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Abstract: In contrast to traditional file systems designed for hard disks, the file sys-
tems used within smartphones and embedded devices have not been fully analyzed
from a forensic perspective. Many modern smartphones make use of the NAND flash
file system YAFFS2. In this paper we provide an overview of the file system YAFFS2
from the viewpoint of digital forensics. We show how garbage collection and wear
leveling techniques affect recoverability of deleted and modified files.

1 Introduction

The ubiquitous use of smartphones and other mobile devices in our daily life demands
robust storage technologies that are both low-cost and well suited for embedded use. There
are several reasons why hard disks are not at all well suited for embedded use: physical
size, power consumption and fragile mechanics are just some of the reasons. That is why
other technologies, namely NAND flash, became very popular and are widely used within
modern embedded devices today. NAND flash chips contain no moving parts and have
low power consumption while being small in size.

However, NAND flash is realized as integrated circuits “on chip” and comes with some
limitations regarding read/write operations that can lead to decreased performance under
certain conditions. Furthermore, flash technology is subject to wear while in use which
may dramatically shorten the chips’ lifetime. Thus, various specific techniques have been
developed to overcome such shortcomings and to enable flash technology to withstand
a substantial amount of read/write operations at constant speeds. Classically, these tech-
niques are integrated into dedicated controllers that implement and enforce the above men-
tioned flash specific algorithms on the hardware level.

From the perspective of digital forensics, hard drives and low-level structures of various
file systems are rather well studied (see for example Carrier [Car05]). The effects of
NAND technologies on the amount of recoverable data on storage devices, however, is
hardly understood today. Since wear leveling techniques tend to “smear” outdated data
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all over the device, it is often conjectured that digital investigations can profit from the
widespread introduction of NAND flash, because it is harder for criminals to delete files
and cover their traces. However, we are unaware of any related work that has investigated
this question. Probably this is due to the difficulty of circumventing the controllers of
NAND flash chips.

Another option, however, to implement NAND flash specific behavior is to use specifically
designed file systems. These file systems are aware of the generic flash limitations and take
these into account on the software level when reading and writing data from and to the chip.
Such file systems are much easier to analyze since they implement techniques like wear
leveling in software. The most common example of such a file system is YAFFS2, a file
system used by the popular Android platform, which is “the only file system, under any
operating system, that has been designed specifically for use with NAND flash” [Man02].
YAFFS?2 stands for “Yet Another Flash File System 2” and was the standard file system
for the Android platform until 2010. Allthough since the beginning of 2011 with version
Gingerbread (Android 2.3) the platform switched to the EXT4 file system, there are still
many devices in use running a lower version than 2.3 and thus using YAFFS2. Therefore,
insights into the amount and quality of evidence left on YAFFS2 devices is still of major
interest.

Goal of this paper. In this paper, we give insights into the file system YAFFS2 from a
forensic perspective. Next to giving a high level introduction to YAFFS2, our goal is to
explore the possibilities to recover modified and deleted files from YAFFS2 drives. Since
there is no specific literature on this topic, we reverse engineered [ZSS11] the behavior
of the file system from the source code of the YAFFS2 driver for Debian Linux running
kernel version 2.6.36.

Results. As a result of our analysis, we found out that the movement of data on a
YAFFS2 NAND never stops and that obsolete data (that could be recovered) is eventu-
ally completely deleted. Thus, a YAFFS2 NAND stays only for a very brief span of time
in a state that can be considered a best case scenario regarding recovery of obsolete data.
In one of our conducted tests, the block that held a deleted file was finally erased 7 minutes
and 53 seconds after the file was deleted. Larger devices have a positive effect on this time
from a forensic point of view (i.e., they potentially enlarge the time span). Therefore, the
chances to recover deleted data after days or weeks, as can be done on classical hard disks
[Car05], are not very high in YAFFS2.

