
Implementations for ShorŠs algorithm for the DLP

Alexander Mandl1, Uwe Egly2

Abstract: ShorŠs algorithm for solving the discrete logarithm problem is one of the most celebrated
works in quantum computing. It builds upon a quantum circuit performing modular exponentiation.
As this is a comparatively expensive process, many approaches for reducing both the number of
used qubits and the number of applied gate operations have been proposed. We provide quantum
circuits in Qiskit for three different implementation proposals aiming to reduce space complexity and
compare their performance regarding their asymptotic gate complexity. We make use of the circuit
implementations and QiskitŠs simulation capabilities to compare the actual number of applied gate
operations in compiled circuits for small problem instances to aid future applications of this algorithm.

Keywords: quantum computing; discrete logarithm; implementation; ShorŠs algorithm

1 Introduction

ShorŠs polynomial-time algorithms for prime factorization and the discrete logarithm problem

(DLP) [Sh97] are among the most groundbreaking results in the Ąeld of quantum computation.

These problems are of particular interest since their hardness is the basis of the security of

various cryptographic systems, because the problems are believed to not be solvable on a

classical computer in polynomial time. Many variants and reformulations [ME98, PZ03,

Ka17] of ShorŠs algorithms have since been studied and, although the physical realization

of quantum computers powerful enough to execute them for meaningful inputs still lies in

the future, the Ąeld of quantum computation has grown considerably.

ShorŠs algorithms make use of the fact that the quantum Fourier transform (QFT) can be

used to estimate the eigenvalues of quantum transformations in a process referred to as

quantum phase estimation (QPE) [ME98]. This operation uses a quantum oracle which

computes some unitary operation * which is known to have the eigenvector |k〉 and the

corresponding eigenvalue 42c8q . The output of the overall process is then the closest integer

to q2= for = depending on the quantum circuit size. Furthermore, it can be shown that this

value is obtained with a probability of at least 4/c2 [ME98].

We focus on the DLP which aims to Ąnd an integer < such that 6< ≡ 1 mod ? for a

given integer-valued generator 6, an integer 1, and a prime number ?. The quantum oracle

1 Institute of Architecture of Application Systems, University of Stuttgart, Germany,

alexander.mandl@iaas.uni-stuttgart.de
2 Institute of Logic and Computation, TU Wien, Austria, uwe.egly@tuwien.ac.at

cba doi:10.18420/inf2022_96

D. Demmler, D. Krupka, H. Federrath. (Hrsg.): INFORMATIK 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 1133

mailto:alexander.mandl@iaas.uni-stuttgart.de
mailto:uwe.egly@tuwien.ac.at
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2022_96

involved in the QPE process is a quantum circuit*2 that performs the modular multiplication

*2 |H〉 = |2H mod ?〉.

Since the QPE algorithm requires the repeated controlled application of this oracle for

different constants, which amounts to the exponentiation |G〉*2G |H〉 = |G〉 |2GH mod ?〉, it

is usually referred to as the modular exponentiation oracle. In the description of this circuit

it is assumed that the constant 2 is built into the circuit.

Given the multiplicative order of the generator 6 modulo ?, described by A = |〈6〉|, the

eigenvalues of this transformation have the form

*1 |k:〉 = 4
2c8:<

A |k:〉 ,
for 0 ≤ : < A , with eigenvectors |k:〉. Herein, 1 refers to the input of the DLP from above.

The algorithm uses QPE to estimate the eigenvectors for both the oracle *1 performing the

multiplication with 1 modulo ? and *6 which performs the same operation with the integer

6 and has eigenvalues exp(2c8:/A). This leads to estimates of the fractions (:< mod A)/A
as well as :/A , which can be used to infer the discrete logarithm < on a classical computer.

The fundamental result of ShorŠs work is that the best approximations to these two fractions

are obtained with a constant probability greater than zero, which implies that the quantum

circuit provides the correct measurements after a constant number of repetitions. For the

purpose of inferring < it has to hold that the measured : and the order A have to be coprime

for the algorithm to succeed. However, for large A it was shown that a lower bound for this

probability can be given [Sh97], which results in a total runtime for the whole algorithm of

$ ((log log ?)) (=)), (1)

where) (=) describes the number of gate operations required to perform the oracle operation.

