Aspect-Oriented Modeling with Integrated Object Models

Silvio Meier, Tobias Reinhard, Christian Seybold, Martin Glinz

Department of Informatics
University of Zurich
{smeier, reinhard, seybold, g]inz} @ifi.unizh.ch

Abstract: With the advent of aspect-oriented programming, the need for adequate
techniques for handling aspect-oriented artifacts in the early phases of the software
engineering process has emerged. In this paper, we present an aspect-oriented lan-
guage extension for an integrated modeling language based on object models. We
present the way aspect constructs can be handled in requirements and architectural
models, and identify the impact on existing modeling languages and models.

1 Introduction

Aspect-oriented programming (AOP) [KLM197] is an emerging research field which
deals with the handling of crosscutting concerns. Crosscutting concerns manifest as scat-
tered and tangled code in the final system and result from the lack of additional de-
composition dimensions which is also called the tyranny of the dominant decomposi-
tion [TOHS99].

The better the modularization of code artifacts is, the simpler they become and therefore
the easier they are to understand. In [Lad03, KHHT01], the advantages of using AOP
techniques are discussed: the resulting code artifacts have a clearer responsibility due
to their better modularization and are therefore easier to reuse and to maintain. A late
integration (also called weaving) of all the code artifacts makes it possible to have a clearer
focus on them. This results in a clearer and better design and therefore leads to more stable
systems. Overall, this lowers the system development costs.

Aspect-oriented software development (AOSD) propagates the application of aspect-ori-
ented techniques to artifacts of the software engineering process in other stages than the
implementation phase, namely to the requirements and architectural phases. This reduces
the impedance mismatch between the traditional paradigms used in the early phases of
the software process and the aspect-oriented paradigm used during the implementation.
Furthermore, the advantages outlined above can also be gained from these early phases.
Additionally, an early separation of crosscutting concerns facilitates the traceability of
crosscutting software artifacts, which is especially important for the requirements phase.
Hence, we aim at an early identification and separation of crosscutting concerns and a
weaving of the crosscutting concerns and the core concerns as late as possible.

As stated in [MGO5], introducing aspect-orientation into modeling languages has not only

129

advantages, but also entails problems, in particular when requirements and sofware archi-
tectures are modeled:

i. The introduction of aspect-oriented constructs reduces the complexity when focus-
ing (locally) on one or a few artifacts, but, at the same time, increases complexity
when looking (globally) at the model as a whole. This is because of the additional
separation dimension which results in the need for a linking mechanism (the so-
called join point model) between the concerns which in turn introduces complexity.

ii. Today’s aspect-oriented modeling approaches often use loosely coupled modeling
languages like UML [OMGO3] and extend them with aspect-oriented constructs.
Loosely coupled languages consist of a set of sub-languages which are not well inte-
grated with each other, neither in their visual representation nor in terms of their lan-
guage design. Therefore, they need more redundant information and consequently
introduce more consistency problems [GBJ02]. Also they demand a high degree of
intellectual effort to integrate a system into one coherent model in mind. Thus, us-
ing loosely coupled modeling languages as a basis for an extended, aspect-oriented
language amplifies the effect of complexity when trying to understand a model as a
whole.

iii. Nowadays, aspect-oriented modeling approaches concentrate in the majority of cases
on just one or two views, most often the behavior or the static structure of a sys-
tem. For a comprehensive view of a system, it is necessary to have all the possible
views (see Section 2). Having a language that does not coherently support aspect-
orientation confuses both the modeler and the reader of such models rather than
helping them to achieve better models.

For the early phases of software engineering, e.g. the requirements stage, it is necessary to
satisfy quality criteria such as unambiguity, completeness, correctness, etc. (see [IEE9S]).
Expressed in more general terms, these standards have to be met every time a software
artifact is used as a means of communication, e.g. between customer and engineer or be-
tween engineers. The qualities mentioned are strongly influenced by the issues described
in items i) to iii) and therefore it must be the aim for a good aspect-oriented modeling
language to solve the problems listed above.

In this paper, we propose a novel modeling approach for aspect-oriented models using an
object-based, tightly coupled and integrated modeling language. The paper is organized
as follows: Section 2 presents the modeling language ADORA, which is used as a basis for
the approach. Furthermore, it discusses the problems occurring when modeling crosscut-
ting concerns with conventional modeling techniques. Section 3 deals with the approach
advocated in detail. Section 4 covers the related work and finally Section 5 gives some
conclusions and a short overview of our future work.

