
cbe

Einreichung fuer: BTW 2019,
Geplant als Veröffentlichung innerhalb der Lecture Notes in Informatics (LNI)

From Natural Language Questions to SPARQL Queries:
A Pattern-based Approach

Nadine Steinmetz1, Ann-Katrin Arning1, Kai-Uwe Sattler1

Abstract: Linked Data knowledge bases are valuable sources of knowledge which give insights,
reveal facts about various relationships and provide a large amount of metadata in well-structured form.
Although the format of semantic information – namely as RDF(S) – is kept simple by representing
each fact as a triple of subject, property and object, the access to the knowledge is only available using
SPARQL queries on the data. Therefore, Question Answering (QA) systems provide a user-friendly
way to access any type of knowledge base and especially for Linked Data sources to get insight into
the semantic information. As RDF(S) knowledge bases are usually structured in the same way and
provide per se semantic metadata about the contained information, we provide a novel approach that
is independent from the underlying knowledge base. Thus, the main contribution of our proposed
approach constitutes the simple replaceability of the underlying knowledge base. The algorithm is
based on general question and query patterns and only accesses the knowledge base for the actual
query generation and execution. This paper presents the proposed approach and an evaluation in
comparison to state-of-the-art Linked Data approaches for challenges of QA systems.

1 Introduction

Question answering (QA) is a research discipline at the intersection of natural language
processing (NLP), information retrieval, and database processing aiming at answering
questions formulated in natural language. Though, QA is a rather old research problem
with early system solutions dating back to the sixties, the field has gotten great attention
and research made a significant progress over the last few years. This can be exemplified
by IBM’s DeepQA system Watson which won the quiz show Jeopardy! in 2011. Another
well-known example are the personal assistants based on voice recognition such as Apple
Siri, Amazon Alexa or Microsoft Cortana which are able not only to execute spoken
commands (e.g. “Put x on my shopping list”) but also to answer (simple) questions in
natural language. However, leveraging large knowledge bases to answer complex questions,
supporting question types beyond factoid questions, and dealing with ambiguities are still
challenging problems.

QA works usually in a sequence of the following steps: (1) question parsing and focus
detection, (2) question classification, (3) query generation, (4) answer candidate generation
(query execution), and (5) result ranking. In our work we focus on the steps (3) to (5) where
1 TU Ilmenau, Databases & Information Systems Group, Ilmenau, Germany, first.last@tu-ilmenau.de

cba doi:10.18420/btw2019-18

T. Grust et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 289

2 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

we consider structured databases / knowledge bases as sources for answers. Our goal is
to provide a generic approach not hardcoded for a specific schema or database. For this
purpose, we leverage a RDF database such as DBpedia and generate SPARQL queries. A
RDF database allows a schema-agnostic approach where the schema has not to be known
for query generation because all facts are represented by triples. In addition, it allows
to exploit more advanced semantic concepts such as semantic equivalence, similarity or
inference mechanisms. Finally, large collections of Linked Data based on a core set such
as DBpedia or Wikidata represent a great source for answering a wide range of (not only)
factoid questions.

Compared to existing works our query generation approach is independent from the
underlying knowledge base by representing queries to answer questions through basic graph
patterns whose mapping to knowledge base-specific properties or labels are determined at
runtime. Our main contributions are (i) a pattern-based approach matching common (but
also complex) natural language questions, (ii) loosely coupling to an underlying knowledge
base, no training or specific information required, and (iii) first evaluation results showing
similar or even out-performing results compared to specifically trained systems.

2 Problem Statement

The Open Challenge on Question Answering over Linked Data (QALD)2 has been organized
as an evaluation campaign as part of the Extended Semantic Web Conference (ESWC)
and the CLEF Initiative (Conference and Labs of the Evaluation Forum) since 2011. The
challenge focuses on bringing together scientists who work on question answering and
compare new approaches according to a published dataset. The latest challenge – QALD 7
– has taken place at the ESWC 2017. For the evaluation of our approach we will use the
training and test datasets provided for this challenge. Evaluation results will be presented in
Section 4.

As a first summary the organizers of the QALD challenge published a survey on challenges in
Question Answering over Linked Data [Hö17]. The authors give an overview of approaches
that have been submitted to several conferences or challenges between 2011 and 2015 –
overall they list 72 publications and 62 distinct systems. After review of these systems the
authors identified seven challenges developers of QA systems are facing and that addressed
in the respective publications. From these challenges, we address the following:

• Lexical Gap: As in every QA system the phrases of natural language require to be
mapped to parts of the relevant ontology and knowledge base: resources, classes,
properties. We try to overcome the lexical gap by creating a set of general questions
and retrieve the potentially correct result by matching result type and question type
and applying a specific ranking.

2 https://qald.sebastianwalter.org/index.php?x=home&q=home

290 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

From Natural Language Questions to SPARQL Queries 3

• Ambiguity: The mapping of phrases to the underlying knowledge to retrieve resources,
classes and properties often results in a higher amount of output than desired. We
apply a scoring at each mapping step and and decide at the end about the correct
query containing the correctly mapped phrases by applying also the ranking of the
query result.

