, is indeed a

standard functionality of conventional Wikis. The absence of a common “character” of

Semantic Wikis can be interpreted by the absence of common requirements for this tech-

nology driven application. In addition the immaturity and experimentation nature of

most available implementations explains their incompleteness. The most complete en-

gine in terms of supported features is OntoWiki, followed by COW, IkeWiki and Makna.

4 Exploiting Semantic Wikis in Software Engineering

In this section we investigate potentials of Wiki-based technologies in the domain of

188



software engineering. We first survey usage possibilities of conventional Wikis. Then

we discuss new opportunities and challenges resulting from emergent Semantic Wikis.

4.1 Wikis in Software Engineering

The short history of Wikis is tightly coupled to software engineering. In fact, Wiki was

invented in a software development context, when Ward Cunningham coined the term in

1995 for the website of the “Portland Pattern Repository”
6
. This first ever Wiki is dedi-

cated to collecting and discussing design patterns. Since then, Wikis have been increas-

ingly adopted in further communities. Especially distributed teams in the Open Source

community appreciated Wikis as a lightweight solution for collaborative knowledge ex-

change. In such dynamic environments, Wikis act as flexible “glue” in the tool land-

scape, complementing mailing lists and configuration management tools. The rising

availability of stable open source Wiki engines also fostered the adoption of Wikis in

company settings. Again, tech savvy developers started to favour flexible Wiki technol-

ogy against awkward traditional content management and groupware systems. Often, the

rollout of Wiki software in those intranet settings started as a grassroots initiative with-

out explicit management attention [Bu06, TW06]. Throughout the time, software engi-

neering has remained one of the dominant application areas of Wiki technology [Lo06].

Wikis are often introduced by a small number of early adopters and then used by other

employees. Besides open source development teams and small companies, also large

companies such as SAP, Novell and Yahoo are using Wikis internally [TW06, Ba06].

Shashi Seth from Google even claims: “This company runs on Wikis”
7
. Currently, com-

mercial vendors are addressing Wikis’ technical drawbacks, poor usability support and

low integration with other applications. For example, in its newest operating system,

Apple Computer integrated an AJAX-based, user-friendly Wiki Server into several ap-

plications such as calendaring, mailing and content management ones. Besides general

purpose “enterprise Wikis” other solutions focus on the software engineering domain.

This includes integrating Wikis in IDEs [JJ05], source code documentation [AD05], bug

tracking [Ed06a] or in collaborative development platforms
8
. In the following we discuss

successful deployment fields and limitations of Wikis in software development.

Documentation: Changes, e.g. in requirements, technologies, architectures or resources,

belong to the everyday life of a software developer. Thereby a main challenge is to keep

documentation up-to-date. In addition, in large projects with overlapping responsibilities,

information can get redundant, and then quickly inconsistent. Wikis are a convenient

platform to ensure information up-to-datedness and consistency. First, the easy-to-use

editing mechanism enables all stakeholders to update information as soon as changes

occur. In such way documentation also gets distributed and simultaneous to development

and management. Second, the easy linking in Wikis reduces inconsistencies by keeping

the information in a unique Wiki page, and referencing it if required. WikiDoc [WZ07]

and XSDoc [AD03, AD05] demonstrate benefits of Wikis for software documentation.

6 http://c2.com/cgi/wiki?WikiHistory
7 http://google.wikia.com/wiki/Goowiki
8 E.g., Polarion (http://www.polarion.com) or CodeBeamer (http://www.codebeamer.com)

189



In WikiDoc java code documentation can be added via a Wiki interface – also from non-

programmers. XSDoc enables the creation and annotation of software framework docu-

ments as well as the integration of different content types (text, models and source code).

Using Wikis as a documentation infrastructure might be inefficient, if paper-based, high

quality documentation such as user manuals is needed. In this case, the organic structure

of Wiki pages, due to the spontaneous and non-predefined growth, as well as the infor-

mality of the content might affect the document quality. Wiki pages needs to be restruc-

tured, serialized and adapted to target readers. The missing structure in Wikis might also

cause knowledge acquisition problems for newcomers. For example, navigating a Wiki

of an Open Source project at the first time, it is difficult to know where to start and in

which sequence to read. Large projects such as the Eclipse project spend extra effort for

structuring the content after pages has been created.