130

2 Prerequisites
2.1 ADORA- An Object-Oriented Requirements Language

ADORA is a language for modeling requirements and architectural design specifications
[GBJO2]. ADORA primarily models functional requirements. Non-functional require-
ments can be included as textual annotations in ADORA models. Alternatively, one can
operationalize goals and non-functional requirements so that they can be modeled as func-
tional requirements. Fig. 1 shows a library system described as a typical ADORA model,
which is used as an example throughout this paper.

LibrarySystem

Authorization... [not authenticated]
receive authenticate(Sender id) receive useriD()
over Authenticate | over GetUserld | . A GetUserld
call; send searchUserID() lsel&d c?pgse?slerCredentlals() ¥ SendUserInfo
over SendUserlnfo 0 UserGredentials

Wait »| Userlnfo P Authorizing

henti a1 receive userCredentials()

[authenticated] from UserCredentials |

send authorized() send authorized()
over A_uthorlze over Authorize [Receiverld]
[Receiverld]

. A ManageUserInfo
A Authenticate A Authenticate A Authenticate ¥ ReadUserlnfo
¥ Authorize ¥ Authorize ¥ Authorize

BorrowManager...

2 BookAdministration... [~ UserAdministration...
Authenticate...
A ReadCatalog
'w ManageCatalog
A ManageBooks A ManageUsers
>
BorrowBooks Books
BorrowBooks ReadCatalog
<

BookAdministrator UserAdministrator

Association
D Object Eﬂ Object Set O Scenario C) State DAclor al

Abstract Association

Figure 1: A part of a library system modeled in ADORA

A major difference between ADORA and other object-oriented modeling languages is that
ADORA uses abstract objects (i.e. prototypical objects that have a name, but are not in-
stantiated with attribute values) instead of classes as the basic modeling elements [GBJ02].
Using abstract objects and object sets allows hierarchical decomposition of models in a
straightforward way with a simple and a clear semantics. Decomposition, in turn, yields
abstraction and the possibility of visualizing components in their context, thus making
models easier to understand and evolve.

In Fig. 1, all rectangles represent abstract objects. Hierarchical structure is modeled by
nesting objects, which in turn implicitly describes part-of-relationships between objects.

131

Shadowed rectangles are object sets, i.e. they model collections of objects. For example,
the library system in our example contains an abstract object BookAdministration and an
object set Books.! For visualization, ADORA employs views. The so-called base view
consists solely of the hierarchical structure built of the objects and object sets. Beside this
base view, additional views describe other facets of the system. In Fig. 1, all views are
visible in combination. The structural view comprises the associations between objects
and/or object sets, and the associations between actors and scenarios. Associations model
information flow. Hence, associations may model directed structural relationships as well
as the communication between components. The behavior view integrates states (drawn as
rounded rectangles) and state transitions into the object hierarchy at all places where the
internal behavior of the system has to be modeled. Together with the decomposition hier-
archy, we can define the semantics of the behavior view with a simplified version of the
statechart semantics. In contrast to statechart semantics, events are broadcast only within
the boundary of an object. From an originating object to a destination object, events have
to be sent explicitly over associations or part-of-relationships. The context view shows the
external actors (drawn as hexagons) of the system which are connected by associations to
type scenarios’ [GBJ02] in the user view (drawn as ovals). As interaction is frequently
local, the scenarios are embedded in the object hierarchy at the position where they apply.
Scenarios can also be decomposed, using an extended form of Jackson diagrams [Jac75]
as notation.> The functional view describes the properties (i.e. the attributes and opera-
tions) of components. The functional view is not combined with other views; it is always
represented separately in textual form. When there is only one object of a certain type, the
complete type information is embedded in the object definition, otherwise the component’s
properties are provided by the type definition.

The ADORA language allows both semi-formal and formal modeling. Semi-formal means
that some elements of a model don’t abide by the formal semantics of the modeling lan-
guage. A typical example is a state transition (a formal concept) for which the triggering
condition is given in natural language. Furthermore, ADORA supports partial models, i.e.
models containing parts that are intentionally incomplete [Xia04, SMGO04]: some parts
have not been modeled yet or will not be modeled at all. The difference to unintentional
incompleteness is that the incomplete elements are known to be incomplete and therefore
marked as such. Partial modeling is particularly useful in an evolutionary requirements
modeling process, where we want to evolve a model in a controlled way through a series
of iterations. In ADORA, we have two constructs for describing partial models: the first
one is the so-called is-partial property which indicates that a component is incomplete.
This is especially useful if a system part will still evolve or is incomplete at this time.
The second construct is the so-called abstract association, which is represented as a bold
line (see, for example, the association from UserAdministrator to UserAdministration in

! Abstract objects and object sets are also called components. A component is the superordinate concept of
abstract objects and object sets.

