
Development of a Vehicle Simulator for the Evaluation of a
Novel Organic Control Unit Concept

Melanie Brinkschulte1

Abstract: New challenges in the field of automotive systems ˘e.g. autonomous driving¯ require
innovative and highly robust vehicle architectures. These are intended to increase the reliability and
fault tolerance of the system and therefore realize the transition from Fail-Save to Fail-Operational
behavior. Organic computing is a possible approach to achieve these goals. Based on an artificial
hormone system and an artificial DNA, a novel organic control unit concept exists.
In this paper we introduce an evaluation tool for this novel concept. Therefore, a simulator physically
models the longitudinal and lateral dynamics of a vehicle. For an easy handling, visualization and
reproducibility of experiments, an user interface and a scripting language are designed. In extensive
evaluation runs the usability of the vehicle simulator is tested. Hereby, real vehicle data is used.

Keywords: Vehicle Simulator; Organic Computing; Fail-Operational

1 Introduction

In this paper we introduce an evaluation tool for a novel organic control unit concept based
on an artificial hormone system ˘AHS¯ [vBP11] and an artifical DNA ˘ADNA¯ [Br15] .
Therefore, a simulator physically models the longitudinal and lateral dynamics of a vehicle.
The parameters of the vehicle ˘weight and measures, engine and gear parameters, brake
parameters, air and roll resistance, . . . ¯ can be individually chosen. For an easy handling,
visualization and reproducibility of experiments, an extensive user interface and a scripting
language is designed. Also, this simulator allows the evaluation of various automotive
control components ˘ECUs¯ like ABS, ASR, power steering and cruise control. All input
data like brake, throttle and steering positions can be given by the user interface or the
scripting language. In addition, both input options can be used simultaneously. The output
values like brake force, wheel speed, vehicle speed, steering angles, etc. are visualized in
the user interface, timestamped and written to a logfile for detailed examination. Thereby,
the user can choose which physical value is logged as well as the time resolution of the
logging process. By fault injection, ECU failures at run-time can be induced at arbitrary
times during a simulation run.
This paper is structured as followsȷ Section 2 gives a short overview of the designed
physical models. Following, Section « describes the architecture and the interaction of the

1 University of Mannheim, Chair of Information Systems II, Schloss, 681«1 Mannheim, Germany & Goethe
University Frankfurt am Main, Computer Science Department, Robert-Maier-Str. 11-15, 60«25 Frankfurt am
Main, Germany, brinkschulte@uni-mannheim.de

cba doiȷ10.18»20/inf2020_79

R. Reussner, A. Koziolek, R. Heinrich (Hrsg.)ȷ INFORMATIK 2020,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 88«

mailto:brinkschulte@uni-mannheim.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2020_79

components of the simulator. Section » presents an extract of the extensive evaluation and
Section 5 discusses related work. Finally, Section 6 concludes this paper.

2 Models

In this work multiple physical models ˘vehicle dynamics, steering, brake and engine¯ are
designed and used. For reason of space, we can only shortly enumerate these models here.
For more details, please refer to [Br19].
The vehicle dynamics model is based on the linear single-track model. However, this is
not sufficient for the desired purpose and is therefore extended ˘by adding of longitudinal
dynamics, frictional conditions and accuracy by removing the small angle approximation,
extension to an rudimentary two-track model¯ to an efficient nonlinear two‚track model
without small angle approximation. The steering model is a speed-dependent steering
system with optional steering assistance. The brake model includes characteristic curve
mappings and brake cylinder delay. The engine model includes an optional adjustable
four-wheel drive, as well as drive delay and dead times. Furthermore, a simple gearbox
model was realized.

3 Simulator

In this section, the architecture as well as the communication and interaction of the
components ˘user interface, physical models, simulator-sensor/actuator interface¯ of the
vehicle simulator is shown. The vehicle simulator is implemented in C++ while Qt 5.11.1 is
used to implement the graphical user interfaces.