Roadmap. We begin by giving a high-level introduction into the concepts and terminol-
ogy of YAFFS2 in Section 2. In Section 3 we give insights into the inner workings of its
algorithms. We construct and experimentally analyze best case scenarios in Section 4 and
present some results regarding the recovery of files in Section 5. We conclude in Section 6.
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2 A Brief Introduction to YAFFS2

Blocks and chunks. YAFFS2 separates storage into several areas of fixed size, called
blocks. Within each block, again there exist several areas of fixed size, but smaller than
the size of a block. These areas are called chunks. Following the characteristics of NAND
flash, a chunk is the smallest amount of data which can be written whereas a block is the
smallest amount of data which can be erased from the flash. Data can only be written to a
block if the corresponding chunk was erased beforehand. A chunk that was just erased is
called free.

Free and obsolete chunks. Since data can only be written to free chunks, modification
of data is more complicated than on classical hard drives. To modify data, the data must
first be read, then be modified in memory and finally be written back to a free chunk.
This method is similar to the well known Copy-on-Write method. YAFFS2 writes chunks
sequentially and marks all chunks with a sequence number in the flash. That way, any
chunk that was associated with the original data will be identified as obsolete although it
still holds the original (now invalid) data.

The existence of obsolete chunks is interesting from a forensic investigator’s point of view:
Whenever one or more obsolete chunks exist within a block, the corresponding data will
still be recoverable until the respective block gets garbage collected. After this block gets
garbage collected, all of its obsolete chunks will be turned to free chunks.

Header chunks and data chunks. YAFFS2 distinguishes between header chunks used
to store an object’s name and meta data and data chunks which are used to store an ob-
ject’s actual data content [Man10]. The meta data in such a header chunk describes if the
corresponding object is a directory, regular data file, hard link or soft link. In Table 1 the
structure of a regular file with three chunks of data and one header chunk is shown.

| Block | Chunk | ObjectID [ Chunk ID | Comment \

1 0 100 0 Object header chunk for this file
1 1 100 1 First chunk of data

1 2 100 2 Second chunk of data

1 3 100 3 Third chunk of data

Table 1: Structure of a file with one header chunk and three data chunks.

If a file shrinks in size, data chunks become invalid and the corresponding header chunk
receives a special shrink-header marker to indicate this. In Table 2 we show how a deleted
file looks like. In this case chunk number 5 indicates that the file had been deleted and
this chunk receives the shrink-header marker. As we show below, shrink-header markers
are important because object headers with this marker are prevented from being deleted
by garbage collection [Man10, Sect. 10].
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[ Block | Chunk [ Object ID | Chunk ID | Comment \

1 0 100 0 Object header chunk for this file

1 1 100 1 First chunk of data

1 2 100 2 Second chunk of data

1 3 100 3 Third chunk of data

1 4 100 0 New object header chunk (unlinked)
1 5 100 0 New object header chunk (deleted)

Table 2: Structure of the file from Table 1 after the file had been deleted.

Object_ID and Chunk ID. Each object (file, link, folder, etc.) has its own Object_ID,
thus it is possible to find all chunks belonging to one specific object. A Chunk_ID of 0
indicates that this chunk holds an object header. A different value indicates that this is a
data chunk. The value of the Chunk_ID stands for the position of the chunk in the file.
If you have a chunk with Chunk_ID = 1 it means, that this is the first data chunk of the
corresponding object.

The tnode tree. YAFFS2 keeps a so-called tnode tree in RAM for every object. This
tree is used to provide mapping of object positions to actual chunk positions on a NAND
flash memory device. This tree’s nodes are called tnodes [Man10, Sect. 12.6.1].

Checkpoint data. Checkpoint data is written from RAM to a YAFFS2 NAND device on
unmounting and contains information about all of a device’s blocks and objects (a subset
of information stored in the tnode tree). It is used to speed up mounting of a YAFFS2
NAND device.

The number of blocks needed to store a checkpoint consists of (1) a fixed number of
bytes used for checksums and general information regarding the device and (2) a variable
number of bytes depending on the number of objects stored on the device and the device’s
size. The variable part of a checkpoint consists of information on blocks, objects and
tnodes.