2Type scenarios describe a set of system event sequences. Each of these sequences is initiated by a stimulus
from an actor and ends with a system response. In contrast to type scenarios, instance scenarios just describe one
example sequence of system events. Type scenarios are equivalent to use cases in UML.

3In our version, iteration is a property of all possible types of node. We added also parallel decomposition
and made the notation layout-independent by numbering sequences of actions. Scenario nodes can be abstracted
or marked as partial by three dots [Xia04].

132

Fig. 1). Abstract associations can be used if the modeler knows that there is some commu-
nication between components, but at the time of modeling it is not clear what the concrete
communication will look like. Note that ADORA supports not only partial models, but
also partial views [GBJ02]. Partial views are an abstraction mechanism that is used for de-
liberately hiding certain model elements or levels of detail from a diagram (for example,
when a high-level, abstract view of a system is desired). ADORA supports partial views
for abstract objects, object sets, scenarios, and states. Additionally, abstract relationships
represent associations that are hidden in the current view. Partially viewed or modeled
elements are indicated by names with three trailing dots (e.g. the object BorrowManager).

An ADORA model is the result of a process which could look like the one sketched
in [SMGO04]. This process makes it possible to evolve a requirements model semi-automa-
tically by playing through scenarios.

2.2 Modeling Crosscutting Concerns with Conventional Modeling Techniques

The problem of crosscutting concerns will be explained in the context of the example
described in Fig. 1. Suppose that there is a requirement to have a secure system. This
requirement or goal manifests for example in the need to authenticate the users of the
system and let them perform only operations that are permitted by the credentials for the
particular user. This kind of security requirement is well known to be crosscutting in
systems (e.g. see [CRST05]).

As an example, the functionality of borrowing books and the functionality of managing
books provide operations that are crosscut by the authentication concern. Users utilizing
these functionalities need to be authenticated first. We will use this problem as a running
example to explain our approach. Fig. 2 contains the two components BorrowManager
and BookAdministration of the library system implementing these functionalities*. Some
chunks of the behavioral description for the authentication process can be found in Bor-
rowManager and BookAdministration. The two Authenticate states with their outgoing
transitions describe this kind of functionality. Additionally, the component Authoriza-
tion is part of the authentication mechanism, which handles the authentication request
and authorizes the particular user in the case of a successful authentication. The reflexive
transition of state Authenticate sends an authentication request over the corresponding re-
lationship to the Authorization component. Authorization processes the request. In case of
success, it returns an authentication message containing the user credentials. Otherwise, it
sends back a failure message, requiring the user to authenticate again.

The authentication mechanism described is scattered all over the system and tangled there
with the core functionality of the system. Therefore the authentication mechanism is cross-
cutting. Any attempt to remodel the system in a better way will end up in situations like the
one shown in Fig. 2. The resulting models will always be bloated by elements that seem
to be redundant in some way. This kind of redundancy has a deep impact on the under-

“4For the sake of simplicity, we will only refer to these two elements to explain the issues of our approach and
hide the other elements of the system.

133

standability and therefore also on the validatability and verifiability of a model. In the next
section, we will demonstrate how this problem can be overcome with an aspect-oriented

model.

LibrarySystem...

« AuthorizeBorrowBooks

Authori;

p AuthorizeBooksAdministration

4 AuthenticateBooksAdministration

p AuthenticateBorrowBooks

receive list() |

BookAdministration... receive userPWEntered() |
send authenticate() over

AuthenticateBooksAdministration

send getList() over,
ReadCatalog

BorrowManager...
SearchBooks..}

Authenticate

receive authorized()

I
[De\eteBocks...H Authorized

receive borrow() |

receive borrowFinished() |

BorrowBooks... Au(henncate

receive userPWEntered()
send authenticate()
over AuthenticateBorrowBooks

over Authorize
BooksAdministration |

SearchBooks...

receive authorized() v
over Authorize

receive deletionFinished() |

receive
deleteBooks() |
send prepareDelete()

receive list() |
send getList() over
ReadCatalog

receive editBooks() |

receive editingFinished() | send prepareEdit()

BooksAdministration ||

Authenticate

|
[Ed\(Booka Authorized

Authenuca(e

receive authorized()
over Author |

2
Authenticate...

1 3
SelectBooks... RegisterBorrowing...

