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Abstract: Buffer memory allocation is one of the most important, but also one of the
most difficult tasks of database system administration. Typically, database manage-
ment systems use several buffers simultaneously for various reasons, e.g., disk speed,
page size, access behavior. As a result, available main memory is partitioned among
all buffers within the system to suit the expected workload, which is a highly complex
optimization problem. Even worse, a carefully adjusted configuration can become
inefficient very quickly on workload shifts. Self-tuning techniques automatically ad-
dress this allocation problem using periodic adjustments of buffer sizes. The tuning
itself is usually achieved by changing memory (re-)allocations based on hit/miss ratios,
thereby aiming at minimization of I/O costs. All techniques proposed so far observe
or simulate the buffer behavior to make forecasts whether or not increased buffer sizes
are beneficial. However, database buffers do not scale uniformly (i.e., in a linear fash-
ion) and simple extrapolations of the current performance figures can easily lead to
wrong assumptions. In this work, we explore the use of lightweight extensions for
known buffer algorithms to improve the forecast quality by identifying the effects of
varying buffer sizes using simulation. Furthermore, a simple cost model is presented
to optimize dynamic memory assignments based on these forecast results.

1 Introduction

Dynamic database management gained a lot of attention and visibility during recent years

and led to various self-tuning approaches. As I/O reduction is one of the most important

aspects, automatized buffer memory management has always been one of the building

blocks for (self-)tuning of database systems. Data placement decisions but also variations

in access patterns, page sizes, access speed, read/write characteristics, or prices of storage

devices suggest the support of multiple buffers to optimally exploit existing I/O band-

width. Memory partitioning, however, frequently entails memory waste, because some

buffers may be underused while others are overused. Here, only continuous monitoring of

system performance may assure adequate usage of the total memory budget and regular

adjustment of buffer allocations at runtime, thereby enabling minimization of waste.

The decision when and which buffers have to be resized requires a cost-based model to-

gether with buffer techniques (i.e., page mapping, propagation algorithm) that are self-

tunable at runtime. The quality of a decision depends on the cost model itself and the
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accuracy of forecasts. However, database buffers typically scale non-uniformly (i.e., in

a non-linear fashion) and simple extrapolations of current performance figures can easily

lead to wrong assumptions. In the worst case, the redistribution of buffer memory results

in unintended buffer sweeps followed by excessive I/O thrashing, which again increases

the time to pour oil on troubled waters. In our opinion, self-tuning components should

therefore follow a strict “Don’t be evil” policy.

Most tuning approaches aim at maximum speedup, i.e., they focus on the identification of

the greatest profiteer when more buffer memory can be assigned. Accordingly, they usu-

ally shift memory from buffers having low I/O traffic and/or low potential for performance

gains to more promising ones. We believe that a sole focus on buffer growth is dangerous,

because the risk of wrong decisions comes mainly from the inaccuracy of forecasts con-

cerning smaller buffers. Once a buffer is shrunk too much, it may cause a lot of I/O and,

in this way, also affect the throughput of all remaining buffers. Thus, reliable estimations

for buffer downsizing are obviously as important as estimations for buffer upsizing. Good

forecast quality is further urgently needed in dynamic environments which have to cope

with many or intense workload shifts. Here, too cautious, i.e., too tiny adjustments, even

when they are incrementally done, are not good enough to keep the system in a well per-

forming state. Reliable forecasts help to justify more drastic reconfigurations which may

be necessary to keep up with workload shifts.

1.1 Forecast of Buffer Behavior

Proposed forecast models for the performance of a resized buffer can be divided into two

groups: The first group uses heuristics-based or statistical indicators to forecast buffer

hit ratios, whereas the second group is based on simulation. Using heuristics-based ap-

proaches, the forecast quality is hard to determine. As a consequence, their use comes

with the risk of wrong tuning decisions which may heavily impact system performance.

Simulation-based approaches allow trustworthy estimations, but usually only limited to the

simulated buffer size. Outside already known or simulated ranges, hit ratios may change

abruptly. For this reason, we need forecasts for growing and shrinking buffers.

The performance of a buffer does not scale linearly with its pool size, because mixed

workloads containing scans and random I/O can cause abrupt jumps in the hit-ratio trend

line as ilustrated in Figure 1. These jumps may also lead to differing speed-ups for varying

buffer sizes, which again may cause wrong assumptions and decisions.

Performance prediction is always based on information gathered by monitoring, taking

samples or (user) hints into account. Hit/miss ratios are the standard quality metrics for

buffers, because they are cheap and express the actual goal of buffer use: I/O reduction.

Unfortunately, they are useless for performance forecasts, i.e., they even do not allow to

make simple extrapolations for growing or shrinking buffer sizes. To illustrate this fact, let

us assume the following scenario for a given buffer size of 5 and LRU-based replacement.

At the end of a monitoring period, we observed 5 hits and 10 misses. At least two different

access patterns may have led to these statistics:
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Figure 1: Buffer speed-up trend for different access patterns.

Scenario 1: 1, 2, 3, 4, 5, 1, 1, 1, 1, 1, 6, 7, 8, 9, 10, ...

Scenario 2: 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, ...