• Complex Queries: SPARQL in its latest version is able to manage queries containing
different operators, such as GROUP BY, COUNT, or FILTER operations. We derive
the necessity of such operators in a query by identifying the question type and
comparing it to the result type of different generated queries.

• Templates: For our approach, several question types have been analyzed and we
derived respective query transformation patterns that can be applied to any domain or
knowledge base w.r.t. the identified question types.

• Independence from Knowledge Base: In addition to the ones listed by the authors of
[Hö17] we take the challenge of developing a system that works independent from the
underlying knowledge base. Our approach is based on general patterns and rankings
and knowledge specific lookups.

3 System Architecture

Our presented approach processes given natural language questions in seven different steps,
each fulfilling an individual task. The steps are the following (also shown in Figure 1):

1. Question parsing and focus detection
2. Generation of general queries with the phrases of the natural language question

according to pre-defined patterns
3. Mapping subject/predicate/object of the general question to representations within

the underlying knowledge base
4. Query execution
5. Result ranking
6. Output of the highest ranked SPARQL query and the corresponding result.

Within our algorithm only step 4 and 5 are dependent on the underlying knowledge base as
the concrete properties, entities and ontology classes or categories are requested. All other
steps are independent from the knowledge base and can be applied to any use case.

3.1 Preliminaries – Knowledge Base Transformation

As described in the previous section, our approach is only loosely dependent on an underlying
knowledge base. This means, we are able to work with any knowledge base that fulfills a
few a preliminaries:

• the knowledge base is constructed in RDF(S)/OWL

From Natural Language Questions to SPARQL Queries: A Pattern-based Approach 291

4 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

Fig. 1: Overall process of Question Answering

• there is terminological knowledge available about the used vocabulary/ontology
(TBox)

• the actual facts are available as assertional knowledge (ABox).

To be able to use the knowledge base, some transformation processes have to be carried
out – primarily for reasons of efficient search and lookup. The terminological part of the
knowledge base (including OWL and SKOS) is analyzed for class and category labels (for
the mapping/lookup process) and transferred to a easily accessible lookup store. Figure 2
shows the RDF(S) parts of a knowledge base which are used to build lookup structures for
the knowledge base specific parts of our approach.

Fig. 2: RDF triples required for generation of lookup structures

We extract the class/category information from the knowledge base to be able to reference
type information in questions, such as “Which university is located in Berlin?”. In some
cases, the classes included in the ontology do not provide sufficient information about such
type information, because the ontology is too general. For instance, for the question “Which
Italian dessert contains coffee?” it is required to look up “Italian dessert” within the classes
of the ontology. For instance, within DBpedia, the most specific class for this question

292 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

From Natural Language Questions to SPARQL Queries 5

would be “Food”. But the entity dbr:Tiramisu3 (which would be a correct answer for the
question) provides a fact that it is a subject of the category “Italian dessert”. Therefore, we
also extract category information provided by dc:subject4 properties in some knowledge
bases. The labels for properties are extracted to be able to find verb relationships within the
knowledge base, such as a property for relationship between two persons: “Who supervised
Alfred Kleiner?”. The labels for the entities are extracted to find the actual subject of a
question within the knowledge base.

For these lookup stores (primarily indexed tables in a relational database) the original
and – if available – alternative labels of classes/categories, properties (both terminological
knowledge) and the actual entities (assertional knowledge) are extracted from the knowledge
base.

As we have evaluated our approach based on the dataset provided by the QALD 7 challenge,
the underlying knowledge would be DBpedia. For the labels of the entities DBpedia provides
more information to be able to collect more synonyms for each entity. As DBpedia is derived
from Wikipedia the labels of redirects and disambiguation pages can be used as additional
labels. In this way, the entity dbr:Diana,_Princess_of_Wales are assigned 25 different
labels, e.g. “lady di”, “princess diana”, “lady diana spencer” amongst others. Thereby, the
probability of being able to find the correct entity mentioned in natural language is increased.
However, the labels of the entities can be more or less relevant. The calculation of a relevance
score helps to rank the retrieved entities for a natural language phrase. The same applies for
provided alternative labels within the knowledge base (as provided by skos:altLabel5).
Therefore, for each label a score is calculated between [0.0 ... 1.0]. Original labels achieve
the highest score. The scores for all alternative labels are calculated according to similarity
to the original label, type of the assigned entity (e.g. person’s family names), acronym
format etc. The calculation for each score is described more in detail in [St14].