I

receive userPWEntered() |
send authenticate() over
AuthenticateBooksAdministration

Dele(eBooks

SearchBooks
o
RemoveBooks

EdltBookDala
AdministrateBooks,
I I
1 I
BookAdministrator

Figure 2: A part of the library system modeled conventionally in ADORA

Authentlcate

3 Modeling with Aspects in Object Models

The goal of our approach is to provide an aspect-oriented modeling language for (func-
tional) requirements and architectural design. In the following we will discuss the most
important elements of our approach. Our approach explicitly deals with the three problems
of aspect-oriented modeling described in Section 1. According to [MGO5], problem i) can
be mitigated by introducing different means for local and global validation / verification.
We propose to use static methods like peer reviews for verifying / validating small parts
of the model (local context), while we recommend dynamic techniques such as simulation
on the global and woven level of the specification. For the sake of validation through sim-
ulation, we need the possibility to weave systems modeled in an aspect-oriented way and

134

therefore we need a well defined weaving semantics for the aspect-oriented constructs in
the model.

Problem ii) can be mitigated by using a tightly coupled and integrated modeling language.
For this purpose, we use our object-oriented modeling language ADORA as a basis for an
extension with aspect-oriented constructs. However, our approach is not constrained to
ADORA; any other language with the same qualities could be used instead. With some
restrictions and adaptations, it is also possible to use our concepts in loosely coupled mod-
eling languages such as UML 2.0 [OMGO3].

Problem iii) will be solved by creating a complete and coherent language which reflects
the modeling of aspect-oriented artifacts in all affected views.

3.1 Aspect-Oriented ADORA

In the following, we describe our aspect-oriented extension of the language ADORA, which
simplifies models by introducing new language elements for the modular separation of
crosscutting concerns.

In contrast to the current (conventional) form of the ADORA language, the constructs of the
aspect-oriented extension for ADORA do not have a defined execution semantics. For ex-
ecuting (e.g. simulating) aspect-oriented ADORA models, we need to transform them first
to conventional ADORA models. This transformation process is called weaving. There-
fore, in the following discussion of the aspect-oriented ADORA elements, each element
will be described by its syntax, additionally needed language constraints and the weaving
semantics.

We introduce what we call an aspect, which is a separated and modular description of a
crosscutting concern. Aspects are not confined to behavioral descriptions only, but rather
consist of a container with a static structure, relationships to other elements, etc. Therefore,
an aspect manifests in almost all views of an ADORA model, namely in the base view, the
behavior view, the user view, the structural view and also in the functional view.

3.1.1 Weaving semantics

As sketched in Section 3.1, aspect-oriented ADORA elements have no counterpart at the
runtime of a model, i.e. they are not described by an execution semantics. Hence, they
have to be transformed into conventional ADORA models by weaving aspectual and non-
aspectual elements together. To enable this transformation, each aspect-oriented language
element defines a set of transformation rules which describe how the aspect-oriented model
is translated into a conventional ADORA model. The weaving of a model has an impact on
every view of the model, except the context view.

135

3.1.2 Language Elements of the Aspect-Oriented ADORA Extension

Fig. 3 shows the system parts from Fig. 2 using the aspect-oriented version of ADORA.
The crosscutting concern is shown as an aspect. The new elements and their weaving
semantics are explained in the following.

LibrarySystem..

BorrowManager...

receive list() | BookAdministration...
send getList() over

receive deleteBooks() |

ReadCatalot
it SearchBooks... send prepareDelete()
D <
<
4
J /

receive borrowFinished() | receive borrow(| receive de/leémﬁmshed() |
»
ﬁ \ receive list() |
] \ send getList() over
\before ReadCatalog SearchBooks...
\ Authorization...

A Authenticate

\ ¥ Authorize
\
BorrowBooks \ befors before, _ 7 receive editBooks() |
\ \ , — - send prepareEdit()
A 4 _ ~ before
! \ / ~
Authehtication \ / -
1 receive i) -

Authenticate

receive userPWEntereﬂ)
send authenticate(}-evér

over Authorize
Authenticate-

\
1 2
EnterUsername' EnterPassword
=~ ‘AdministrateBooks
T
oo >

Figure 3: The example ADORA model described with aspect-oriented elements

Authenticate)=

Aspect Container @ Exit Point — — > Join Relation

Aspect Container An aspect container (just called aspect in the following) is a module
that comprises all elements of a crosscutting concern. In ADORA it is drawn as a beveled
rectangle (see Fig. 3). The name in the upper left corner indicates the name of the aspect.
It can contain chunks of the crosscutting behavior and/or chunks of crosscutting scenarios
(crosscutting behavior as it is seen by actors). An aspect can have attributes and operation
definitions in its functional view which is woven into the functional view of the crosscut
components.