In the first scenario, 5 hits are attributed to repeated accesses of page 1, whereas, in the

second scenario, the hits are attributed to 5 different pages (1, 2, 3, 4, 5). For the same

scenarios and a buffer of size 2, we get completely different hit (h) and miss (m) statistics:

Scenario 1: m, m,m, m, m,m, h, h, h, h,m, m, m,m, m, ...

Scenario 2: m, m,m, m, m,m, m, m,m, m, m,m, m, m,m, ...

Obviously scenario 1 obtains a better hit rate with 4 hits to 11 misses than scenario 2

without any hit. If we increase the buffer instead to hold 6 pages in total, the picture turns

again:

Scenario 1: m, m,m, m, m, h, h, h, h, h,m, m, m,m, m, ...

Scenario 2: m, m,m, m, m, h, h, h, h, h, h, h, h, h, h, ...

Now we observe 5 hits to 10 misses for scenario 1 and 10 hits to 5 misses for scenario 2.

This example shows that hit/miss numbers or page/benefit metrics do not allow for cor-

rect extrapolations, because the order of page requests and the hit frequency distribution

are important. Thus, self-tuning relies on monitoring and sampling of data where current

buffer use is taken as an indicator for the future. Information relevant for resizing fore-

casts such as re-use frequencies, working set size, or noise generated by scans cannot be

expressed in single numbers.

Instead, the ideal starting point for buffer forecasts is the replacement algorithm used for

a buffer. Its statistics incorporate a lot more information about these relevant aspects than
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any other performance marker. Today, substantial research has already been performed

to develop adaptive replacement algorithms, hence, it is safe to assume that such algo-

rithms are “optimally” operating for the available memory. The question is now how to

leverage this implicit knowledge for performance forecasts. As we will demonstrate in

the remainder of this paper, it is difficult but not impossible to get accurate estimates for

buffer downsizing. In combination with already known simulation methods for the esti-

mation of buffer upsizing, we can then build a lightweight framework for dynamic buffer

management.

1.2 Related Work

Optimal buffer management has been a key aspect in database system research since the

very early days. Thus, various aspects such as the underlying disk model, search strategies

within a buffer, replacement algorithms, concurrency issues and the implications of the

page layout have been intensely studied [EH84]. Nevertheless, the complexity of buffer

management did not allow to distill an optimal configuration for all different kinds of

workloads and system environments. Instead, self-tuning mechanisms were explored to

resolve performance bottlenecks at runtime.

One early self-tuning approach hints at specific access patterns like scans or index traver-

sals to the buffer to optimize victim selection [JCL90]. This allows to outperform standard

LRU-based algorithms but addresses only a single aspect of dynamic buffer management.

In [NFS95], the authors give a theoretical base for the combined analysis of buffer sizing

decisions and the influence of access patterns. [Dia05] models buffer load balancing as

a constrained optimization problem and investigates the application of control theory and

optimization theory.

In [SGAL+06], control theory, runtime simulation, and cost-benefit analysis are integrated

into a self-tuning framework. The presented forecast technique SBPX serves also as our

baseline and is introduced in detail in Section 2. Some heuristic forecast techniques are

presented in [BCL93, MLZ+00]. The analytical work in [THTT08] derives an equation

to relate miss probability to buffer allocation. Finally, [DTB09] proposes a brute-force

step-by-step approach to determine the optimal configuration for an entire DBMS.

1.3 Contribution

In this work, we study two major prerequisites for self-tuning buffer memory allocation:

cost determination and decision making. As the main objective of buffer tuning is I/O

reduction and main memory management, decisions based on I/O costs are required to

efficiently distribute available memory among all buffer pools. In particular, we look at

overhead and quality for buffer undersizing and oversizing forecasts to estimate I/O costs

for alternative configurations.
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We present ideas to integrate low-overhead forecast capabilities for several common buffer

algorithms and assess their feasibility in experiments. Furthermore, we show how these

forecasts can be used for nearly riskless self-tuning decisions. Eventually, a short evalua-

tion is revealing prospects of simulation-based buffer tuning as well as its limitations.

The remainder of this paper is organized as follows: Sections 2 and 3 discuss forecast

techniques for buffer upsizing and downsizing, respectively. In Section 4, we present a

decision model for a self-tuning component. The results of our experiments are shown in

Section 5. Finally, Section 6 concludes the paper.

2 Forecast of Buffer Upsizing

The obvious way of accounting I/O costs for alternative buffer sizes is to fully simulate

each of them for the same page reference string, i.e., page request sequence. Of course, a

simulation of the propagation behavior for page numbers is sufficient; the actual payload

data need not be kept in memory. Nevertheless, this approach requires additional data

structures, such as hash maps for lookup, lists for the replacement algorithm, and virtual

pages. Moreover, each buffer request has to be processed multiple times, i.e., page lookup

and replacement maintenance for each simulated configuration. Obviously, the overhead

of such a solution is prohibitive. In contrast, cheaper solutions may be less accurate, but

still achieve meaningful results for resizing decisions.

Our buffer self-tuning refinements are inspired by the SBPX framework [SGAL+06],

which approximates the benefit of a larger buffer through “buffer extension”. This ex-

tension is simply an overflow buffer for the page identifiers of the most recently evicted

pages. The overflow buffer must, of course, have its own strategy for victimization. The

authors of SBPX recommend here a strategy ”similar to that of the actual buffer pool”

[SGAL+06].