3 Garbage Collection in YAFFS2

In YAFFS2, obsolete chunks can only be turned into free chunks by the process of garbage
collection. Among all of YAFFS2’s characteristics and functionalities, the garbage collec-
tion algorithm has the most significant impact on the amount of deleted or modified data
that can be recovered from a NAND. In this section, we describe the different garbage col-
lection methods (Section 3.1). An important variant of garbage collection is called block
refreshing and explained in Section 3.2. Additionally, we describe the impact of shrink
header markers on garbage collection (Section 3.3). For brevity, detailed references to the
source code of the Linux driver can be found elsewhere [Zim11, ZSS11].
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3.1 Garbage Collection Methods

Garbage collection is the process of erasing certain blocks in NAND flash to increase
the overall amount of free blocks. Valid data that exists in blocks selected for garbage
collection will first be copied to another block and thus not be erased.

Garbage Collection can be triggered either from a foreground or a background thread. The
trigger within a foreground thread is always a write operation to the NAND. Background
garbage collection is not directly triggered by any foreground thread, but executed even
when the device is idle. Background garbage collection typically takes place every two
seconds.

Interestingly, the behavior of garbage collection does not primarily depend on a device’s
storage occupancy. Execution rather depends on the current state of blocks regarding the
amount of obsolete chunks they hold. Still, every garbage collection can be performed
either aggressively or passively, depending on the device’s storage occupancy. Passive
background garbage collection only collects blocks with at least half of their chunks being
obsolete and only checks 100 blocks at most when searching a block to garbage collect.
Foreground garbage collection is executed passively if one quarter or less of all free chunks
are located in free blocks and a block with seven-eighths of its chunks being obsolete can
be found.

If no block of the entire flash qualifies for erasure, oldest dirty garbage collection is ex-
ecuted. This type of garbage collection selects the oldest block that features at least one
obsolete chunk. It is executed every time background or foreground garbage collection
have been skipped (due to the lack of qualifying blocks) 10 or respectively 20 consecutive
times. Hence, as long as every block of a device has at least half of its chunks filled with
valid data, the only way a block can be garbage collected is through oldest dirty garbage
collection (or its variant called block refreshing explained below).

Aggressive garbage collection occurs if background or foreground garbage collection is
performed and a device does not feature enough free blocks to store checkpoint data.
Aggressive garbage collection potentially deletes a higher number of obsolete chunks per
cycle than passive garbage collection and is triggered if a device features less than a certain
threshold of free blocks, where the threshold depends on the size of the checkpoint data
[ZSS11].

Summary from a forensic perspective. The scenario where a maximum of obsolete
chunks can be recovered (and therefore the “best” case for a forensic analyst) requires that
during the whole time of its usage a device features enough free blocks to store checkpoint
data and a distribution of obsolete and valid chunks that leads to every block having just
more than half of its chunks being valid. Additionally, enough free blocks must be avail-
able to ensure that more than one quarter of all free chunks is located within empty blocks.
This results in a behavior in which all blocks are garbage collected as seldom as possible
and still feature a high number of obsolete chunks that potentially contain evidence.
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3.2 Block Refreshing

YAFFS2’s only explicit wear leveling technique is block refreshing. Block refreshing
is performed during the first execution of garbage collection after mounting a YAFFS2
NAND flash memory device and every 500 times a block is selected for garbage col-
lection. Basically, block refreshing is a variant of garbage collection that does not pay
attention to the number of obsolete chunks within blocks. Instead, its goal is to move a
block’s contents to another location on the NAND in order to distribute erase operations
evenly. This technique enables the collection of blocks, even if they completely hold valid
chunks.

Whenever block refreshing is performed, it selects the device’s oldest block for garbage
collection, regardless of the number of obsolete chunks within this block. Thus, if the old-
est block does not contain any obsolete chunks, block refreshing does not lead to deletion
of data, as all the oldest block’s chunks are copied to the current allocation block.

3.3 Shrink header markers

From a forensic point of view, shrink header markers can play an important role, as a block
containing an object header chunk marked with a shrink header marker is disqualified for
garbage collection until it becomes the device’s oldest dirty block. Its contents can remain
stored on a device for a comparatively long time without being deleted by YAFFS2’s
garbage collector. We practically evaluate the effects of shrink header markers on the
recoverability of obsolete chunks in Section 5.1

4 Best case and worst case scenarios

All data written to a YAFFS2 NAND remains stored on the device until the corresponding
blocks are erased during execution of garbage collection. Therefore, recovery of modified
or deleted files is always a race against YAFFS2’s garbage collector. In the following, the
best case scenario described above is further analyzed for its practical relevance.