3.1 Architecture

The simulator consists of three partsȷ the physical models of the vehicle, the user-interface
and the simulator sensor/actuator interface ˘Figure 1¯. The physical models have inter-
nal state data ˘e.g. speeds, distances travelled, angles, etc.¯ and receive vehicle data

Vehicle &

Environmental

Data

Physical Model

Condition Data

Input Data Output Data

Simulator-Sensor/Actuator Interface

User Interface

Logging

read

read

read write

write

update (signal)

create

Simulator

(TCP/IP, CAN, …)

Fig. 1ȷ Architecture of the simulator

˘e.g. the vehicle mass, vehicle dimensions,
etc.¯, environmental data ˘e.g. the static/s‚
liding friction value between road and tires¯
and input data ˘e.g. a steering angle, an ac‚
celerator pedal position, etc.¯. They then
use these to calculate the output data ˘e.g.
forces and accelerations¯. Through the input
and output data, the physical models are
connected via the simulator sensor/actuator

88» Melanie Brinkschulte

interface to the AHS and the ADNA that realize the vehicle’s control units. The user interface
can display, change and save vehicle condition and environment data. Furthermore, the
settings for the creation of a parameterizable log files can be defined in the interface. The
visualization consists of a top view with optional fade-in of different force, track and speed
vectors as well as a side view, which shows the wheel speeds and the adhesion conditions.
Furthermore the simulator is real-time capable. The two-layer real-time architecture is
shown in Figure 2. The outer layer uses a 10𝑚𝑠 period to ensure smooth and jitter-free

Inner Layer

n-fold oversampling for more

precise integration and

differentiation

Over-real time

(𝑛-runs < 10 𝑚𝑠)

 Outer Layer

Simulator

Sensor/Actuator-

Interface

 jitter-free input/output 10 𝑚𝑠

(limited by Windows timer

accuracy ~1𝑚𝑠)

Fig. 2ȷ Real-time architecture of the vehicle simulator

real-time input/output. This cycle time was chosen because the Windows timers used in the
implementation have an accuracy of about 1𝑚𝑠. In the inner layer, a 𝑛-fold oversampling
˘n‚fold execution of a simulation run¯ is performed to achieve a more precise integration
and differentiation. The number of passes of the inner layer can be individually adjusted by
the user. The only condition is that the time required for this number of runs is less than
10𝑚𝑠 ˘run time of outer layer¯. This means that over‚real time is present there.

3.2 Interaction

In Figure « the interaction and data transfer between the user interface, the physical models
and the simulator-sensor/actuator interface is shown. The physical models are divided into
the submodels vehicle dynamics, brake, engine and steering. The sensors of the Simulator
Sensor/Actuator Interface receive their inputs from the physical submodels and from the
user ˘e.g. brake pedal sensor, accelerator pedal sensor, etc.¯. The user has two possibilities
to create his inputs. On the one hand, he can make entries via the user interface to directly
control the vehicle and influence its environment. On the other hand, in order to enable
precisely repeatable experiments, it is possible to specify input in the form of a script file.
The input data is then converted by the control units into corresponding actuator values
˘e.g. brake cylinder control, drive control, steering angle control, etc.¯ according to the
artificial DNA running on them. These values then enter the physical models of the steering,
the brake and the engine. The outputs of these models are then passed on to the vehicle
dynamics model, which in turn generates new sensor signals in a closed control loop.

Vehicle Simulator for Evaluation of a Organic Control Unit Concept 885

Sensors

Brake Pedal

Accelerator Pedal

Cruise Control

Streering Wheel

Wheel Speeds

Yaw Acceleration

Steering Angle

Actuators

Brake Caliper (4)

Engine Power

Force distribution

front/rear

Cruise Control Display

(Target) Steering

Position

Steering Assistance

Control Units (ADNA/AHS)

Simulator-Sensor/Actuator Interface

Physical Model

Brake

Physical Model

Engine

Physical Model

Steering

Physical Model

Vehicle Dynamics

Physical Modells

Brake Pedal Position

[%]

Accelerator Pedal

Position [%]

Steering Wheel Position

[%]

Cruise Control [%]

Driver’s Steering Force

[%]

[%]

[%]

[%]

[%]

Caliper Position [%]

On/Off

4

Brake Forces

[N]

Engine Forces

[N]

Streering Angle

[rad]