The join relationships are directed relationships between the behavior or scenario chunks
in the aspect and the element’ that is crosscut, i.e. they indicate where to weave in cross-
cutting elements. The element which is crosscut is also called the target element.

When an aspect A is located in a component C, this does not mean that A has an is-part-of
relationship with C, as this is the case with nested components. It rather indicates a certain

SEither a component or another aspect can be crosscut.

136

relationship which describes that A crosscuts either C or one or more child components of
C. Join relationships to a direct or indirect parent element P of C are not allowed. Likewise
it is not allowed to have a join relationship between A and a child of P, except with C. In
Fig. 3 this means that no join relationship from the Authorization aspect is allowed to cross
the border of LibrarySystem.

An aspect can contain components. When weaving an aspect A into the target element 7,
an identical copy (clone) of each component C contained in A is included in 7.

Aspects can be partial, i.e. intentionally incomplete (see Section 2) and therefore indicate
that their evolution is not finished. In this case the aspect name has trailing dots.

Join Relationships As described before, the join point model of Aspect-Oriented ADO-
RA consists of a set of join relationships. A join relationship is denoted by a dashed arrow
and can be attributed by a description of how to weave the elements. The semantics of join
relationships for behavior is slightly different from that for scenarios (see the discussion
below).

Join relationships can also be used to crosscut aspects. For example, suppose the situation
where you would like to have an authentication aspect and a logging aspect, the latter
logging certain operations in the system. If you want to have a logged authentication, you
need to have the possibility of crosscutting an aspect by an aspect. Aspects that crosscut
other aspects imply two constraints that must be fulfilled: (i) The weaving semantics for
circular join relationships is not defined. Therefore cycles of crosscutting aspects are not
allowed. (ii) For the same reason as in item (i), no reflexive join relationships are allowed.

Behavior of an Aspect Aspect behavior chunks are modeled by a statechart-like syntax
and semantics. These chunks are no full-fledged statecharts, i.e. no start states are allowed
in behavior chunks. There has to be exactly one entry point and one exit point for each of
the aspect behavior chunks. The entry point of the crosscutting behavior denotes the state
where the crosscut behavior enters the crosscutting behavior. It is drawn as a state with an
outgoing join relationship. A unique exit point of the crosscutting behavior is denoted by
a double lined state shape. An exit point can not have any outgoing transitions and can be
named optionally.

A join relationship connects the entry point with the transition where the crosscutting
behavior is woven in. The join relationship has to be attributed with one of the keywords
before, instead or after. Fig. 4 describes the weaving semantics. On the left hand side,
there is the aspect-oriented model, whereas on the right hand side, you will find the woven
version:

e Fig. 4a describes the weaving semantics of a Before join relationship. The transi-
tion between A and B is crosscut by performing the behavior chunk given in the
aspect before the action of the crosscut transition is executed. An additional state is
introduced which is named either according to the name of the exit point or (if no
name is given) an artificial name is generated. This state has an outgoing transition
containing the action b from the crosscut transition.

137

s s)
(=0

e B E T
()

= CsC)
(=0

Figure 4: The weaving semantics for internal aspectual behavior

e Fig. 4b describes the weaving semantics of an Instead join relationship. This type
of relationship indicates that the action b of the transition between A and B in the
crosscut behavior is removed and the crosscutting behavior is added to the crosscut
transition. The exiting transition of the crosscutting behavior is connected to the
state B.

e Fig. 4c describes an After join relationship. The After relationship expresses that
the crosscutting behavior is immediately inserted after the transition a | b which is
crosscut. The exit transition ¢ | d of the crosscutting behavior is connected to the
state B of the crosscut transition.

Beside aspect behavior chunks, it is possible to model behavior that is executed concur-
rently with the crosscutting behavior. This can be modeled by a conventional ADORA
statechart embedded in the aspect. When weaving, a clone of this concurrent behavior is
copied into the crosscut element.

Scenarios Scenarios describe the protocol of the interaction between the actors in the
context and the system (see Section 2.1). Like the internal behavior of the system, scenar-
ios can also contain crosscutting behavior as for example discussed in [Jac03]. Crosscut-
ting elements can be found in our example, as illustrated in Fig. 2. In this example, the
Authenticate (sub) scenario appears at different locations (e.g. in BookAdministration and
in BorrowManager), where it crosscuts the model. Therefore, there is a need to introduce
an aspect-oriented notation for crosscutting scenarios.