Although ShorŠs algorithm succeeds in solving the DLP in a theoretical setting, the application

of this process using real machines still remains an open problem. Currently, there are

no quantum computers powerful enough to run this algorithm even for relatively small

problem instances of a few bits. This stems from the fact that the involved transformations

have to use a number of extra temporary qubits, so-called ancilla qubits, which greatly

increase the resource demand of the whole algorithm beyond the capabilities of most current

quantum computers. On the other hand, the sheer number of operations both in the modular

exponentiation oracle as well as in the overall algorithm introduces the possibility for

errors in the physical realization of the quantum transformations, which leads to unusable

measurement results even for moderately small instances. Both of these obstacles are further

highlighted by the algorithm descriptions in the later parts of this text.

However, the steady increase in processing power of quantum computers might lead to

future machines powerful enough to run the algorithm. To aid future realizations of ShorŠs

algorithm, this work provides implementations3 of the algorithm for the discrete logarithm

3 The source code can be found at https://github.com/mhinkie/ShorDiscreteLog

1134

https://github.com/mhinkie/ShorDiscreteLog

problem in Qiskit4 that focus on conserving resources both in the number of qubits and gate

operations that are applied.

As described above, the modular exponentiation oracles *1G and *6G are integral parts of

this quantum algorithm. Therefore, we examine efficient implementation proposals for these

arithmetic operations. Implementation variants of modular multiplication on a quantum

computer range from repeated addition [Be03, HRS17] to more involved approaches such

as Montgomery modular multiplication or Barrett reduction [RC18]. We implement and

compare three different proposals for performing this arithmetic process and present a

comparison regarding both, their asymptotic gate complexity as well as regarding the actual

number of applied gate operations for small examples. Furthermore, there are multiple

variants of the overall phase estimation approach that save qubits by restructuring the circuit

[Be03, ME98], some of which were also implemented in Qiskit for this work (see [Ma21]

for details). We selected this particular set of algorithms as they focus on minimizing the

space complexity of the modular exponentiation operation. This allows us to simulate the

circuits for larger inputs on classical devices and will also allow users to execute the overall

algorithm in the future on smaller quantum computers.

The comparison presented in Section 3 has to take into account that a decrease in space

complexity, i. e. in the number of qubits, often goes hand-in-hand with an increase in time

complexity and vice versa. For this reason, we not only compare the number of used qubits

but also the gate complexity for large = and for small examples using compiled circuits. Of

course, the actual computing time and space complexity are also inĆuenced by a number of

other factors that depend on the hardware that will execute the algorithm in the future such as

the error correction routines. Due to their dependence on the actual physical implementation

these factors were not studied explicitly in this work. Gidney and Ekerå [GE21] analyze

these requirements and give an approximation of the number of qubits required for an error

corrected implementation of ShorŠs algorithm on noisy systems.

2 Modular exponentiation

The modular exponentiation operation is the most costly component of the overall algorithm,

as such implementations usually focus on keeping the number of required operations as

small as possible. Shor notes in [Sh97] that the Schönhage-Strassen multiplication algorithm

would theoretically be the fastest one for this problem for large input sizes. However,

implementations of this algorithm as a quantum circuit require a signiĄcant amount of

temporary storage space [Za98, RC18] which is why we do not consider this algorithm.

The most straightforward way of performing modular multiplication is by simply repeating

a modular addition circuit using the binary decomposition of the quantum input integer G:

2 · G mod ? = 220 · G1 + 221 · G2 + · · · + 22=−1 · G= mod ?. (2)

4 https://qiskit.org/

1135

https://qiskit.org/

Therefore, before explaining the multiplication algorithm, different ways of performing

modular addition and in turn modular subtraction are investigated.

2.1 Addition using the QFT

Draper [Dr00] proposes a quantum circuit that adds two = qubit integers by using the fact

that the state after the QFT of some integer 0 is separable and can be described as

=
⊗

:=1

|q: (0)〉 , where |q: (0)〉 =
1
√

2

(

|0〉 + exp
(

2c8
0

2:

)

|1〉
)

.

The addition circuit itself applies QiskitŠs phase gate %. This operation maps arbitrary states

U |0〉 + V |1〉 to U |0〉 + exp(8_)V |1〉 for a real value _ supplied at the time of construction.

SpeciĄcally, using _ =
2c1
2:

for a known integer 1, it maps one Fourier-transformed qubit to

%

(

2c1

2:

)

|q: (0)〉 =
1
√

2

(

|0〉 + exp

(

2c8
0 + 1

2:

)

|1〉
)

= |q: (0 + 1)〉 .