4.1 Experimental Setup

All practical evaluations of YAFFS2 discussed in the following were performed on a sim-
ulated NAND flash memory device. The simulated NAND featured 512 blocks and each
block consisted of 64 pages with a size of 2048 bytes. Thus, the device had a storage
capacity of 64 MiB.

YAFFS?2 reserves five of the device’s blocks for checkpoint data and uses a chunk size
matching the device’s page size. Hence, a chunk had a size of 2048 bytes. For ev-
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ery analysis, we created images of the simulated NAND by use of nanddump from the
mtd-utils.

4.2 General Considerations

As aresult of previous discussions, sooner or later all obsolete chunks present on the device
are deleted and thus no previous versions of modified files or deleted files exist because of
the unpreventable oldest dirty garbage collection and block refreshing techniques.

Passive and oldest dirty garbage collection only collect five valid chunks per execution
of passive garbage collection. Thus, not every execution of passive garbage collection
necessarily leads to deletion of a block. In case a block consisting of 64 pages respectively
chunks contains only one obsolete chunk, thirteen executions of passive garbage collection
are necessary before the block gets erased.

Once a block has been selected for garbage collection, YAFFS2 does not need to select
another block to garbage collect until the current garbage collection block is completely
collected. Hence, as soon as a block has been chosen for oldest dirty garbage collec-
tion, every subsequent attempt of background garbage collection leads to collection of this
block. Given the cycle time of 2 seconds for background garbage collection, even in a
best case scenario, a block that features only one obsolete chunk gets erased 24 seconds at
most after it was selected for oldest dirty garbage collection.

4.3 Experiments

To validate our findings about the best case, we created one file of size 124 928 bytes
(respectively 61 chunks) on an otherwise empty NAND. Due to writing of one obsolete
file header chunk on creation of a file and writing of a directory header chunk for the root
directory of the device, this lead to a completely filled block that featured exactly one
obsolete chunk. As no write operations were performed after creation of the file, passive
garbage collection triggered by a foreground thread was not performed. Additionally,
aggressive garbage collection was ruled out due to only one block of the device being
occupied. As the block only featured one obsolete chunk, regular background garbage
collection was also unable to select the block for garbage collection. Thus, only after ten
consecutive tries of background garbage collection, the block was selected for oldest dirty
garbage collection. Subsequently, the block was garbage collected every two seconds due
to background garbage collection.

In our conducted test, the block containing the file is selected for garbage collection six
seconds after the last chunk of the block has been written. This is because of background
garbage collection attempts before creation of the file making oldest dirty garbage collec-
tion necessary.
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44 Summary

Since garbage collection cannot be prevented completely, all obsolete chunks will even-
tually be erased. Therefore, the number of obsolete chunks that can be recovered from a
YAFFS2 NAND also depends on the time span between the execution of a file deletion or
modification and a forensic analysis.

Due to block refreshing and oldest dirty garbage collection, chunks on a YAFFS2 NAND
are in constant movement. As shown above, the speed of this movement depends to a part
on the occupancy of the device’s storage capacity. However, the number and distribution
of obsolete chunks on the device and the device’s size have a much greater influence on the
speed of this movement. Passive garbage collection only checks 100 blocks at most when
searching a block to garbage collect. Therefore, it can take longer for a specific block to be
selected for garbage collection on a large NAND featuring a high number of blocks than
it would on a smaller NAND.

5 Data Recovery

In the following, we focus on the analysis of best case scenarios regarding recovery of
deleted files. For other possible scenarios see Zimmermann [Zim11].

5.1 General Considerations

YAFFS2 uses deleted and unlinked header chunks to mark an object as deleted.
Hence, an object is (at least partially) recoverable from a YAFFS2 NAND until garbage
collection deletes all of the object’s chunks. Although recovery of a specific deleted file
does not differ fundamentally from recovery of a specific modified file, one important dif-
ference exists. YAFFS2’s deleted header chunk is always marked with a shrink header
marker. In Table 3, a selection of a block’s chunks are depicted. The chunks depicted
contain data of files “fileX” and “fileY”. While “fileX” was modified by changing its last
chunk’s content, “fileY” was deleted. As can be seen, modification of a file leads to writing
of new chunks (chunk 4) replacing the chunks containing the now invalid data (chunk 1).
However, deletion of a file leads to writing of deleted and unlinked header chunks
with the deleted header chunk being marked with a shrink header marker.