Reuse: Wikis are an intuitive platform for exchanging reusable knowledge within and

between software projects. Their support for reuse goes beyond its origin for supporting

pattern reuse. Easy linking enables reusing, e.g. requirements, test instructions or lessons

learned. The DRY principle (Don’t Repeat Yourself) is easy to comply within a Wiki.

However, reuse opportunities are limited to either information textually represented in

the Wiki, or to artefacts linked from or within the Wiki. Even if a Wiki captures signifi-

cant information about a problem domain, identifying reusable parts in later projects is a

non-trivial task. This is mostly due to limited expressiveness, e.g. categorization or for-

mal description information. Again, this limitation makes advanced, structured retrieval

of information hard. Learning about a component design or querying available interfaces,
usage parameters, pre- and post-conditions is, e.g., easier in JavaDocs than in a Wiki.

Issue tracking: Wikis have been used to capture and manage bugs and issues of soft-

ware systems, especially in distributed open source projects. As bug tracking is a col-

laborative, knowledge-intensive and interdisciplinary task, it can be supported by Wikis.

Again, the linking feature and the easy posting are the key success factors. Developers as

well as system users are able to post, comment, link, describe and collaborate in order to

detect and fix issues. Trac [Ed06b] is an example of a Wiki-based bug-tracker that al-

lows relating Wiki pages to issues, and integrating source code as read-only documents.

The lack of attributes with specific semantics is at a disadvantage of using Wiki for bug

tracking. Unlike conventional bug repositories, Wikis do not provide features to annotate

the bug with well-defined attributes such as status, priority or affected subsystem. Such

attributes are required by development teams and need to be queried and processed. For

example, shortly before a release, the integrator needs to know all closed bugs, in order

to integrate them into the new version. Statistics, e.g. about most “buggy” subsystem or

duration of fixing bugs, are also required for project management reasons.

Requirement and Traceability management: Traceability enables to trace require-

ments back to stakeholders or forth to design concepts, source code and test cases. In

projects with frequent changes, participants also need to trace other artefacts than re-

quirements to further artefacts, decisions, models and participants [DP03]. It is useful to,

e.g., trace test cases to the related components that should be tested, or a design goal to

190



non-functional requirements. Also management decisions might be traced to a risk, to a

design decision or to a stakeholder. Wikis offer an intuitive way to associate “everything

with everything”. Links between Wiki pages can be seen as associations between infor-

mation pieces. This makes information traceable to other information across the project.

Using XSDoc [AD03], in [SF05] the authors present a Wiki-based traceability manage-

ment approach for customizable software. Relationships between specific requirements

and generic product characteristics are established via configuration parameters and

configuration questions. Viewing facilities support traceability analysis.

However, the linking in Wikis can be simplistic for advanced traceability requirements.

Though, Wiki offers only one semantic of links, i.e. “associated to”. Developers cannot

define in Wikis further link semantics like Feature F “is required by” Customer C, In-

struction Sequence I “tests” Feature F or Decision D “solves” the Problem P. In incre-

mental development such missing semantics bring difficulties to deal with change. For

example a new project participant cannot easily query previous design decisions result-

ing from specific requirements. Also a tester cannot easily retrieve test cases that have to

be conducted based on features and changes included in the next release.

Communication and collaboration:Wikis support both planed and unplanned commu-

nication. A successful example for planned communication is the Wiki-based manage-

ment of meeting protocols [MB06]. Decker et al. [DR05] state four main advantages of

Wikis for supporting collaboration and knowledge exchange in software projects: One

place publishing. A central place for publishing information often simplifies the com-

munication between participants. Simple and safe communication. The Wiki syntax is

trivial, especially to software developers who are used to source code editing. Simple

access right mechanisms make the communication more secure. Easy linking. This is a

major strength of Wikis, especially when applied in the domain of software engineering.