Aspect scenario chunks can be described in Aspect-Oriented ADORA by modeling the
scenario in the aspect which contains the corresponding (internal) crosscutting behavior
described by a crosscutting statechart chunk. The root node of the crosscutting scenario
tree is connected by a join relationship to the scenario node where the crosscutting scenario

138

has to be inserted as a sub-scenario. This is depicted in Fig. 3, where the Authenticate
scenario chunk is connected to the corresponding crosscut scenario trees. There is no
need to specify an exit point for the crosscutting scenario as it is done for the crosscutting
behavior statecharts. This is a consequence of the tree structure which results in a uniquely
defined execution order for processing the scenario nodes.

The type® of the crosscutting scenario root node has to be of the same type as the target
scenario node and its siblings. The join relationships can be attributed with one of the
keywords before, instead or after. The keyword influences the way the model is woven
but only if the root node of the scenario chunk is of the type Sequence. For root nodes in
the crosscutting scenario chunk which have the type Alternative or Concurrent, all of the
above mentioned keywords have no influence on the weaving, because scenario nodes of
this type have no particular execution order.

Fig. 5 illustrates the weaving semantics for scenario chunks which are crosscutting a sce-
nario sequence. On the left hand side, there is the aspect-oriented version, whereas the
woven version can be found on the right hand side:

e Fig. 5a describes the Before join relationship. The join relationship causes the cross-
cutting scenario chunk having a root node of the type Sequence to be inserted before
the target scenario node. The inserted node gets the sequence number of the target
node. The sequence numbers of the subsequent nodes including the denoted one are
incremented by one.

e Fig. 5b depicts the After join relationship. The root node of the crosscutting sce-
nario chunk is inserted after the specified target node. The sequence numbers of all
subsequent nodes are incremented by one.

e Fig. 5c explains the weaving semantics of the Instead join relationship. In this case,
the target node in the crosscut scenariochart is replaced by the root node of the
crosscutting scenario tree.

Functional View The weaving semantics for the functional view is an open issue in
our research. In general, the Functional View of an aspect, i.e. the attributes and opera-
tions, etc. will be woven with the functional view of the target elements. The following
two problems may happen during the weaving of an aspect’s Functional View into target
elements:

(i) Naming conflicts can occur between elements in the name space of the target element
and the aspect’s functional view. A mechanism which renames the conflicting Functional
View elements in a unique way solves this problem. (ii) Aspect-orientation breaks the
principle of information hiding [Par72] by injecting behavior which is not under control
of the target element. This can result in software contract violations. The compliance of
crosscutting concerns with contracts of crosscut elements is an open research topic in the
AOSD community.

The different types are: Alternative, Sequence and Concurrent.

139

/
/
g

aDIED,
b) D
°°°
D <D,
c)

Figure 5: Weaving semantics for scenario chunks crosscutting a sequence of scenarios.

3.1.3 Reducing Cognitive Overhead in Aspect-Oriented ADORA Models

Join Relationships Other aspect-oriented approaches, e.g. Aspect] [KHH101], often
use pattern matching mechanisms to identify join points. In our approach the modeler has
to denote the join points explicitly. We deliberately do not use pattern matching, because
not explicitly visualizing such important information would reduce the effectiveness of a
visual model and increase the cognitive effort needed to read it. Apart from that, uninten-
tional (i.e. wrong) matches may occur when using pattern matching.

When a model contains many join relationships, explicitly representing them can make the
model more complex. This problem can be mitigated in Aspect-Oriented ADORA by using
partial views (see Section 2) that hide the join relationships which are out of the focus of
interest, i.e. it is possible to hide any number of join relationships.

Abstraction Mechanisms Furthermore, it is possible to reduce the complexity by hiding
the inner structure of aspects and the crosscut elements. In this case, the join relationship
between these elements will be abstracted, i.e. shown as a bold dashed arrow. Fig. 6 shows
different types of situations that may occur. Fig. 6a shows the involved elements (in this
case an aspect and a component) in a non-abstracted situation. The join relationship is
shown as a normal dashed line. Fig. 6b shows the situation with the abstracted aspect,
whereas Fig. 6¢ shows the situation where the component is abstracted. In Fig. 6d both
the aspect and the component are abstracted.

140

a) Aspect Component b)

Component
S E A =HEC
e o) 5
C) [Awec] d)

[1_’@_ ~ | Component... (Aspect... J‘"’ Component...

Figure 6: Influence of the ADORA abstraction mechanism on join relationships.