Speed

[m/s]

Wheel Speeds [1/s]

Yaw Acceleration [m/s²]

4

4

4

Various displays (distances, ...) Input from Simulator GUI or Script File Output to Simulator GUI

Speed

[m/s]

Fig. «ȷ Interaction and data transfer between the user interface, the physical models and the simulator-
sensor/actuator interface

4 Evaluation

Extensive evaluations of the presented work are made. Unfortunately in the scope of this
paper only the most important evaluation results can be presented in detail.
At first, the trade-off between simulator processor load and accuracy is evaluated. Therefore,
a simple reproducible experiment ˘vehicle initiates a curve at a given starting speed of
50 𝑘𝑚

ℎ
, the static friction is set to a value so that the vehicle doesn’t slide¯ with different

numbers of steps ˘𝑛 = [1, 10, 100]¯ per simulation period in the inner layer of the simulator
is used. To determine the gain in accuracy, the speed in x- and y-direction are compared
exemplary. In the diagrams, minimal deviations of the curves from each other can be seen.

886 Melanie Brinkschulte

9

9,5

10

10,5

11

11,5

12

12,5

13

13,5

14

0 500 1000 1500 2000 2500 3000 3500 4000

S
p

e
e

d
 (

m
/s

)

Time (ms)

n=1 n=10 n=100

˘a¯ Comparison of the speed in x-direction

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 500 1000 1500 2000 2500 3000 3500 4000

S
p

e
e

d
 (

m
/s

)

Time (ms)

n=1 n=10 n=100

˘b¯ Comparison of the speed in y-direction

Fig. »ȷ Comparison of speed in x- and y-direction at 𝑛 = 1, 𝑛 = 10 and 𝑛 = 100 steps per simulation
period

The speed in x-direction ˘Figure »a¯ shows the smallest deviations. These never exceed
0.1%, hence we have nearly one line in the figure. For the speed in y-direction ˘Figure »b¯,
slightly larger deviations of a maximum of 4% are visible. Nevertheless, the curves are
almost identical at 𝑛 = 10 and 𝑛 = 100 steps per simulation period. Only the curves resulting
from only one step per simulation period differ slightly more from the others at two points
˘1280𝑚𝑠 − 1340𝑚𝑠 and 1810𝑚𝑠 − 2140𝑚𝑠¯. The resulting computing time for a simulation
period and the resulting processor load are shown in Figure 5. As expected, the required
computation time per simulation period and thus the processor load increases with growing
number of simulation steps 𝑛. This results in a maximum calculation time of 1.031𝑚𝑠 with
𝑛 = 100 which corresponds to a maximum processor load of 10%. It turns out that the

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000

C
o

m
p

u
ti

n
g

 T
im

e
 (

u
s)

Time (ms)

n=1 n=10 n=100

˘a¯ Computing time

0

2

4

6

8

10

12

0 2000 4000 6000 8000 10000 12000

P
ro

ce
ss

o
r

Lo
a

d
 (

%
)

Time (ms)

n=1 n=10 n=100

˘b¯ Processor load

Fig. 5ȷ Required computing time and resulting processor load at 𝑛 = 1, 𝑛 = 10 and 𝑛 = 100 steps per
simulation period

model works with high accuracy at low computational effort. Especially 𝑛 = 10 turns out to
be a good choice with low overhead and high accuracy.
Next, the longitudinal and lateral dynamics have been evaluated with different experiments2.
The vehicle is also operated in the non-linear range ˘skidding¯. It turns out the simulator

2 Longitudinalȷ reality comparison of acceleration time from 0 to 100 𝑘𝑚
ℎ

, maximum final speed and braking

distance from 100 𝑘𝑚
ℎ

to standstill. Lateralȷ pure steering and steering in combination with braking experiments