When a page miss in the actual buffer occurs, the extension checks if the page identifier

is found in the overflow buffer, i.e., if the page would have been present in a larger buffer.

In that case, we can account a “savings” potential for upsizing. Further, we must now

maintain the overflow buffer. The page identifier of the actual evicted page is promoted

to the overflow buffer, which in general requires to evict another page identifier from the

overflow buffer. This replacement is not exactly the same as a real miss in the simulated

larger buffer. The identifier of the requested page causing the miss could have been present

in the larger buffer. In the course of continuous requests, however, also a larger buffer must

evict pages. Thus, a replacement in the overflow buffer can be regarded as a “delayed”

replacement effect. In the case of a page hit in the actual buffer, no further bookkeeping is

required, because the locality principle suggests that the replacement strategy in a larger

buffer holds a superset of the pages present in a smaller one. Listing 1 shows a sketch of

the modified page fix routine.

The problem of this approach is that replacement decisions for two separate buffers in

combination are not necessarily the same as for a single large buffer. Thus, the forecast

quality of upsizing simulations depends on one aspect: When a page is evicted from the
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actual buffer and promoted to the overflow area, we must be able to transfer “state” in-

formation (e.g., hit counters, chain position, etc.) from the actual replacement strategy

into the overflow strategy (lines 17 and 20). Otherwise, the overflow strategy behaves

differently.

Listing 1: Modified page fix algorithm for upsize simulation

1Frame fix(long pageNo) {

2 Frame f = mapping.lookup(pageNo);

3 if (f != null) {

4 strategy.refer(f); // update replacement strategy

5 ... // and statistics

6 } else {

7 Frame of = overflowMapping.lookup(pageNo);

8 if (of != null) {

9 overflowMapping.remove(of.pageNo);

10 ... // update overflow hit statistics

11 } else {

12 of = overflowStrategy.victim();

13 overflowBuffer.remove(of.pageNo);

14 ... // update overflow miss statistics

15 }

16

17 Frame v = strategy.chooseVictim();

18 strategy.copyStateTo(overflowStrategy);

19

20 v.copyStateTo(of); // transfer page identifier to overflow

21 overflowMapping.put(of.pageNo, of);

22

23 mapping.remove(v.pageNo);

24 ... // replace page in frame v

25 strategy.referAsNew(v); // update replacement strategy

26 ... // and statistics

27 mapping.put(pageNo, v);

28 }

29}

3 Forecast of Buffer Downsizing

As shown above, knowledge about the performance gain through a larger buffer is use-

ful to determine the greatest profiteer of more memory among several buffers. However,

the question for the buffer(s), which may be safely shrunk without suffering from severe

penalties, remains unanswered. The authors of SBPX extrapolated downsizing costs as the

inverse of savings potential gained through upsizing [SGAL+06]. For buffer sizes close

to the unknown (!) borders of working set sizes, however, this bears the risk of wrong de-

cisions. Therefore, we developed a simple mechanism to find out if page hits would have

been also page hits in a smaller buffer. In combination, the SBPX technique allows us now

to determine which buffer profits the most from additional memory, while our approach

helps us to determine which buffer suffers least from downsizing.

The goal of buffer replacement algorithms is the optimized utilization of data access local-

ity, i.e., to keep the set of the currently hottest pages that fits into memory. Accordingly, a

small buffer is assumed to keep an “even hotter subset” of the pages that would be present

in the actual buffer. Based on this assumption, we denote a subset of the pages in a buffer
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of size n as hotsetk, if it would be kept in a smaller buffer of size k. The key idea of

our approach is to keep track of this hotset during normal processing. When a page is

found in the buffer and belongs to the hotset, it would have been a hit in the smaller buffer,

too. However, if a requested page is in the current buffer but not in the hotset, the smaller

buffer would need to evict another page, which must be, of course, part of the current hot-

set and load the requested page from disk. Here, we only have to maintain the hotset. The

page that would have been evicted from the smaller buffer is removed from the hotset and

the requested page is added to the hotset. Each swap is accounted as a page miss for the

simulated smaller buffer.

Of course, a page miss in the current buffer would also be a page miss in a smaller buffer.

Accordingly, we have to select a replacement victim for both the current buffer and the

(simulated) smaller buffer. The real victim page is now replaced with the new page and

swapped with the virtual victim of the smaller buffer into the hotset. The modified page

fix algorithm is shown in Listing 2.

Listing 2: Modified page fix algorithm for downsize simulation

1Frame fix(long pageNo) {

2 Frame f = mapping.lookup(pageNo);

3 if (f != null) {

4 if (!f.hotSet) {

5 Frame v = strategy.chooseHotSetVictim();

6 f.hotset = true; // swap frame to hotset

7 v.hotset = false;

8 strategy.swapHotset(f, v);

9 ... // update simulated statistics

10 }

11 strategy.refer(f); // update replacement strategy

12 ... // and statistics

13 } else {

14 Frame v = strategy.chooseVictim();

15 mapping.remove(v.pageNo);

16 ... // replace page in frame v

17 if (!v.hotset) {

18 Frame hv = strategy.chooseHotSetVictim();

19 hv.hotSet = false; // swap frame to hotset

20 v.hotSet = true;

21 strategy.swapHotset(f, v);

22 }

23 strategy.referAsNew(v); // update replacement strategy

24 ... // and statistics

25 mapping.put(pageNo, v);

26 }

27}

Note that a real replacement victim is generally not expected to be part of the current

hotset, because this would imply that the replacement strategy evicts a page more recently

accessed. In some algorithms, however, such counter-intuitive decisions might be desired,

e.g., to explicitly rule out buffer sweeps through large scans. Then, we must not maintain

the hotset at all.