3.2 The Impact of Weaving on the Model Structure

Aspects are allowed to be connected by associations to abstract objects.” Associations

between an aspect and an abstract object have to be taken into account when weaving an
aspect-oriented model. In this case weaving has an impact on the Structural View and on
the Base View. In the following, we call abstract objects connected by an association to an
aspect aspect-oriented server objects® or just briefly server objects.

3.2.1 Structural View

Fig. 7 illustrates the change of the association structure in an aspect-oriented model after
the weaving process. For the sake of simplicity, the scenarios and the inner structure of
all the components except the behavior of Authorization and BorrowManager are hidden.
Due to the fact that the behavior of an aspect is cloned and woven into different target
objects, the communication channels from aspects to server objects have to be cloned too,
because they are used by the crosscutting behavior to communicate with server objects. In
Fig. 7 this manifests in the associations from UserAdministration to Authorization, from
BookAdministration to Authorization and from BorrowManager to Authorization.

The number of associations that have to be introduced for each aspect woven in the model
can be computed as follows. Let O be the server object. If n different target elements
Ty. 5, are crosscut by the aspect A and there exist m associations a; ., between A and O,
there are m * n new associations introduced.

3.2.2 Base View

A server object O is assumed to be in a certain state So to provide a service for the
crosscutting behavior of the aspect A. As soon as the crosscutting behavior of A is woven
into the target elements 7}...n, we have to make sure that the state So is preserved for
each of the n cloned crosscutting behaviors. Therefore, the server object has to be cloned
too, i.e. the woven model must contain a set of server objects with a cardinality of (n,n).
This fact is illustrated by the object set Authorization in Fig. 7.

7For the sake of simplicity, Object Sets are not allowed to be connected to an aspect by an association.
8This is due to the fact that these objects provide a service for an aspect.

141

3.2.3 Adaption of Behavior

The crosscutting behavior has to be modified so that messages are addressed and sent to the
correct object in the server object set. This is done by the ADORA reflection mechanism
with its ability to address objects in object sets, which is not explained in detail here.

The behavior of the objects in the server object set has to be slightly modified too by
storing the object id of the sender object. This id is used to send messages back. Without
using this id responding to messages would result in a multicast® to all components that
contain crosscutting behavior.

LibrarySystem...
BorrowManager. Authorization... [not authenticated] M
receive authenticate(Sender id)
over |)
'& receive list() | call; send searchUserID() UserCredentials...
send getList() over Wait over SendUserlnfo
ReadCatalog ai Userlnfo
Wait SearchBooks.. < Authorize
v > Authenticate 4 receive useriD()
P— over GetUserld |
. authenticate send composeUserCredentials|
receive borrowFinished() | receive borrow() | send authorized() receive userCredentials() to UserCr:den(ials 0
« over Authorize [Receiverld] | from UserGredentials |
send
BorrowBooks...| Authenticate over Authorize [Receiverld] (
9
2 (33)
receive
userPWEntered() | a GetUserld a a
send authenticate()
S anencawe ¥ SendUserlnfo ¥ Authorize ¥ Authorize
<
Authorized Users... ManageUserlnfo u
receive authorized() >
over | ReadUserinfo
—————— |

Figure 7: The woven system.

4 Related Work

Many aspect-oriented modeling approaches are discussed within the research community.
Most of them, for example [SY99, GB04], are very close to AOP approaches.

There are only a few approaches dealing with aspect-oriented architectural design. In
[AKO3] stratified frameworks are discussed. Stratified framework are rather a viewing
mechanism than an aspect-oriented approach. A discussion of further aspect-oriented ar-
chitectural design approaches can be found in [CRST05].

There are some aspect-oriented approaches to requirements engineering. For example,
[AWKO04] describes an approach for weaving crosscutting behavior with core concern
behavior that are both represented in terms of statemachines. These statemachines are
generated from use cases. However, this approach considers only the behavioral view
and neglects the others. In [YdPLMO04] an approach for discovering aspects of require-
ments in i* goal models is described, while [BMO04] investigates aspects for the NFR
(non-functional requirements) framework.

A good survey of the currently existing aspect-oriented modeling approaches can be found

9This is due to the fact that the cloned associations have the same name.

142

in [CRST05].

5 Conclusions and Outlook

In this paper, we presented an approach for modeling modularized crosscutting concerns
for functional requirements and software architectures, respectively. We have shown that
tightly coupled modeling languages are better suited for the introduction of an aspect-
oriented extension than loosely coupled ones. We demonstrated that the understandability
and therefore also the validatability and verifiability can be improved by using the newly
introduced aspect constructs.