Performing this process for each qubit individually will give the Fourier-transformed result of

the addition in linear time, assuming the input is already supplied in its Fourier-transformed

representation. This circuit can be extended to perform modular addition and modular

multiplication as presented by Beauregard [Be03] and in the later sections of this text.

2.2 Bitwise addition

Another way of performing arithmetic on a quantum computer is to perform bitwise

manipulations of the input similar to the processes on a classical computer. There are

various descriptions of bitwise addition gates on a quantum computer ([RC18] gives a good

overview). We chose to examine the implementations suggested by Häner et al. [HRS17]

further. Although this bitwise addition gate uses comparatively many ancilla qubits, it is

able to perform the calculations using borrowed ancilla qubits. These are idle qubits that

can start in any arbitrary state and will be returned to the same state after the computation.

Since in the overall multiplication circuit many such idle qubits are present, the number of

used qubits for the algorithm can be decreased this way.

As its core component, the circuit relies on a gate that calculates the Ąnal carry of an addition

of two = bit integers 0 and 1, where the latter is known at the time of construction of the

circuit. Assuming the binary representation of the = + 1 bit addition result A = 0 + 1 is given

as A=+1A= . . . A2A1, this operation can be described as

CARRY (b) |0〉 |6〉 |0〉 = |0〉 |6〉 |A=+1〉 .

1136

|0!〉

|0� 〉

|anc〉

CARRY
for 0! + 1! +1

CARRY
for 0! + 1!

recurse
using 0!

recurse
using 0�

Fig. 1: Recursive addition circuit as presented in [HRS17] for a clean ancilla qubit. The adaptions

required for borrowed ancilla qubits are described in [Ma21, HRS17].

The circuit needs an additional register |6〉 of size = − 1, which holds the borrowed qubits

that are used as temporary storage during computation. How this circuit is constructed

is presented in [HRS17] and details of the implementation of this process in Qiskit are

presented in [Ma21]. The key concepts employed in this process will be explained here.

Using CARRY alone, a simple addition circuit could be constructed by iteratively computing

the carry values of the addition of increasingly smaller subsets of the input with the supplied

constant and toggling the resulting qubits accordingly. However, this approach would result

in a circuit with$ (=2) runtime [HRS17]. Häner et al. propose a different recursive approach:

The = qubit input 0 is split into two approximately equal-sized subsets 0! and 0� with size

⌈ =
2
⌉ and ⌊ =

2
⌋ respectively. The resulting carry of the addition of 0! and the corresponding

bits of the constant 1! is saved in another borrowed qubit and used to control an incrementer

operation on the other half 0� of the input. The circuit then recursively computes the

result for both subsets 0� and 0! to Ąnally obtain the addition result. Figure 1 shows the

corresponding quantum circuit.

The complete construction of the incrementer circuit used in each recursive step is presented

in [HRS17, Ma21]. It is based on a quantum-quantum addition circuit presented in [TTK10].

The major difference between borrowed qubits as they are employed here and the zero-

initialised ancilla qubits that are used in other parts of the algorithm is the fact that they can

start in an arbitrary unknown state. To be able to still use these qubits to store intermediate

carry values which control the application of other gates, Häner et al. reorder the operations

such that they are applied before the control qubit is computed and reversed should the

borrowed qubit indicate that the operation should not have been performed. To put it into

other words, the operation is conditioned on the fact that this borrowed qubit is toggled.

2.3 Extension to modular addition

The modular exponentiation oracle requires a subroutine that not simply performs addition

but performs addition modulo a prime module ?. Using a zero-initialised ancilla qubit, both

addition circuits presented here can be extended to perform modular addition by comparing

the result of the addition 0 + 1 with the module ?.

1137

In the bitwise adder presented in Subsection 2.2, the comparison is performed by using

the CARRY gate to obtain the Ąnal carry of the addition 0 + (1 − ?), which, as long as the

register is appropriately sized, is 1 if and only if 0 + 1 < ?. For the QFT-based adder (see

Subsection 2.1), a subtraction of the module ? is performed on the Fourier-transformed

result before applying the inverse QFT to extract the most signiĄcant bit to decide if the

subtraction by ? has to be reversed.

The details of the implementation of this process in Qiskit (as well as the required

uncomputation steps) can be found in [Ma21].

