Cycle Structure of RSA with Small Moduli

Philip Winkler Jörg Keller Fernuniversität in Hagen Fernuniversität in Hagen

32nd Crypto Day, 15 January 2021

The RSA function $RSA(x) = x^e \mod n$ realizes a permutation on the set of integers [0, ..., n-1]. Therefore, all numbers x < n are mapped onto each other in a cyclical manner: $x = RSA(RSA(...RSA(x))) = RSA^i(x)$. The length iof each of these cycles is a divisor of the iterated Carmichael function $\lambda(\lambda(n))$ of the modulus n (Katzenbeisser (2001)). The cycle lengths have been studied theoretically in Friedlander, Pomerance & Shparlinski (2001) and Kurlberg & Pomerance (2005). However, these mathematical results do not convey an intuitive understanding of the cycle length distribution for a given n. In this work, the cycle lengths have been analyzed experimentally for small moduli $n \leq 2^{30}$. This involves a study of the magnitude of the maximum cycle length $\lambda(\lambda(n))$ compared to n and an investigation of which divisors of $\lambda(\lambda(n))$ actually occur as cycle lengths.

It has been shown that the range of $\lambda(\lambda(n))$ is $\sqrt{n} \leq \lambda(\lambda(n)) \leq \frac{1}{8}n$ with an average value of $n^{0.8}$. Furthermore, the average cycle length is approximately $0.2\lambda(\lambda(n))$.

The RSA-function could be used as a state-transition function for pseudorandom number generators. The estimates for the cycle lengths show that this might be advantageous compared to non-bijective transition functions, which on average have a cycle length $\sqrt{\frac{\pi n}{2}}$ (Flajolet & Odlyzko (1990)) and therefore require larger state spaces to achieve similar cycle lengths.

References

- PHILIPPE FLAJOLET & ANDREW M. ODLYZKO (1990). Random Mapping Statistics. In Advances in Cryptology — EUROCRYPT '89, JEAN-JACQUES QUISQUATER & JOOS VANDEWALLE, editors, 329–354. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-540-46885-1.
- JOHN FRIEDLANDER, CARL POMERANCE & IGOR SHPARLINSKI (2001). Period of the power generator and small values of Carmichael's function. *Math. Comput.* **70**, 1591–1605.
- STEFAN KATZENBEISSER (2001). Recent Advances in RSA Cryptography, volume 3. ISBN 978-1-4613-5550-2.
- PAER KURLBERG & CARL POMERANCE (2005). On the period of the linear congruential and power generators. Acta Arithmetica - ACTA ARITHMET 119, 149–169.