Description on demand. A user might link an object to a target, although the target does

not exist at the “linking” time, and will be created whenever it is needed. In [Ba06] the

authors conclude that the main success factors for introducing Wikis at SAP were easy

accessibility, low entry barriers and to “convince the hackers”. Users are allowed to edit

most pages while the versioning mechanism avoids vandalism – social protocols replace

technical controls like access rights. Chau and Maurer [CM05] found out, that the para-

digm of decentralized contributors adding unstructured knowledge improves knowledge

sharing in contrast to structured knowledge provided by a centralized team.

Nevertheless, low entry barriers and easy content editing requires a high discipline from
developers. This is analogue to Extreme Programming, where continuous code refactor-
ing requires highly disciplined team members. Besides, Wikis do not offer support for

synchronous communication and limited notification mechanisms. Users can get notified

only if a Wiki page has been changed, leading in some cases to an information overload.

It is for example not possible to receive a notification only if an “important” requirement

has been changed. Important here depends on developer’s interests and activities.

Agility support: Wiki represent a convenient knowledge-sharing infrastructure for agile

teams, because it supports three main agile values: informal communication, responding

to change and developers’ motivation. First, the low barriers to create and update content

191



in Wiki encourages informal communication [Be01]. Similar to Web forums or mailing

lists, every project participant can require or share knowledge by creating or editing a

Wiki page. Interested participants can also watch the page for updates and contribute to

the knowledge in it. For example few Open Source libraries such as PHP include devel-

opers’ questions and answers as well as usage examples at the bottom of the Wiki page

of the corresponding library function. Second, unlike conventional processes that strive

toward minimizing and controlling changes, e.g. through change control boards, agile

teams consider change as a “mutual” part of daily work. Wikis make up a flexible and

quick mechanism of carrying out changes. Third, managing project knowledge in a Wiki

requires developers to personally propagate their knowledge to the team, which aug-

ments their motivations, as they become “valuable” members in the project. Unlike cen-

tral communication mechanisms with tight control, in Wiki everyone is responsible for

his content, which increases the information quality. Several studies demonstrated the

usefulness of Wikis in agile projects [SF05, CM04, CM06]. In [CM06] the authors pre-

sent the results of an exploratory case study, arguing for the need of knowledge sharing

tools that support not only structured but also unstructured knowledge representation.

Wiki-based informal knowledge authoring tools can be used for sharing content about

problem understanding, instrumental, projective, social, expertise location and content

navigation purposes. The authors also observed self-organized maintenance of the re-

pository content as a result of the open-edit nature of the Wiki-based repository.

Conclusion: While Wikis are used as a universal tool for a wide range of software engi-

neering tasks, their full potentials are not taped yet. Wikis procure convenient mecha-

nisms for managing informal, unstructured content and linking different information

pieces. They support the fact that knowledge matures as it evolves and discussed in a

community [HSc07]. Low entry barriers and easy editing allow for small contributions

and an incremental content improvement. In early project stages developers can easily

interpret the implicit semantics in Wiki pages. However, in later development stages, as

content in a Wiki grows and software artefacts get more formal, maintaining and access-

ing information becomes difficult. In the following section we discuss, how Wikis can

be extended to express formal semantic statements to cope with these difficulties.

4.2 Semantic Wikis in Software Engineering

While classical Wikis are well suited for working collaboratively on unstructured infor-

mation, they are limited concerning fine-grained structured content. Conventional Wikis

offer limited support for storing machine-interpretable knowledge and for answering

structured queries. Semantic Wikis provide a general approach for the acquisition and

evolution of structured knowledge.

Since mature implementations of Semantic Wikis are still rare, there are no established

applications in software engineering yet. However we want to provide a grasp of con-

crete visionary scenarios. We revisit application areas in software engineering, where

Wikis have been successful, and discuss the new potentials of Semantic Wikis.

Documentation: Since Semantic Wikis support structural queries as well as reasoning,

specific document such as user manuals or interface specifications can be automatically

192



created by using query templates. Semantic Wikis also offer various navigation features,

such as context-aware navigation or interactive graph visualisation, as seen in Section 3.