Vehicle Simulator for Evaluation of a Organic Control Unit Concept 887

behaves as expected and the results are very close to those of a real car. In this paper, we
focus on the evaluation of the closed control loop between simulator and control units by
means of a cruise control and ABS. The aim of the simulator is to create an evaluation tool
for the AHS together with the ADNA as an organic control unit concept. This ECU concept
should keep the system operational even in case of component failure and thus show the
desired Fail-Operational behaviour.
Therefore, in further evaluation the behaviour of the closed control loop in case of failure of
individual DNA processors is examined. Failures of processors ˘ECUs¯ were added during
ABS braking in a corner or speed regulation by cruise control. In Figure 6a the failure
of the processor is clearly shown by a peak in the drive power percentage. The processor
failure causes the wheel speed sensors of the front wheels to be temporarily lost. The cruise
control implemented uses this data to determine the speed of the vehicle. If it now receives
no more rotation speed, it assumes that the vehicle has a speed of 0𝑚

𝑠
and thus accelerates

at maximum to reach the set target speed. As soon as the AHS/ADNA has distributed the
wheel speed detection to the remaining processors in one of the next hormone cycles by
self-healing, the failure is eliminated and the cruise control works correctly again. Here
the failure lasts about 100𝑚𝑠. In Figure 6b the failure of a processor is also clearly visible.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

2

4

6

8

10

12

14

16

6000 8000 10000 12000 14000 16000 18000 20000

D
ri

v
e

 P
e

rc
e

n
ta

g
e

 [
0

..
1

]

S
p

e
e

d
 (

m
/s

)

Time (ms)

Total Speed Drive Percentage

˘a¯ Simulation results of the speed experiment in
case of processor ˘ECU¯ failure during cruise con‚
trol

0

2

4

6

8

10

12

14

16

0

500

1000

1500

2000

2500

3000

3500

4000

15500 16000 16500 17000 17500 18000 18500 19000 19500

S
p

e
e

d
 (

m
/s

)

B
ra

ke
 F

o
rc

e
 (

N
)

Time (ms)

Brake Force (left rear) Brake Force (right rear) Total Speed

˘b¯ Simulation results of the ABS corner brake
experiment in case of processor ˘ECU¯ failure

Fig. 6ȷ Simulation results of processor ˘or control unit¯ failure experiments

The braking force at the rear left wheel drops to zero shortly after the start of braking at an
approximate simulation time of about 15860𝑚𝑠. After a simulation time of about 16060𝑚𝑠,
the braking force is again controlled by the ABS. The failure was therefore corrected after
about 200𝑚𝑠. In Figure 7 the comparison between the speeds and the distances covered with
and without failure is shown. The speed curve during failure shows a slight bend, which
is caused by the short-term reduced braking effect during failure. As a result, the vehicle
comes to a halt about 250𝑚𝑠 later than without failure. At the time the vehicle comes to a
halt without failure, the vehicle still has a speed of 1.2𝑚

𝑠
during the failure. This results in

an extension of the braking distance of approximately 0.15𝑚. These evaluations show the
suitability of the developed vehicle simulator for the intended application. The simulator
is able to simulate failures of processors or control units, which allows to investigate and
analyze such failure scenarios.

888 Melanie Brinkschulte

5 Related Work

140

150

160

170

180

190

200

210

220

0

2

4

6

8

10

12

14

16

15500 16000 16500 17000 17500 18000 18500 19000 19500

D
is

ta
n

ce
 (

m
)

S
p

e
e

d
 (

m
/s

)

Time (ms)

Speed (Failure) Speed (no Failure) Distance (Failure) Distance (no Failure)

Fig. 7ȷ Comparison between speeds and dis-
tances in the ABS-experiments with and with-
out failure

Vehicle modeling has always been of big im-
portance for the automotive industry [WSK11].
A general overview of vehicle models can be
found in [SHB1«] and [MW1»]. Here a suitable
compromise between model complexity and the
number of model parameters or computing time
should be found for the respective application,
as is also described in [Un1«]. This enables an
optimal use of the respective model within the
scope of the intended application. Highly com-
plex multi-mass models are used, for example, to
evaluate the driver’s driving experience [Un1«]
or in comfort simulation [Am1«]. If, on the other
hand, the lane control of vehicles [Ar15], [He09] or the evaluation of vehicle measurement
data during road tests [Se05] are concerned, simple models such as the linear single lane
model are usually sufficient.
In the presented work, the focus is on vehicle dynamics in connection with a novel, robust
control unit concept. In case of an ECU failure, the evaluation of the lateral and longitudinal
dynamics of the vehicle is of great importance, whereby the ECUs receive information from
all four wheels. In the event of skidding ˘oversteer and understeer¯, the vehicle also leaves
the linear range. The linear single‚track model was therefore too simplified and not suitable
for the desired purpose. However, driving comfort was also not in the focus of the work, i.e.
there was no need to use a complex multi-mass model.
For this reason, an adapted model was developed, which extends the linear single-track
model to a nonlinear model with two-track components. With this model, meaningful
simulations for the evaluation of the novel ECU concept can be performed on the basis of an
ADNA ˘especially regarding failure and robustness of ECUs¯, while the model complexity
remains at a reasonably low level.