Obviously, the overhead of this approach is very small. We only need a single bit per buffer

frame to flag the hotset membership and must determine a swap partner, when a new page

enters the hotset. Furthermore, the simulation does not influence the quality of the current

buffer, i.e., the strength of the replacement strategy is fully preserved. As said, the choice

of the hotset victim is dependent on the used replacement strategy to reflect the behavior of
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Figure 2: LRU-based buffer simulation with overflow extension

the strategy in a smaller buffer correctly. In the following, we will investigate hotset victim

determination for four popular families of replacement algorithms. In particular, we want

to know if it is possible to predict replacement decisions for a smaller buffer based on the

implicit knowledge present.

3.1 LRU

The LRU algorithm embodies a very simple, yet effective replacement strategy. It evicts

always the least recently used page from a buffer. Typically, it is implemented as a doubly-

linked list as shown in Figure 2.

On request, a page is simply put to the head of the chain. Thus, LRU finds its replacement

candidate always at the tail. Accordingly, the last k pages of the LRU chain in a larger

buffer of size n are identical with the k pages in the simulated smaller buffer of size k

and the hotset victim page is found at the k-th position from the head. The overhead of

pointer dereferencing to position k can be avoided with marker pointer, which is cheap

to maintain. Hence, the hotset victim is guaranteed to be identical to the victim as in the

smaller buffer and the simulation is fully precise. Evidently, the simplicity of LRU even

allows to easily simulate at the same time the effects when the current buffer would be

reduced to different smaller sizes, which is especially useful for precise step-wise tuning

decisions. It is sufficient to place a marker at each desired position.

3.2 LRU-K

The LRU-K algorithm [OOW99] follows a more general idea of LRU and takes the last K

references of a page into account. By doing so, it is “scan-resistant” and less vulnerable

to workloads where frequently re-used pages mix with those having hardly any rerefer-

ence. For each page, LRU-K maintains a history vector with the last K references and the

timestamp of its last reference. Furthermore, history vectors of already evicted pages are

retained for re-use if an evicted page is requested again within the so-called retained infor-

mation period (RIP ). The replacement victim is only searched among those pages that

have been buffered for at least a predefined correlated reference period (CIP ). The ratio-

nale behind this idea is to prevent a drop of pages immediately after their first reference.

For further details on CIP , history maintenance, etc., we refer to the original paper.
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The victim page is determined by the maximum backward K-distance, i.e., the page with

the earliest reference in the history vector. Thus, although implemented differently, LRU-

K behaves for K = 1 the same as LRU. The hotset victim is chosen accordingly as shown

in Listing 3. Note that implementations of LRU-K usually maintain a search tree for

that. For simplicity, we present here the modification of the unoptimized variant as in the

original paper.

Due to the history update algorithm described in [OOW99], more than one victim can-

didate can exist. This could become a problem for our simulation, because a real buffer

might choose a different victim than simulated. Therefore, we simply evict the candidate

with the least recent reference (line 12). As the timestamp of the last access is unique,

our simulation will be accurate here. Instead, the choice of RIP turns out to become a

problem. If the garbage collection for history entries is not aligned, pages that re-enter the

smaller buffer will be initialized differently than in simulation, which may affect future

replacement decisions.

Listing 3: LRU-K hotset victim selection

1Frame hotSetVictim() {

2 long min = t;

3 long minLast = Long.MAX_VALUE;

4 Frame v = null;

5 for (int i = 0; i < pages.length; i++) {

6 Frame p = pages[i];

7 History h = p.history;

8 if ((p.hotSet) && (t - last > CIP)) {

9 long last = h.last;

10 long dist = h.vector[k - 1];

11 if ((dist < min)

12 || ((dist == min) && (last < minLast))) {

13 victim = p;

14 min = hist.vector[k -1];

15 }

16 }

17 }

18 return v;

19}

3.3 GCLOCK

The third strategy is GCLOCK [NDD92], which stands for generalized clock algorithm.

Like LRU-K, it takes the reference history of a page into account. In contrast to LRU-K,

however, it is likely to degrade through scans but can be implemented with less computa-

tional and space overhead. The buffer itself is modeled as a circle of buffer frames, i.e.,

the clock. Each frame also maintains a simple reference counter, which is incremented for

each reference to that specific page. For victim selection, the “clock hand” circles over

all frames and decrements the reference counters. The clock hand stops at the first frame

where the reference counter drops below zero. So, frequently referenced pages remain

longer in the buffer, because they have higher reference counts.
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The determination of a hotset victim is straightforward: We simply have to circle over the

frames and look for the first hotset page whose reference counter would first drop below

zero. Obviously, this is the page with the minimum reference counter. The algorithm is

sketched in Listing 4.