2.4 In-place modular multiplication

By employing the binary decomposition of the input G as presented in Equation (2), we

construct a modular multiplier. This approach is described in [Be03] and similarly in

[HRS17]. The circuit should compute the result |2G mod ?〉 in the same register as the input

was stored, while minimizing the number of ancillary qubits used.

The multiplication circuit is based on a circuit that performs the out-of-place multiplication

|G, H〉 → |G, (H + 2G) mod ?〉 by repeatedly adding constants of the form 2 · 28 mod ? con-

trolled by the individual input qubits |G8〉. First the input |G, 0〉 is taken to |G, 2G mod ?〉 using

the Ąrst out-of-place multiplication. After swapping both registers to obtain |2G mod ?〉 |G〉,
the result will then remain in the leftmost register. The other register can be reset to the |0〉
state by performing another out-of-place multiplication with the constant −2−1 mod ? as

the following equality shows:

G + (−2−1 mod ?) (2G mod ?) mod ? = G − 2−12G mod ? = 0.

2.5 Montgomery modular multiplication

The quantum circuits proposed until now calculate the result of modular multiplication

because the intermediate results are reduced modulo the prime ? after each addition. This

ensures that the number of required qubits is kept low since after each reduction the result

is in the range 0 ≤ G < ?. However, it also introduces unwanted overhead: The result

has to be modiĄed after each step. This overhead is especially noticeable in the case of

Fourier space addition, where determining whether the result has to be reduced modulo

? requires a full quantum Fourier transform and its inverse with runtime $ (=2). In this

section, we present the multiplication algorithm proposed by Rines and Chuang [RC18],

which performs Montgomery modular multiplication [Mo85] on a quantum computer to

address this problem.

As this algorithm often rearranges qubits between registers, we will highlight the size 8 of

certain registers as |G〉8 in the remainder of this section.

1138

A naive optimisation of the multiplication algorithm is to use an appropriately sized register

and perform all required additions on this register without ever transforming back to the

computational basis. However, this implies that a division with ? has to be performed at the

end of the multiplication algorithm to obtain the result |2G mod ?〉. Unfortunately, such a

division requires a series of trial subtractions that are controlled by the most signiĄcant

qubit of the value in the register and the extraction of this qubit again introduces a series of

costly QFT operations.

Instead, the algorithm presented in [RC18] multiplies with the Montgomery form of the

constant c, given by 22= mod ?. Afterward, the Montgomery reduction transforms the

multiplication result G · (22= mod ?) to G · (22= mod ?)2−= mod ? to give the sought after

modular multiplication result. The advantage of the Montgomery reduction is the fact that it

does not require examinations of the most signiĄcant qubit but instead of the least signiĄcant

qubit, which can be obtained in constant time by noting that

|q1 (0)〉 =
1
√

2

(

|0〉 + (−1)0 mod 2 |1〉
)

= � |0 mod 2〉 .

Here, |q1 (0)〉 represents the least signiĄcant qubit in the Fourier transformed representation

of some integer 0. Therefore, a simple Hadamard gate suffices to extract this qubit in the

computational basis.

In the remainder of this subsection, we give an overview of the characteristics of the quantum

circuit implementing Montgomery modular multiplication. The exact speciĄcation and

further information on its implementation in Qiskit can be found in [Ma21].

To distinguish the content of a whole register in the computational basis and their Fourier-

transformed counterpart, the former is referred to as |0〉 and the latter is referred to as |q(0)〉
for some integer 0.

The circuit Ąrst performs an initial multiplication of the input with the Montgomery form of

the constant. This multiplication is performed by repeated addition of the Fourier-transformed

register content similar to Section 2.1 and is described as

|G〉= |0〉2=+1 → |G〉= |q(G · (22= mod ?))〉2=+1 .

2.5.1 Montgomery reduction

Given the result of the multiplication as C = G · (22= mod ?), the estimation stage of the

circuit Ąrst computes the values D = C ?−1 mod 2= and B = (C − D?)/2=. It can be shown

that B is then congruent to and within ? of the desired result C2−= mod ? [Ma21]. Therefore

only one correcting addition is needed at the end of this process to obtain the result.

