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The RSA function RSA(x) = xe mod n realizes a permutation on the set of
integers [0, ..., n− 1]. Therefore, all numbers x < n are mapped onto each other
in a cyclical manner: x = RSA(RSA(...RSA(x))) = RSAi(x). The length i
of each of these cycles is a divisor of the iterated Carmichael function λ(λ(n))
of the modulus n (Katzenbeisser (2001)). The cycle lengths have been studied
theoretically in Friedlander, Pomerance & Shparlinski (2001) and Kurlberg &
Pomerance (2005). However, these mathematical results do not convey an intu-
itive understanding of the cycle length distribution for a given n. In this work,
the cycle lengths have been analyzed experimentally for small moduli n ≤ 230.
This involves a study of the magnitude of the maximum cycle length λ(λ(n))
compared to n and an investigation of which divisors of λ(λ(n)) actually occur
as cycle lengths.

It has been shown that the range of λ(λ(n)) is
√
n ≤ λ(λ(n)) ≤ 1

8n with an
average value of n0.8. Furthermore, the average cycle length is approximately
0.2λ(λ(n)).

The RSA-function could be used as a state-transition function for pseudo-
random number generators. The estimates for the cycle lengths show that this
might be advantageous compared to non-bijective transition functions, which
on average have a cycle length

√
πn
2 (Flajolet & Odlyzko (1990)) and therefore

require larger state spaces to achieve similar cycle lengths.
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