Users with different roles can be provided with personalized views according to their

specific interests. This is beneficial if different stakeholders with different perspectives

need to exchange information, which is the case in the documentation of Service-

Oriented Architectures (SOA). These systems consist of a large number of heterogene-

ous artefacts and documents and involve diverse stakeholders such as developers and

business experts. The situation of both, technical e.g. interfaces specifications, and tex-

tual documentation leads to scattering of information into different spaces. Substantial

management and coordination effort arise. Semantic Wikis can serve as a foundation for

a lightweight solution to document SOA [Hse07]. They allow for informal documenta-

tion with low entry barriers, while providing means for specifying formal relations

among concepts where needed. Additional information can be derived by combining the

asserted knowledge with existing specification documents taken from external service

repositories. The structure of technical artefacts like interface descriptions can be im-

ported into a knowledge base, serving as the basic structure for browsing the SOA. This

leads to clear overview and efficient navigation for developers and business experts.

Reuse: As stated in Section 2.4, knowledge can be externalized in Semantic Wikis.

Results of analysis and mining of software artefacts, such as source code can be used to

automatically annotate information in semantic Wikis. JavaDocs can, e.g. be linked to

Wiki-based documentation, allowing advanced, structural queries. Moreover, through

semantic connections between software components like services in SOA, and applica-

tion domain concepts like business objects and rules in the stock exchange domain, it is

possible to gain a quick overview about components that are using certain business ob-

jects. This enables exploring the list of available components, as well as advanced re-

trieval of relevant ones, for example those with appropriate licence for the current pro-

ject context. Reusing component or services in SOA becomes easier since information

about them can be efficiently retrieved. Decker et al. [DR05] illustrated how augmenting

a Wiki with application and solution domain ontologies, can actually foster reuse. When

used to annotating the knowledge created in requirements elicitation, their system is able

to offer relevant recommendations based on scenarios that have been captured in earlier

designs. For instance, explicitly “telling” the Wiki that an object is an actor and that an

actor instantiates a use case, allows Wikis to recommend possible actors.

Issue tracking: It is generally difficult to define the exact scope and detail of an issue

when it is reported for the first time. Often, bugs “emerge” from informal discussions on

mailing lists or Wikis. Formally describing an issue results in a disruption from its origi-

nal context. The main benefit in using Semantic Wikis is the support for a smooth transi-

tion from vague, ill-defined problems to more formal issue descriptions. Semantic Wikis

thus combine advantages of conventional Wikis with those of bug repositories. They

offer a usable and flexible bug description mechanisms, as well as features to semanti-

cally annotate specific bug attributes such as responsible person or affected version.

Requirements and traceability management: Semantic Wikis allow for ontology-

based annotations of links between pages. Instead of creating a new “associated to” link,

developers can create, e.g. “requires”, “extends” or “has higher priority” links between

193



features. Requirements can also be semantically linked to other resources, e.g. to a user

who “is concerned by” this requirement or to a developer how “is responsible for the

implementation”. Dealing with daily changes becomes easier since advanced retrieval

functionalities can be automated. Affected test cases or components for the next release

can be retried automatically every time requirement priorities change. Moreover consis-

tency checks, e.g. each actor should initiate at least one use case, as well as cross project

offering based on the capture of the user context might add value to classical Wikis.

Communication and collaboration: Wiki-based collaboration can get more precise and

efficient by including semantic annotations to collaboration content. Information can be

shared precisely to stakeholders depending on their interests. For example, a project

manager is interested in deadline information for the next release, unlike an architect,

who is more concerned about provisional design decisions. Linking content with user

interests can be realized by an explicit, “semantic” registration of the user. Instead of

watching pages as in conventional Wikis, users register themselves to watch concepts

like a requirement or a release. Another example is the notification of a component

owner if a component user adds an experience report. In addition, within large distrib-

uted projects more awareness can be achieved by automatically building interest groups

based on linking semantically annotated content to an ontology-based user profile. Based

on component dependencies, Wiki users such as component owners and component

users can build a group of interest about this component.