In each step of the quantum circuit for the estimation stage, the currently least signiĄcant

qubit of the register containing |q(C)〉 is removed and assigned as the new most signiĄcant

1139

qubit of the register containing |D〉, which implicitly divides |q(C)〉 by two. This qubit is

then used to control a subtraction by ?/2. Therefore, when |q(C ′)〉 is the content of the Ąrst

register at the beginning of this iteration, the 8th iteration transforms |q(C ′)〉; |D〉8−1 to

�

�

�

�

q

(

C ′

2
− D8 · ?

2

)〉

;−1

|D〉8 ,

with ; such that ; + (8 − 1) = 2= + 1.

After = repetitions of this process, the system reaches the desired state |q(B)〉=+1 |D〉=
[RC18, Ma21]. Should the resulting value B be negative, the correction stage will afterwards

add ? to obtain the reduction result. This can be achieved by performing an addition

conditioned on the = + 1st qubit containing the sign of the result. After this correction, the

system is in the state |B=+1〉 |q(G2 mod ?)〉= |D〉=.

It Ąnally only remains to uncompute the values |B=+1〉 and |D〉. For this task, Rines and

Chuang [RC18] propose restoring the least signiĄcant bit of |B〉 in the register that holds the

sign qubit |B=+1〉. This can be achieved by performing a CNOT operation conditioned on

the least signiĄcant qubit of |q(G2 mod ?)〉. To illustrate why this is the case, Ąrst assume

|B=+1〉 = |0〉 and therefore no correction with ? has been performed previously. Here, the

CNOT operation simply copies the basis state present in the least signiĄcant qubit of the

result, which was also the least signiĄcant qubit of |B〉 since no correction was performed.

In the case when |B=+1〉 = |1〉 an addition with the odd integer ? is performed, which causes

the least signiĄcant qubit to Ćip. However, since |B=+1〉 starts in the Ćipped state, the CNOT

operation also suffices.

This new qubit is again treated as the new most signiĄcant qubit of |D〉 as was done during

the estimation stage. Therefore it only remains to uncompute |D〉=+1 = |C ?−1 mod 2=+1〉=+1.

Since C and in turn D can be expressed using the multiplication that was performed at the

beginning of the algorithm as

D =

=−1
∑

8=0

G8 (22= · 28 mod ?)?−1 mod 2=+1,

it is apparent that this register can be restored to |0〉 by performing = conditional subtractions

with (22= · 28 mod ?)?−1. By extensions similar to the ones presented in Section 2.4 this

circuit can further be used to perform in-place multiplication.

The main improvement in the depth of this circuit stems from the fact that the relatively

expensive QFT only has to be performed at the beginning and at the end of the circuit (which

in some instances can also be omitted) and at the beginning of the correction stage when

the most signiĄcant qubit is extracted. This contrasts the approach presented in previous

sections, where the QFT is repeated for every modular addition that is performed.

1140

3 4 5 6 7 8

0

2 · 105

4 · 105

6 · 105

= = ⌈log2 (?)⌉

#
o
f

g
at

e
o
p
er

at
io

n
s

Fig. 2: The number of gate operations applied

for each of the implementations presented in

Section 2 for different input sizes =. The solid

bars represent the share of CNOT operations

in the total gate count. The QFT-based imple-

mentation by Beauregard [Be03] is shown in

blue, the bitwise adder-based implementation

by Häner et al. [HRS17] is shown in red and

the Montgomery multiplication by Rines and

Chuang [RC18] is shown in green.

2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

Generator 6

S
u
cc

es
s

p
ro

b
ab

il
it
y

Fig. 3: The average success probability for mul-

tiple inputs to the full algorithm for the DLP

for different generators and the prime ? = 11.

The upper bound for the obtainable success

probability of q(A)/A with A = |〈6〉| is clearly

visible.

3 Results and comparison

We implemented the different circuits for modular exponentiation as well as optimisations

for the overall phase estimation algorithm as they are presented in [Ma21] in Qiskit. The

circuits and the overall implementation are available online5.

Modular exponentiation gate # of qubits Gate operations) (=)
Beauregard [Be03] 2= + 2 $ (=4)
Häner, Roetteler and Svore [HRS17] 2= + 1 $ (=3 log(=))
Rines and Chuang [RC18] 3= + 1 $ (=3)

Tab. 1: The number of required qubits excluding control qubits and the gate complexity for the modular

exponentiation circuits implemented in [Ma21].

The complete algorithm for computing the discrete logarithm has the asymptotic gate

complexity given in Equation (1), with) (=) as listed in Table 1.