Listing 4: GCLOCK hotset victim selection

1Frame chooseHotSetVictim()

2{

3 Frame v = null;

4 int h = clockHand;

5 for (int i = 0; i < size; i++) {

6 Page p = circle[(++h % size)];

7 if (p.hotSet) {

8 if (p.count == 0) {

9 return v;

10 } else if ((v == null) || (p.count < v.count)) {

11 v = p;

12 }

13 }

14 }

15 return v;

16}

Again, this only approximates the behavior of a smaller buffer with GCLOCK. There are

two reasons: First, the angular velocity of the clock hand in a smaller buffer is higher

because there are less frames. Second, the circular arrangement of buffer frames makes

the algorithm inherently dependent on the initial order. Thus, victim selection is not only

a matter of the page utilization, but also a matter of clock-hand position and neighborship

of frames. Using a second clock hand (i.e., pointer) walking solely over the hotset frames

is necessary to address differing round trips. However, swapping of frame positions when

the hotset is maintained would impact behavior of GCLOCK in the actual buffer – a cir-

cumstance, we want to avoid. To improve forecast quality, we implemented the smaller

circle, i.e., the hotset, with forward pointers for hotset pages that point to the logical next

one. In case of swapping (see lines 8 an 21 in Listing 2), only the forward pointer and a

hotset counter for that page need to be maintained. In Section 5, we will show that these

minor efforts can lead to almost perfect estimations.

3.4 2Q

The 2Q algorithm [JS94] is a simplified way of imitating LRU-2, which is noted for deliv-

ering good hit ratios but often poor performance due to its complex algorithm. In essence,

2Q is a combination of FIFO and LRU. On the first reference, 2Q places a page in a FIFO

queue (denoted a1). The first re-reference of a page in the a1 queue promotes it to the

LRU chain (denoted am). The effect of these two “stages” is that only hot pages are pro-

moted to the LRU chain, which tends to keep cold pages longer than necessary. These cold

pages, i.e., pages that are accessed only once within a longer time period are now dropped

earlier by the FIFO queue. An extended version of 2Q splits the FIFO queue to keep track

of rereferences to pages evicted from the FIFO queue [JS94]. The effect is similar to the

history caching of LRU-K and comes with queue sizing problems for forecasts, too.
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Sizing problems also arise for the FIFO queue and the LRU chain in the standard algo-

rithm. Therefore, we used a simplified variation of 2Q where all buffer frames are assigned

to the LRU chain and the FIFO queue only stores references to the pages in the LRU chain.

So, it serves like an index for the LRU chain to identify pages referenced only once so far.

Victims are primarily selected from the FIFO queue to replace those pages earlier. A sub-

tlety of 2Q is here that the FIFO queue must not be drained to give new pages a chance

for rereference and promotion to the LRU chain. The minimum fill degree of the FIFO

queue is a configurable threshold. For simulation, we must therefore count the number of

hotset entries in the queue, to be able to decide when a smaller buffer would pick a victim

from the FIFO queue and not from the LRU chain. Also, the threshold must be the same

for both sizes. Although this results in uniform retention times within the FIFO queue for

differing LRU chain sizes, it is acceptable to some degree, because the threshold models

the granted window for references of new pages. The hotset victim selection is sketched

in Listing 5.

Listing 5: 2Q hotset victim selection

1Frame chooseHotSetVictim()

2{

3 Frame v;

4 if ((a1.numberOfHotsetEntries() > threshold)) {

5 v = a1.head();

6 while (!v.hotSet) v = v.a1Next; // Follow FIFO queue to first hotset page

7 } else {

8 v = am.head();

9 while (!v.hotSet) v = v.amNext; // Follow LRU chain to first hotset page

10 }

11 return v;

4 Buffer Tuning

The crucial point in database tuning is the difficulty to precisely predict how a tuning de-

cision will affect system performance. Even experienced database administrators with a

deep knowledge of the workload and the database product itself regularly face this chal-

lenge. They rely on the assistance of sophisticated monitoring tools to prevent negative

effects of their tuning decisions on the production system. Often they also run several

observe-analyze-adjust cycles with reference workloads beforehand on dedicated test sys-

tems. Of course, this is time-consuming and expensive. Built-in self-monitoring and tun-

ing components can ease this dilemma and reduce the risk of wrong decisions through

rather small but continuous and incremental adjustments. In dynamic environments, how-

ever, those mechanisms may react too slow to keep up with the rate of workload shifts or

short-term resource allocation for higher-level tuning decisions like auto-indexing. There-

fore, we aim towards a re-formulation of the central question of automatic tuning from

“Which adjustment certainly will give the greatest performance benefit?” to “Which ad-

justment most likely will give a performance benefit but certainly not result in a perfor-

mance penalty?”. In other words, when we know that our reconfigurations will not harm,

we get the freedom to try quicker and more aggressive tuning options.
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In general, the total amount of buffer memory is limited and so the decision to assign more

memory to a certain buffer is directly coupled with the decision of taking this memory

from one or several others. Fortunately, the performance optimization heuristics for I/O-

saving buffers (e.g. data pages, sorting) is straightforward: The more main memory can

be used the better. Even an oversized buffer, i.e., a buffer larger than the actual data to be

buffered, is less likely to become a performance bottleneck due to bookkeeping overhead.

