
cba

Herausgeber et al. (Hrsg.): Software Engineering 2024,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2024 1

Ranged Program Analysis: A Parallel Divide-and-Conquer
Approach for Software Verification

Jan Haltermann1, Marie-Christine Jakobs2, Cedric Richter3, Heike Wehrheim4

Abstract: Scaling software verification is a challenging problem, as finding a suitable method to
distribute the work among multiple verifiers is no trivial question. We propose ranged program
analysis, a divide-and-conquer approach for software verification, which uses ranges to divide the task
of program verification. Thereby, each range can be analyzed by a different verification tool, allowing
us to analyze program ranges in parallel and to combine the strengths of different verifiers to solve
a task. Our evaluation shows that the effectiveness of path-based analyses like symbolic execution
can be increased and that a combination of different analyses can solve tasks none of them can solve
standalone.

Keywords: Software Verification; Ranged ProgramAnalysis; Parallel Configurable ProgramAnalysis;
Program Instrumentation

There has been enormous progress in automatic software verification in recent years and
today various verification tools exist. Still, none of them is superior to all others. Hence
cooperatively combining them is one way to enhance the verification performance. In case
the verification task should be divided among multiple analyses, a strategy to split the
program is needed. We present ranged program analysis, a technique for parallelizing
software verification, that generalizes the idea of ranged symbolic execution [SK12].

The key idea of ranged program analysis is to divide a program into multiple, disjoint
program parts (so-called program ranges), which can be analyzed in parallel. Using an
ordering on program paths, a range can be represented as interval [𝜋1, 𝜋2] for two paths 𝜋1
and 𝜋2. Using the smallest path 𝜋⊥ and the largest path 𝜋⊤ , a program can be divided into
numerous ranges, such that each program path is included in at least one range. The concept
of ranged program analysis, as illustrated in Figure 1, is based on this idea: The verification
task is given to a Splitter, which generates the required number of program ranges. Four
splitters are designed and evaluated in [Ha23a], based on either limiting the number of loop
unrollings per range or using randomly generated paths. Each generated range is given to a
Ranged Analysis, which computes a partial result for the given range. The Joiner collects
all partial results computed and combines them into a final result for the full task.
1 Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany jan.haltermann@uol.de
2 LMU Munich, Munich, Germany m.jakobs@lmu.de
3 Carl von Ossietzky Universität Oldenburg, Oldenburg, Germanycedric.richter@uol.de
4 Carl von Ossietzky Universität Oldenburg, Oldenburg, Germanyheike.wehrheim@uol.de

cba doi:10.18420/sw2024_52

R. Rabiser, M. Wimmer, I. Groher, A. Wortmann, B. Wiesmayr (Hrsg.): SE 2024,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2024 157

mailto:jan.haltermann@uol.de
mailto:m.jakobs@lmu.de
mailto:cedric.richter@uol.de
mailto:heike.wehrheim@uol.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sw2024_52


2 Jan Haltermann, Marie-Christine Jakobs, Cedric Richter, Heike Wehrheim

Splitter

Ranged
Analysis 1

Ranged
Analysis 2

Joiner

Task Result

Ranged Program Analysis

Range
[𝜋𝜏 , 𝜋⊤ ]

Range
[𝜋⊥ , 𝜋𝜏 ]

Partial Result

Partial Result

Fig. 1: Conceptual overview of ranged program analysis for two ranged analyses

In [Ha23a], we realize ranged analysis for off-the-shelf analyses that are defined within the
configurable program analysis (CPA) framework. We formally define a range reduction
analysis, that is executed in parallel with the CPA-based program analysis and ensures
that only paths within the range are explored and thus analyzed. To generalize ranged
program analysis for arbitrary off-the-shelf analyses, we develop a method based on
program instrumentation in [Ha23b]. By default, program analyses cannot process a range
as additional input. As we aim for black-box cooperation of analyses, the range must be
encoded directly into the program given as input to the analysis. By adding additional
statements to the program, we obtain a so-called range program, restricting the paths that
need to be analyzed to those contained in the range.

We implement splitter, joiner and program instrumentation as standalone components and
realize ranged program analysis by making use of CoVeriTeam. Our evaluation shows that
ranged program analysis can enhance the overall effectiveness of path-based analyses like
symbolic execution. Moreover, it enables each of the evaluated analysis combinations to
solve tasks that the individual analyzer cannot solve without ranged program analysis. We
show that restricting a CPA-based analysis either using range reduction or using program
instrumentation leads to a comparable performance. Finally, ranged program analysis can
be utilized to increase the efficiency with respect to violation detection in complex tasks.

Data Availability: Our implementation of ranged program analysis is open source and
available online. Our artifacts (each evaluated as available and reusable) containing the
implementation and all experimental data are archived at Zenodo (https://doi.org/10.5281/
zenodo.8398989 for [Ha23a] and https://doi.org/10.5281/zenodo.8096028 for [Ha23b]).

Bibliography
[Ha23a] Haltermann, Jan; Jakobs, Marie-Christine; Richter, Cedric; Wehrheim, Heike: Parallel

Program Analysis via Range Splitting. In: Proc. FASE. volume 13991 of LNCS. Springer,
pp. 195–219, 2023.

[Ha23b] Haltermann, Jan; Jakobs, Marie-Christine; Richter, Cedric; Wehrheim, Heike: Ranged
Program Analysis via Instrumentation. In: Proc. SEFM. volume 14323 of LNCS. Springer,
pp. 145–164, 2023.

[SK12] Siddiqui, Junaid Haroon; Khurshid, Sarfraz: Scaling symbolic execution using ranged
analysis. In: Proc. OOPSLA. ACM, pp. 523–536, 2012.

158 Jan Haltermann et al.

https://doi.org/10.5281/zenodo.8398989
https://doi.org/10.5281/zenodo.8398989
https://doi.org/10.5281/zenodo.8096028