First, we compare the asymptotic gate complexity of the different modular exponentiation

circuits presented in Section 2. Table 1 shows that the circuit based on Montgomery modular

multiplication should perform best with respect to the other implemented circuits. It does,

however, also use the most ancilla qubits, which is highlighted by its increased space

complexity in Table 1.

5 https://github.com/mhinkie/ShorDiscreteLog

1141

https://github.com/mhinkie/ShorDiscreteLog

Using the concrete implementations of these circuits, it is now also possible to compare

the actual number of operations that are applied for small examples (see Figure 2). To

obtain a realistic comparison for current quantum computer architectures, we compile the

circuits to the gate set {RZ, I,
√

X,X,CNOT} as this is currently used in IBMŠs quantum

systems6. Furthermore, we compile for the unrestricted qubit layout of QiskitŠs simulator to

not introduce architecture-dependent swap operations arising from varying physical qubit

layouts.

Using our implementations it is now possible to calculate discrete logarithms on quantum

computers supporting QiskitŠs backend. The noise-free results for one speciĄc example are

shown in Figure 3 and highlight the dependence of the success probability on the order A of

the generator.

4 Summary and conclusion

In addition to the experimental results, our circuit implementations and the code to execute

example instances on a simulator are available publicly to enable further research. The

comparison of these gates shows that although the bitwise addition circuit by Häner et al.

[HRS17] outperforms the QFT-based multiplication circuit by Beauregard [Be03] for small

examples, the latter is preferable since the QFT cost is not that signiĄcant for small =. Of the

three studied implementations, the most efficient in the number of gate operations for large

and for small = is the circuit presented by Rines and Chuang [RC18]. Its only drawback is

the comparatively large number of required qubits. In future work, the implementations

provided in this work can be used on real quantum systems to further examine ShorŠs

algorithm, its applicability to the DLP and further examine the impact of gate errors on the

measurement results.

Bibliography

[Be03] Beauregard, S.: Circuit for ShorŠs algorithm using 2n+3 qubits. Quantum Inf. Comput.,
3(2):175Ű185, May 2003.

[Dr00] Draper, T. G.: Addition on a Quantum Computer. arXiv preprint quant-ph/0008033, August
2000.

[GE21] Gidney, C.; Ekerå, M.: How to factor 2048 bit RSA integers in 8 hours using 20 million noisy
qubits. Quantum, 5:433, April 2021.

[HRS17] Häner, T.; Roetteler, M.; Svore, K. M.: Factoring using 2n+2 qubits with Toffoli based
modular multiplication. Quantum Inf. Comput., 17(7 & 8), June 2017.

[Ka17] Kaliski Jr., B. S.: A Quantum ŞMagic BoxŤ for the Discrete Logarithm Problem. Cryptology
ePrint Archive, Report 2017/745, 2017. https://ia.cr/2017/745.

6 https://quantum-computing.ibm.com/services?services=systems&system=ibmq_santiago

1142

https://ia.cr/2017/745
https://quantum-computing.ibm.com/services?services=systems&system=ibmq_santiago

[Ma21] Mandl, A.: Quantum Algorithms for the Discrete Logarithm Problem. MasterŠs thesis, TU
Wien, 2021.

[ME98] Mosca, M.; Ekert, A.: The Hidden Subgroup Problem and Eigenvalue Estimation on a
Quantum Computer. In: QCQCŠ98, Selected Papers. volume 1509 of LNCS. Springer, pp.
174Ű188, 1998.

[Mo85] Montgomery, P. L.: Modular multiplication without trial division. Mathematics of Computa-
tion, 44:519Ű521, 1985.

[PZ03] Proos, J.; Zalka, C.: ShorŠs discrete logarithm quantum algorithm for elliptic curves. Quantum
Inf. Comput., 3(4):317Ű344, January 2003.

[RC18] Rines, R.; Chuang, I.: High Performance Quantum Modular Multipliers. arXiv preprint
arXiv:1801.01081, January 2018.

[Sh97] Shor, P. W.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer. SIAM J. Comp., 26(5), October 1997.

[TTK10] Takahashi, Y.; Tani, S.; Kunihiro, N.: Quantum Addition Circuits and Unbounded Fan-Out.
Quantum Inf. Comput., 10(9):872Ű890, September 2010.

[Za98] Zalka, C.: Fast versions of ShorŠs quantum factoring algorithm. arXiv preprint quant-
ph/9806084, 1998.

1143