It is just a waste of main memory. The downsizing of a buffer, however, comes along with

severe risks: the buffer’s locality may drastically decrease and even turn into thrashing

causing excessive I/O, which also influences throughput of other buffers. Accordingly, we

concentrate on the forecast of the negative effects of memory reallocations and base our

tuning decisions not only, as common, on the estimated benefits, but also on vindicable

forecasts of additional costs.

4.1 Cost Model

Automatic tuning needs to derive costs from system state or from system behavior to

quantify the quality of the current configuration. Additionally, it also needs to estimate the

costs of alternative configurations to allow for comparison. Ideally, these costs comprise

all performance-relevant aspects including complex dependencies between system com-

ponents and future workload demands in a single number to allow for perfect decisions.

Clearly, such a perfect cost model does not exist in practice. Instead, costs are typically

derived from a mixture of cheaply accounted runtime indicators and heuristics-based or

experience-based weight factors. The hope is to reflect at least the correct relationship

between alternative setups w.r.t. to performance. The more precise this much weaker re-

quirement can be met, the easier we can identify hazardous tuning decisions before they

boomerang on the system.

In contrast to computational costs of a specific algorithm, costs expressing the quality of a

buffer are inherently dependent on the current workload. Buffering 5% of the underlying

data, for example, can be an optimal use of main memory at one moment, but become

completely useless a few moments later. Therefore, each cost value is a snapshot over a

window at a certain point in time with limited expressiveness for at most few periods ahead

in the future. We define the general goal function for our tuning component: At a given

point in time t with a configuration c, find a configuration c′ that has less accumulated I/O

costs over the next n periods. The optimal window size and the number of forecast periods

again depend on the actual workload; slowly changing workloads enable more precise cost

estimations for longer periods, while rapidly changing workloads also decrease accuracy

of future costs.

For simplicity, our cost model only considers buffer service time, i.e., the time needed

to handle a page fix request. Of course, costs assigned to a specific buffer are dominantly

determined by the number of I/Os performed. On a buffer miss (denoted m), a victim page

has to be selected for replacement and flushed, if necessary, before the requested page is

fetched from disk. Accordingly, a buffer miss causes at least one read operation, but may

also cause several writes for flushing write-ahead log and victim page. The ratio between
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reads and synchronous writes is reflected by a weight factor fdirty , which may vary over

time and from buffer to buffer.

Depending on the characteristics of the underlying devices or blocking times under con-

current access, I/O times can also vary between various buffers. Hence, the costs of all

buffers must be normalized to a common base to become comparable. We use here a

second weight factor wbuffer for each buffer. As the time needed for a single I/O opera-

tion is easy to measure, these factors can be derived and adjusted at runtime causing low

overhead. Finally, the cost of a buffer at the end of time period t is expressed as:

cbuffer(t) = wbuffer(t)· (1 + fdirty(t))·m(t)

Note, we assume that CPU costs can be safely ignored, either because they are indepen-

dent of whether an operation can be performed on buffered data or requires additional I/O,

or because additional CPU cycles for search routines in larger buffers are negligible com-

pared to an I/O operation. In the remainder of this paper, we also assume that read and

write operations have symmetric costs and a low variance. However, it should be evident

that the presented basic model can be easily extended to take asymmetric read/write costs

(e.g. for solid state drives), different costs for random and sequential I/O, and also the

apportionment of preparatory, asynchronous flushes of dirty pages into account.

4.2 Decision Model

Our buffer balancing is based on the cost model of Section 4.1. In certain intervals, the

buffer configuration is analyzed and optimized if main memory reallocations are promising

reduced I/O costs for the entire system.

After each monitoring period, the buffer pools are ranked by their cost estimations as

follows. The higher a buffer pool is ranked in the save list, the more costs can be saved (i.e.,

this equals to providing a higher benefit) by referring to the simulated buffer oversize. On

the other hand, buffer pools are also ranked by their cost estimations for undersize figures,

whereas the minimum cost increase is ranked top in the rise list. Using a greedy algorithm,

buffer pool pairs are picked from the top of both lists as long as the cost reduction on the

save list is higher than the increase on the rise list. Note, a buffer may occur in both

lists, which typically indicates a “jump” and is thereby easily recognized. Finally, resize

mechanisms are employed to perform the memory “shifts”. The selected buffer from the

save list is increased to allow more frames and references to be cached. A buffer chosen

from the rise list, however, is shrunken, which may also include to flush victims to achieve

a smaller buffer size. Note, an optimal solution is always achievable, but certainly requires

more efforts. Therefore, we use greedy optimization because it is fast, cheap, and fairly

good.

Oversize and undersize simulations for several buffer pools do not necessarily have the

same size in bytes, which complicates memory shifts. However, fine-grained assignments

may be required, which are also possible by extrapolating the buffer scaling figures be-

tween its real size and the simulated sizes.
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To avoid thrashing, buffers chosen for resizing are removed from both ranking lists. The

simulated undersize and oversize areas have to be adjusted as well, which is similar to the

“regular” buffer resize. For instance, the number of hotset pages is reduced by selecting

victims out of this subset and by switching their flags. Obviously, oversize areas can be

kept or resized as desired.

Although resize decisions are sometimes heavy-weight operations (e.g., flushing pages),

they only occur at the end of each monitoring period and are only performed as long as

expected benefits justify them.