Agility support: In addition to advantages that agile teams can take from conventional

Wikis (Section 4.2), Semantic Wikis achieve more flexibility in release planning. In a

project with frequent releases, test and integration checklists, release notes as well as

management reports can be automatically extracted from the Wiki, using query tem-

plates and reasoning mechanisms. A query like “list manual tests that need to be con-

ducted for the next release” can be supplied by selecting fixed issues, affected compo-

nents and requirements and then retrieving related tests. Less effort is required for non-

development, but essential activities such as quality and change management. In addition

Semantic Wikis help in bringing customers closer to development teams. Customer and

developers can edit the same Wiki, while information is still differentiated based on

stakeholders interests. Different vocabularies used by customers and developers can be

easily mapped by using “equivalent” annotations. Finally, implicit knowledge such as,

the models included in the source code, e.g. in Extreme Programming (XP), can be ex-

tracted and formalized based on the ontology used by the Semantic-Wiki and then linked

to the concepts described in the Wiki.

Conclusion: Semantic Wikis entail various advantages for software engineering pro-

jects. They enable an incremental formalisation of underlying knowledge across various

software engineering activities. Thereby, they increment results from the underlying

ontologies that can be extended and customized in different contexts. Unlike a develop-

ment or a collaboration infrastructure with a fixed scheme, e.g. a bug repository where

bugs must occur in a version, Semantic Wikis provide a simultaneously growing scheme

and data. Thus a higher flexibility for project rules is supported. In addition, linking

capabilities of Semantic Wikis enable the association of various artefacts and system

models. Unlike in classic Wikis these associations are typed in Semantic Wikis. In con-

194



ventional Wikis the only semantics of the link between two pages is that pages are “re-

lated to” each other. In real life, developers need to define a design pattern that traces a

non-functional requirement, a change request that changes a core feature, or a design

concept that implements a requirement. Annotation of data and links between data in

Semantic Wikis satisfy such needs. Thereby, rules might be defined based on these typed

associations as well as the information pieces, which also acquire types and semantic

specifications. Conventional Wikis lack machine-understandable semantics. Thus struc-

turing the Wiki content by machine reasoning is difficult. These semantics are especially

valuable for linking the various data objects.

The acquired collaborative formal knowledge rather complements informal human

communication than replacing it. Rule-based systems, reasoners and declarative query

languages might be used for a semiautomatic processing of such knowledge and creation

of new one. New content like implicit associations between artefacts can be generated.

Additionally, flexible and declarative model-checking and -validation mechanisms be-

come easy to implement. When common ontologies are deployed, project knowledge

can be much easier imported from and exported to other projects and repositories. This is

obviously valuable for software development organisations and communities. Reuse and

knowledge exchange becomes more technology, organisation, process and methodology

independent. A user-story in Extreme Programming (XP) can be considered, for exam-

ple, semantically equivalent to a use case instance in Rational Unified Process (RUP).

5. Conclusion and Future Work

In this paper we presented the state of the art of Semantic Wikis, comparing different

implementations and giving an overview of related challenges. This remains valid in the

software engineering domain, where conventional Wikis has already shown many ad-

vantages. In documentation, reuse, issue tracking, requirement and traceability manage-

ment as well as communication and collaboration, several success stories have been

associated to Wikis, in particular in agile and distributed teams. However, Wiki’s limited

support for handling machine-interpretable information, answering structured queries

and for structuring collaboration content also showed several disadvantages compared to

other project infrastructures such as bug repositories or groupware. These difficulties can

be eliminated by expressing formal semantic statements, as Semantic Wikis do. The

incremental formalisation of knowledge, as well as the parallel growth of scheme and

data represent the main arguments for considering Semantic Wikis as promising tech-

nology. When integrated to further software engineering tools a Semantic Wiki can serve

as an integrated “Knowledge Desktop” for developers and provide a lightweight knowl-

edge articulation and sharing facilities. This is especially relevant for sharing knowledge

across distributed teams, and can therefore enable agility in non-collocated projects.

Empirical studies should investigate this in more detail. Semantic Wikis can also serve

as an integration point to other tools and resources. They provide flexible and intuitive

ways for authoring, manipulating, retrieving and navigating through structured knowl-

edge. The following features can then be offered to developers:

• Knowledge articulation facilities like semantic search and recommendation.

195



• Context-aware navigation through information objects.

• Faceted navigation and support of different views of data types.