6 Conclusion

In this paper a vehicle simulator is presented as an evaluation tool of an organic control
unit concept ˘represented by the AHS in combination with the ADNA¯ in the automotive
field. For this purpose, physical models for steering, brake, engine and vehicle dynamics are
developed, validated and implemented. With these models a comprehensive evaluation of
driving situations for the evaluation of the organic ECU concept or robust ECU is possible.
To enable reproducible experiments, a script language was developed and implemented.
This allows flexible experiments under identical conditions and thus enables the comparison
of different ECU concepts against each other. In future work, the failure behavior of more
sophisticated control units for autonomous driving will be evaluated with this tool.

Vehicle Simulator for Evaluation of a Organic Control Unit Concept 889

Bibliography

[Am1«] Amelunxen, Hendrikȷ Fahrdynamikmodelle für Echtzeitsimulationen im komfortrelevanten
Frequenzbereich. Dissertation, Universitčt Paderborn, 201«.

[Ar15] Arndt, Albrechtȷ Querregelung eines spurgeführten Modellfahrzeugs. chapter 5 Modellbil-
dung, 2015.

[Br15] Brinkschulte, Uweȷ An artificial DNA for self-descripting and self-building embedded
real-time systems. Inȷ Concurrency and Computationȷ Practice and Experience, volume 28.
Wiley Online Library, 2015.

[Br19] Brinkschulte, Melanieȷ , Entwicklung eines Fahrzeugsimulators zur Evaluation eines
neuartigen organischen Steuergerẗekonzepts im Automotiven Bereich, 2019. Masterthesis
at Goethe Universitčt Frankfurt am Main.

[He09] Hensel, Enricoȷ Führungskonzept eines autonomen Fahrzeugs, Vorbetrachtung und Be-
wegungsmodell. Seminarbericht, Hochschule für Angewandte Wissenschaften Hamburg,
2009.

[MW1»] Mitschke, Manfred; Wallentowitz, Henningȷ Dynamik der Kraftfahrzeuge. Springer, 201».

[Se05] Sentürk, Fikretȷ Durchführen von Fahrversuchen hinsichtlich einer Optimierung von
FHTW-Fahrdynamikfahrzeug. Diplomarbeit, Fachhochschule für Technik und Wirtschaft
Berlin, 2005.

[SHB1«] Schramm, Dieter; Hiller, Manfred; Bardini, Robertoȷ Modellbildung und Simulation der
Dynamik von Kraftfahrzeugen. Springer, 201«.

[Un1«] Unterreiner, Michaelȷ Modellbildung und Simulation von Fahrzeugmodellen unter-
schiedlicher Komplexitčt. Dissertation, Universitčt Duisburg-Essen, 201«.

[vBP11] von Renteln, Alexander; Brinkschulte, Uwe; Pacher, Mathiasȷ The Artificial Hormone
System - An Organic Middleware for Self-organising Real-Time Task Allokation. In
˘Müller‚Schloer, Christian; Schmeck, Hartmut; Ungerer, Theo, eds¯ȷ Organic Computing ‚
A Paradigm Shift for Complex Systems, chapter ».». Springer, 2011.

[WSK11] Wiedemann, Jochen; Schröck, David; Krantz, Wernerȷ Fahrzeugdynamik, Themenheft
Forschung, volume 7. Universitčt Stuttgart, 2010-2011.

890 Melanie Brinkschulte