Period Refinements for Simulated Buffer Sizes

Accounting hit/miss numbers for multiple simulated and real buffer sizes over a certain

period of time induces estimations errors. For instance, a smaller buffer causing more

misses requires more time to process the same amount of buffer requests as the real one.

On the other hand, a larger buffer having an improved hit ratio may require less time

to process the requests, which are considered during this simulation and tuning period.

Therefore, simulation-based cost accounting has to reuse the cost model’s I/O weights

for read and write operations to adjust the (simulation) periods. That means, undersize

simulation has to limit I/O accounting as soon as the I/O budget that is physically possible

is consumed and vice-versa for SBPX extensions.

Switchable Propagation Algorithms

Adjusting memory assignments for buffer pools is also limited to the scalability prospects

of a specific buffer algorithm. However, different buffer algorithms may perform differ-

ently and exchange of an algorithm would be an alternative tuning option without actually

shifting memory. But different algorithms tend to use manifold figures such as access

counters, timestamps, or history queues. The major problem is to carry over the current

information when switching to a new algorithm. A poor alternative is to reset the entire

propagation strategy. However, a practical way is to initialize the new algorithm by evict-

ing all the “old” pages into the new algorithm and continue to use the new algorithm. The

decision to switch the algorithm can only be based on a full simulation of an alternative

propagation algorithm relying on a similar cost model as presented in Section 4.1.

5 Evaluation

Here, we want to evaluate the accuracy of our extensions as well as the decision quality

for buffer balancing. But first, we have to describe our benchmark scenarios and their

workloads.

As already stated in the introduction, buffers do not scale uniformly; thus, we generated

reference strings for various (common) scenarios including random and sequential access

of varying sizes.
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(b) scan-dominated I/O
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(c) multiple scans
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(d) real workload

Figure 3: Buffer scalability for various workloads and replacement algorithms

5.1 Workload

In Figure 3(a)-3(d), we analyze the critical buffer size ranges for various access patterns

whose characteristics are summarized in Table 1. Note, the total number of DB pages

is equal to the first column’s object size figure of each scenario in this table. The only

uniformly scaling buffer is measured for workloads dominated by random I/O (see Fig-

ure 3(a)), where the overall hit ratio is – as expected – quite low. In this case, re-sizing

extrapolations will work properly, but such an access behavior is unusual in databases.

Dominating scans mixed with random access are modeled and measured in Figure 3(b).

Although scan resistance is addressed by replacement algorithms, scan effects easily pro-

voke “jumps” in the buffer performance. In such cases, the buffer hit rate dramatically

increases as soon as often occurring scans entirely fit into the buffer. Such “jumps” re-

main undetected if monitoring happens only at one side of the “jump”. The third workload

shown in Figure 3(c) is a mixture of multiple scans and random accesses in a single buffer.

This scenario may represent a more typical buffer usage pattern which exhibits a realistic

buffer scaling. In Figure 3(c), several areas can be identified having different slopes, where

each area boundary may cause uncertainty for extrapolations. In the last sample workload

shown in Figure 3(d), a mixture of high-locality scans and some share of random accesses

is analyzed. This typical workload scenario causes several (small) “jumps” resulting in a
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Table 1: Workload characteristics
workload Figure 3(a) (random) Figure 3(b) (scan) Figure 3(c) (jumps)

request share in % 50 50 25 75 10 65 25
P

object size (pages) 150k 22k 150k 7k 150k 7k 13k

access type rnd rnd rnd seq rnd seq seq

workload Figure 3(d) (real)

request share in % 10 10 10 20 10 20 10 10
P

object size (pages) 250k 5k 10k 10k 500 500 1k 2k

access type rnd rnd seq seq seq seq seq seq
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Figure 4: Estimation accuracy for workload random (buffer calls ×100.000 on x-axis)

stair-case pattern. In this case, fine-grained extrapolations necessary for buffer tuning may

quickly fail, although the slope in the average is quite similar.

We want to show in the subsequent sections that our algorithms are capable of identifying

and handling all of these (more or less) typical workload scenarios.

5.2 Accuracy

The quality of buffer balancing is based on the estimation quality of our extended buffer

algorithms. Therefore, we need to evaluate the estimation accuracy for the differing work-

loads. For the following experiments, the gray-shaded areas in Figures 3(a)–3(d) specify

the simulated ranges centered around the actual buffer sizes indicated by the black lines.

For simplicity, we always use a fixed range of ±2 % of the total DB size. For each work-

load, we measure the undersize and oversize estimation accuracy. Each of the Figures 4–7

contains the results of five algorithms using the same workload and up to 1.2 Mio buffer

calls. The lines marked with an asterisk (*) illustrate the simulation-based hit ratios and,

to enable comparison, the others show those of real buffers having the same sizes.