• Ontology import and export to enhance reuse in software engineering.

• Integration of several data types to support different types of documents.

• Facilities to interrelate information objects and semantic traceability.

• Semantic recommendation functionalities.

Nevertheless, several research and technical issues like interoperability, distinctiveness

and identification of resources, as well as methodology issues need to be addressed first.

6 Acknowledgments

This work has been supported in part by the TEAM project, which is funded the EU-IST

programme under grant FP6-35111 and the BMBF-funded project WAVES.

References

[AD03] Aguiar, A.; David, G.; Padilha, M.: XSDoc: an Extensible Wiki-based Infrastructure for

Framework Documentation, in Proceedings of JISBD, pp. 11–24, 2003.

[AD05] Aguiar, A.; David, G.: WikiWiki weaving heterogeneous software artifact, In Proceed-

ings of the 2005 International Symposium on Wikis, San Diego, CA, pp. 67-74, 2005.

[ADR06]Auer, S.; Dietzold, S.; Riechert, T.: OntoWiki - A Tool for Social, Semantic Collabora-

tion, in I. Cruz et al. (Eds.): Proceedings of 5th ISWC, GA, USA, LNCS 4273, 2006.

[Ba06] Barlas, D.: SAP Using Twiki, 01.2006,

http://www.destinationkm.com/articles/default.asp?ArticleID=1127

[Ba92] Basili, V.; Caldiera, G.; McGarry, F.; Pajerski, R.; Page, G.; Waligora, S.: The software

engineering laboratory: an operational software experience factory, In Proceedings of

ICSE’92. ACM Press, 1992.

[Be01] Manifesto for Agile Software Development (2001) http://agilemanifesto.org/

[Bu06] Buffa, M.: Intranet Wikis, In Proceedings IntraWeb Workshop WWW2006, 2006.

[CM04] Chau, T.; Maurer, F.; Grigori, M.; Harald, H.: Proceedings of the 6th International

Workshop on Advances in learning software organizations, Springer, 2004.

[CM05] Chau, T.; Maurer, F.: A case study of wiki-based experience repository at a medium-

sized software company, K-CAP 2005, pp. 185-186, 2005.

[CM06] Chau, T.; Maurer, F.: A case study of a Wiki-based experience repository at a medium-

sized software company, In Proceedings Kumar Jain, R.; Prabhakar, R. (Eds.): Wiki - A

new wave in web collaboration, The ICFAI University Press, India, pp. 60-79, 2006.

[CRP06] Calero, C., Ruiz, F., Piattini, M.: Ontologies for Software Engineering and Software

Technology, Springer Verlag, 2006.

[Da06] Davis, M.: Semantic Wave 2006 Part-1: Executive Guide to Billion Dollar Markets, A

Project10X Special Report, 2006.

[DF04] Decker, S.; Frank, M.: The Networked Semantic Desktop, In Proc. of the WWW, 2004.

[DM06] Dutoit, A.H.; McCall, R.; Mistrik, I. ; Paech B.: Rationale Management in Software

Engineering: Concepts and Techniques, In: Rationale Management in Software Engi-

neering, 2006.

[DP03] Dutoit, A.H.; Päch, B.: Eliciting and Maintaining Knowledge for Requirement Evolu-

tion, In Proceedings Managing Software Engineering Knowledge, Springer, 2003.

[DR05] Decker, B.; Rech, J.; Ras, E.; Klein, B.; Hoecht, C.: Self-organized Reuse of Software

196



Engineering Knowledge supported by Semantic Wikis, In Proceedings of SWESE, 2005.

[Ed06a] Edgewell.org: The Trac User and Administration Guide,

http://trac.edgewall.org/wiki/TracGuide, 09.2006.

[Ed06b] Edgewell.org: Trac Project Homepage, http://trac.edgewall.org/, 09.2006.

[Fi06] Fischer, J et al.: Ideas and Improvements for Semantic Wikis, in Proceedings of ESWC

2006, LNCS 4011.

[GN87] Genesereth, M.R.; Nilsson, N.J.: Logical Foundations of Artificial Intelligence, Morgan

Kaufman Publishers, 1987.