A best case scenario regarding recovery of a delete file is a scenario in which the deleted
file is completely recoverable for the longest time possible. A block containing a chunk
marked with a shrink header marker is disqualified for garbage collection until the block
gets the oldest dirty block. Therefore, in the best case scenario, the file’s de let ed header
chunk has to be stored in the same block as all of the file’s chunks in order to protect the
block (and respectively the complete file) with a shrink header marker. As a block con-
taining a deleted header chunk can only be garbage collected if it is the device’s oldest
block, it does not need to feature a minimum amount of valid chunks to be disqualified for
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| Block | Chunk [ Object ID | Chunk ID | Comment

1 0 257 1 fileX: first data chunk

1 1 257 2 fileX: second data chunk

1 2 257 0 fileX: header chunk

1 3 1 0 root directory: header chunk
1 4 257 2 fileX: second data chunk (new content)
1 5 257 0 fileX: header chunk

1 6 258 1 fileY: first data chunk

1 7 258 2 fileY: second data chunk

1 8 258 0 fileY: header chunk

1 9 258 0 fileY: unlinked header chunk
1 10 258 0 fileY: deleted header chunk

1 11 1 0 root directory: header chunk

Table 3: The results of modification and deletion of a file

garbage collection.

5.2 Experimental Recovery of a Deleted File

We created ten files to fill exactly ten of the device’s blocks with valid chunks. After
creation of a stable initial state by the garbage collector by deleting all obsolete chunks
created during the files’ creation, we performed the following steps on the device:

1. Creation of “fileD” (77 824 bytes, respectively 38 data chunks)
2. Modification of all files on the device except for “fileD”

3. Deletion of “fileD”

To modify the ten initial files we overwrote one data chunk of each file in a way that lead
to one obsolete data chunk in each of the ten initially filled blocks. Hence, featuring only
a very small number of obsolete chunks, these blocks complied to the criteria of an overall
best case scenario. However, the block containing the chunks written due to creation of
“fileD” did not comply to the criteria of a best case scenario as, after the file’s deletion, it
contained a high number of obsolete chunks.

By analyzing the kernel log entries written by YAFFS2, we could determine that, in our
conducted test, the block that held the file was finally erased seven minutes and 53 seconds
after the file was deleted (see also [Zim11]). The block was selected for garbage collec-
tion after background garbage collection was skipped ten consecutive times. However, the
reason for that was not, that the block, at that time being the oldest dirty block, was dis-
qualified for regular background garbage collection. All attempts of background garbage
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collection were skipped because the block was not checked for necessity of garbage col-
lection during these attempts. Thus, it was not selected for regular background garbage
collection immediately after it became the only dirty block, although that would have been
possible. This shows, that obsolete chunks can potentially be recovered for a longer time
from a larger NAND than from a small NAND as passive garbage collection only checks
a subset of all blocks when trying to select a block to garbage collect. Also, an obsolete
chunk can be recovered for a longer time, if the NAND is filled to a higher degree and
more blocks have to be garbage collected before the block containing the obsolete chunk
in question.

Recovery of chunks that are obsolete due to file modifications differs only slightly from
recovery of chunks that are obsolete due to file deletions. Modification of a file does not
lead to writing of shrink header markers, except the modification creates a hole bigger
than four chunks within the file. Thus, obsolete chunks of a modified file are usually not
protected from garbage collection by a shrink header marker. Nevertheless, in a best case
scenario, these chunks are recoverable for almost as long as obsolete chunks of deleted
files (see also Zimmermann [Zim11] and Zimmermann et al. [ZSS11])).

6 Conclusion

Generally YAFFS2 allows for easy recovery of obsolete data. However, YAFFS2’s garbage
collector ensures that, over time, all obsolete data is erased. The amount of data recov-
erable depends on many factors, especially the distribution of valid and obsolete chunks
within a device’s blocks, the device’s size and occupancy and the amount of time that has
passed between modification or deletion of a file and the device’s disconnection from its
power source.
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