The first graphs are always showing the standard LRU behavior, which is always delivering

perfect estimation accuracy; however, its hit ratio performance is not the best. But its

lightweight simulation is definitely a plus. In contrast, the LRU-K results (second graphs)

constantly indicate top hit ratios but show weaknesses in forecast quality. Especially, the

downsize simulation of the scan workload fails with a dramatic overestimation.
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Figure 5: Estimation accuracy for workload scan (buffer calls ×100.000 on x-axis)

 40

 50

 60

 70

 80

 90

 0  2  4  6  8  10

hi
t r

at
io

 in
 %

LRU

real *
hotset *

overflow *
hotset 

real 
overflow 

 0  2  4  6  8  10

LRU-K

 0  2  4  6  8  10

GCLOCK simple

 0  2  4  6  8  10

GCLOCK improved

 0  2  4  6  8  10

2Q

Figure 6: Estimation accuracy for workload jumps (buffer calls ×100.000 on x-axis)

The results for GCLOCK in Figure 5 and 7 (third graphs) reveal its sensitivity to page

order and clock-hand position for hotset simulations. By adding a second clock hand and

forward pointers to simulate a separate clock for the hotset pages, we achieve considerably

better accuracy (fourth graph), but its performance is always behind all other strategies.

On the right-hand side, we measure the forecast quality provided by the simplified 2Q

algorithm. In all scenarios, it delivers top results while only requiring low maintenance

overhead. However, forecast quality is disappointing in some scenarios. Similar to LRU-

K, it fails for workload scan, but in the opposite direction with underestimation. Further,

we observe a suddenly degrading forecast quality for the workloads jumps and real. Even

worse, oversize estimations as well as undersize estimations are affected. Even the use of

a separate policy for the oversize buffer does not lead to better results.

The experiments reveal that our simulations based on the locality principle lead to trust-

worthy estimations in many cases. On one side, simple algorithms like LRU and GCLOCK

fit well into our framework. On the other side, more advanced algorithms such as LRU-K

and 2Q also allow lightweight estimations, but suffer from unpredictable estimation er-

rors in some scenarios. The reasons are built-in mechanisms to achieve scan-resistancy,

which are hard to model in simulations. Further, these algorithms do not allow logical

composition of individual buffers.
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Figure 7: Estimation accuracy for workload real (buffer calls ×100.000 on x-axis)
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Figure 8: Buffer balancing random vs. scan
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Figure 9: Buffer balancing jump vs. real

5.3 Buffer Balance

In Figure 8, the self-tuning mechanism presented in Section 4.2 automatically tunes two

buffers, where buffer 0 was fed with random workload from Figure 3(a) and buffer 1 with

scans shown in Figure 3(b). Buffer sizes (i.e., simulation and real) are chosen as described

in Section 5.2. Due to space limitation, we present the results only for the improved

GCLOCK and a fixed memory shift granularity of 2 % of the DB size. After the buffers

were warmed up (i.e., after 1.2 Mio buffer calls), the cost model triggers all memory shifts.

The random workload buffer was shrunken according to its hotset simulation, whereas

buffer 1 was increased. Although the hit ratio of buffer 0 slightly descends, the overall I/O

performance improves, because the hit ratio of buffer 1 increases considerably.

Because the self-tuning decisions are based on a cost model, they are applicable for ar-

bitrary scenarios. In our second example, we again use two buffers, one that is fed from

the jumps workload generator and the other from the real workload generator as shown in

Figure 3(c) and Figure 3(d). In this setting, SBPX fails because its does not recognize that

the size of buffer 0 is close to a “jump” boundary. However, as indicated by Figure 9, our

downsizing simulation detects the pitfall and prevents buffer performance penalties.
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Figure 10: Balancing of four buffers under different workloads

Resizing two buffers is obviously simple. Therefore, we combine both experiments in a

single setup shown in Figure 10. The cut-out shows two memory shifts leading to minor

descends of the hit ratio on the one side but clear improvements on the other side resulting

in a steadily improved buffer performance.

In summary, we could experimentally prove that buffer balancing can be achieved at low

cost, but it heavily depends on accurate and lightweight forecasts for both directions –

upsize and downsize.

6 Conclusions

Even after decades of research on buffer management and optimization, the problem of a

reliable, dynamic adaptation of buffer memory allocation is not fully solved. In this work,

we studied opportunities to forecast buffer resizing effects to support harm-free self-tuning

decisions. As downsizing a buffer is accompanied with severe risks of thrashing, we ar-

gued that reliable prediction of downsizing effects is a key point for self-tuning decisions.

Furthermore, we argued that additional overhead for these forecasts must not add notice-

able overhead to normal processing. Therefore, we focused on lightweight techniques

to exploit knowledge from the buffer replacement strategies for forecasts and presented

possible solutions for four families of replacement algorithms.

In our experiments, we could show that forecast quality is heavily dependent on the actual

strategy. It seems that sophisticated strategies like LRU-K and 2Q make it hard or even

impossible to get reliable forecasts for either upsizing, downsizing, or both. We found

that there are two reasons for this: First, such algorithms use history-recording techniques,

which are very costly to emulate for varying sizes. Second, they are extremely sensible

to configuration parameters, which cannot be easily negotiated between differing buffer

sizes. However, simpler, yet widely-used strategies like LRU and GCLOCK turned out

to allow for cheap and highly accurate or even perfect forecasts. In conjunction with a
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simple cost model and a greedy algorithm, we demonstrated the use of forecasts to improve

buffer hit ratios without the risk of severe performance penalties. Following the idea of

differing “stages” in 2Q to improve buffer behavior, our findings suggest to think about

further partitioning of buffers with complex replacement strategies into several distinct

buffers with simpler but more predictable strategies. This way, forecasts would generally

become reliable and fragmentations issues were automatically resolved by the self-tuning

capabilities.
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