[Gr93] Gruber, T.: A Translation Approach to Portable Ontology Specifications, Knowledge

Acquisition, 5(2), 199-220, 1993.

[JJ05] John, M.; Jugel, M.; Schmidt, S.; Wloka, J.: Wikis in der Softwareentwicklung helfen,

Java Magazin 7, pp. 88-91, 2005.

[HM03] Herbsleb, J.; Mockus, A.: Formulation and preliminary test of an empirical theory of

coordination in software engineering. ESEC / SIGSOFT FSE. 2003.

[HSc07] Happel, H.-J. and Schmidt, A.: Knowledge maturing as a process model for describing

software reuse. Proceedings of LSO 2007. 2007.

[Hse07] Happel, H.-J., Seedorf, S.: Ontobrowse: A Semantic Wiki for Sharing Knowledge about

Software Architectures. In: Proceedings of the 19th SEKE, Boston, 2007.

[Ki06] Kiesel, M.: Kaukolu: Hub of the Semantic Corporate Intranet, SemWiki Workshop,

ESWC 2006.

[LC01] Leuf, B.; Cunningham, W.: The Wiki Way: Collaboration and Sharing on the Internet,

Addison-Wesley, 2001.

[Lo06] Louridas, P.: Using Wikis in Software Development, IEEE Software, 23, 2, 2006.

[MB06] Mullick, N.; Bass, M.; Houda, Z.; Paulish, P.; Cataldo, M.: Siemens Global Studio Pro-

ject: Experiences Adopting an Integrated GSD Infrastructure, In Proceedings of

ICGSE'06, 2006.

[OB06] Oren, E.; Breslin, J. G.; Decker, S.: How semantics make better Wikis, in Proceedings of

WWW '06, ACM Press, New York, NY, pp. 1071-1072, 2006.

[Or05] Oren, E.: SemperWiki: a semantic personal Wiki, in Proceedings of the 1st Workshop on

The Semantic Desktop - Next Generation Personal Information Management and Col-

laboration Infrastructure, Galway, Ireland (ISWC 2005).

[PL06] Paasivaara, M.; Lassenius, C.: Could Global Software Development Benefit from Agile

Methods? In Proceedings of ICGSE’06, IEEE Computer Society, 2006.

[PM07] Panagiotou. D. and Maalej. W. (ed.): Report describing state-of-the-art in SE Knowledge

Desktop. 2007.

[Pr04] Pretorius, A.: Ontologies – Introduction and Overview, 2004.

http://www.starlab.vub.ac.be/teaching/Ontologies_Intr_Overv.pdf.

[Ram06] Ramesh, B.; Cao, L.; Mohan, K.; Xu, P.: Can distributed software development be agile?

Commun. ACM 49, 10 (Oct. 2006), 41-46, 2006.

[SF05] Silveira, C.; Faria, J.P.; Aguiar, A.; Vidal, R.: Wiki Based Requirements Documentation

of Generic Software Products, AWRE’05, Melbourne, Australia, pp. 42-51, 2005.

[SM07] Schmidt, R.; Maalej, W.; Happel, H-J.; Kögel, M.; Narendula, R.; Panagiotou, D.; Wolf,

T.: Report describing State-of-the-Art in Metadata Management, 2007.

[SB01] Schwaber, K. and Beedle, M.: Agile Software Development with SCRUM. 2001.

[TS06] Tolksdorf, R.; Simperl, E. P.: Towards Wikis as Semantic Hypermedia, in Proceedings

of the WikiSym '06, ACM Press, New York, NY, pp. 79-88, 2006.

[TW06] TWiki Success Stories, http://twiki.org/cgi-bin/view/Main/TWikiSuccessStories 2006.

[W3C07] Semantic Web Official Homepage 12.2007. http://www.w3.org/2001/sw/

[WK02] Williams, L. and Kessler, R. Pair Programming Illuminated. 2002.

[WZ07] Wolf, R.; Zhao, J.: JavaDoc + Wiki = WikiDoc - Kollaborative Dokumentationssystem

für Java, 2007. http://projects.mi.fu-berlin.de/w/bin/view/SE/ThesisWikiDoc

197