For an effective and efficient usage of ADORA and the aspect-oriented approach presented
here, tool support is needed. We are currently extending our existing ADORA tool proto-
type with the aspect-oriented extensions presented in this paper.

The practical validation of the presented approach will be in the focus of our future re-
search. Furthermore, we will research the problem of identification and separation of
crosscutting concerns during the requirements phase. For this purpose, we plan to extend
the process presented in [SMGO04] which provides a use-case-driven method for evolving
and simulating requirements.

References

[AKO3] C. Atkinson and T. Kiihne. Aspect-Oriented Development with Stratified Frameworks.
IEEE Software, 20(1):81-89, 2003.

[AWKO4] J. Aradjo, J. Whittle, and D.-K. Kim. Modeling and Composing Scenario-Based
Requirements with Aspects. In /2th IEEE Requirements Engineering Conference
(RE’04), pages 58-59, 2004.

[BMO04] I. Brito and A. Moreira. Integrating the NFR framework in a RE model. In Early
Aspects 2004, 3rd Aspect-Oriented Software Development Conference (AOSD 2004),
2004.

[CRST05] R. Chitchyan, A. Rashid, P. Sawyer, J. Bakker, M. Pinto Alarcon, A. Garcia, B. Tekin-
erdogan, S. Clarke, and A. Jackson. Survey of Aspect-Oriented Analysis and De-
sign. In R. Chitchyan, A. Rashid (eds.): AOSD-Europe Project Deliverable No. AOSD-
Europe-ULANC-9., 2005.

[GB04] I. Groher and T. Baumgarth. Aspect-Orientation from Design to Code. In Early
Aspects 2004, 3rd Aspect-Oriented Software Development Conference (AOSD 2004),
2004.

[GBJ02] M. Glinz, S. Berner, and S. Joos. Object-Oriented Modeling with ADORA. Information
Systems, 27(6):425-444, 2002.

[TEE98] IEEE - The Institute of Electrical and Electronics Engineers. [/EEE Recommended
Practice for Software Requirements Specifications. IEEE Std 830-1998. 1EEE Com-
puter Society Press, 1998.

143

[Jac75]
[Jac03]

[KHH™01]

[KLMT97]

[Lad03]

[MGO5]

[OMGO3]

[Par72]

[SMG04]

[SY99]

[TOHS99]

[Xia04]

[YdPLMO4]

M. Jackson. Principles of Program Design. Academic Press, New York, 1975.

I. Jacobson. Use Cases and Aspects — Working Seamlessly Together. Journal of Object
Technology, 2(4):7-28, 2003.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. Getting
Started with Aspect]. Communications of the ACM, 44(10):59-65, 2001.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In Proceedings of the 15th European Con-
ference on Object-Oriented Programming (ECOOP 1997), pages 327-353, 1997.

R. Laddad. AspectJ in Action, Practical Aspect-Oriented Programming. Manning
Publications Company, New York, 2003.

S. Meier and M. Glinz. Problems when Introducing Aspect-Oriented Constructs in
Models of Functional Requirements and Possible Solutions to these Problems. In
Models and Aspects - Handling Cross-Cutting Concerns in MDSD, Workshop at the
19th Euorpean Conference on Object-oriented Programming (ECOOP 2005), 2005.

OMG. UML 2.0 Superstructure Specification. OMG document ptc/03-08-02. Tech.
Rep., Object Management Group, http://www.omg.org/cgi-bin/doc?ptc/2003-08-02,
2003.

D. L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053—-1058, 1972.

C. Seybold, S. Meier, and M. Glinz. Evolution of Requirements Models by Simulation.
In 7th International Workshop on Principles of Software Evolution (IWPSE 2004),
pages 4348, 2004.

J. Suzuki and Y. Yamamoto. Extending UML with Aspects: Aspect Support in the
Design Phase. In Proceedings of the 3rd Aspect-Oriented Programming Workshop
at the 13th Euorpean Conference on Object-oriented Programming (ECOOP 1999),
pages 299-300. Springer, 1999.

P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton. N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In Proceedings of the 21st International
Converence on Software Engineering (ICSE 1999), pages 107-119, 1999.

Y. Xia. A Language Definition Method for Visual Specification Languages. PhD thesis,
University of Zurich, 2004.

Y. Yu, J. C. Sampaio do Prado Leite, and J. Mylopoulos. From Goals to Aspects:
Discovering Aspects from Requirements Goal Models. In /2th IEEE Requirements
Engineering Conference (RE’04), pages 38-47, 2004.

144