For the mapping of verb phrases from the question to DBpedia properties the ontology only
provides original labels and no synonyms, similar to the labels for the ontology classes. This
circumstance is an essential disadvantage for the mapping of properties. For instance, the
fact that two people are/were married is represented by DBpedia property spouse while in
natural language several other expressions are used, such as “wife/husband of”, “married”,
“in a relationship” etc. Therefore, as an additional source for property labels we are using the
PATTY dataset as described in [NWS12] to find potential properties for the verb phrases in
the question. The dataset has been derived from a large collection of text documents and we
calculated – similar to our entity lookup store – a score for each phrase-property mapping
which represents a relevance value for the mapping of the phrase to the property. These
scores are used for the ranking of the generated SPARQL queries to find the potentially
most correct one for the given input question. As PATTY is a DBpedia specific dataset, our

3 DBpedia specific prefixes here and in the remainder of the paper stand for: dbr – http://dbpedia.org/resource/;
dbo – http://dbpedia.org/ontology/

4 The Dublin Core vocabulary: http://dublincore.org/documents/dcmi-terms/
5 SKOS Core vocabulary: https://www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102/

From Natural Language Questions to SPARQL Queries: A Pattern-based Approach 293

6 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

approach is restricted to the label extraction as described in Figure 2 when using knowledge
bases other than DBpedia.

3.2 Separate Steps of the Algorithm

As depicted in Figure 1 our algorithm consists of separate steps that are either dependent on
or independent from the underlying knowledge base. The first parsing and generation of
first triples is independent form the knowledge base and can be applied to any vocabulary.
Afterwards, the general triples are transformed to knowledge base specific SPARQL queries
and are executed on a SPARQL endpoint. In turn, the final ranking and result selection is
independent from the knowledge base and builds upon previous ranking and the identified
question type. The separate steps are described in detail in the following sections.

3.2.1 Knowledge Base Independent – Question Parsing and Pattern Matching

Question parsing and focus detection. The question is parsed using the Stanford lexical
parser6 [MMM06]. The output of the parser is a parse tree (amongst others) as seen in
the example of Listing 1. The parse tree reveals the sentence type as well as the word
types (identified as Part-of-Speech (POS) tags) and the relations of the words among one
another. In the example the sentence is of type “SBARQ” which means the sentence is
“Direct question introduced by a wh-word or a wh-phrase.”7. To make the sentence type
more specific, a second tag is classifying the actual question phrase. In our example it is
“WHADVP” which means the question begins with a adverb phrase such as how or why. A
full list of identified sentence/question types w.r.t. the dataset used for the evaluation of our
system (cf. Section 4) is shown in Table 1. According to the question type the focus of the
question is identified. Thereby, the subject that is used as result variable in the SPARQL
query is identified. Within the actual question several patterns (combinations of word types)
may occur which require to be translated to RDF triples for the SPARQL query. For instance,
the phrases “the mayor of Chicago” and “Chicago’s mayor” result in different POS tag
combinations: NP (the mayor) PP (of) NP (Chicago) and NP (Chicago’s) NN (mayor)
respectively. Both combinations result in the same RDF triple: ?x onto:mayor res:Chicago

.8 Such patterns are found in multiple question types and are dissolved independent from
the identified question type. Therefore, we identified an extensive list of POS combinations
which are translated to RDF triples as described in the following paragraph9.

List. 1: Sample parse tree for the sentence “When did princess Diana die?”

6 https://nlp.stanford.edu/software/lex-parser.shtml
7 https://gist.github.com/nlothian/9240750
8 The prefixes here and the reminder of the paper stand for: onto – namespace of the ontology of the underlying

knowledge base; res – namespace of the resources of the underlying knowledge base
9 A list of example sentences, the identified patterns and the transformation to the respective SPARQL query

pattern can be found here: https://bit.ly/2ROwXPM

294 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

From Natural Language Questions to SPARQL Queries 7

(ROOT (SBARQ
(WHADVP (WRB When))
(SQ (VBD d id) (NP (NNP p r i n c e s s) (NNP Diana))

(VP (VB d i e))) (. ?)))

Tab. 1: List of identified question types

Sentence
Type

Question
Type

Example

SBARQ

WHADVP When was the Battle of Gettysburg?
WHADJP How much did Pulp Fiction cost?
WHNP Who designed the Brooklyn Bridge?
WHPP In which city does the Chile Route 68 end?

S Show me all books List all basketball players
SQ Is Berlin the German capital?

Generation of general query triples. The natural language question then requires to be
translated to RDF triples. Each RDF triple constitutes a fact which means that the phrases
from the question are transferred to single facts. For instance, the question “Show me all
books by Joanne K. Rowling.” includes two facts:

• the results have to be of type “book”, and
• the results are somehow created by “Joanne K. Rowling”.

The first fact results in a general triple ?x rdf:type onto:Book . Here, the object requires
to be a class from the underlying ontology. The second fact results in a general triple ?x

onto:by res:Joanne_K._Rowling .10 Here, the property requires to be included in the
ontology and the object requires to be part of the knowledge base. These general triples
are generated by analyzing the patterns of POS tags in the parse tree of the question. We
identified an extensive list of patterns and assigned respective RDF triples. The respective
subject, property and object in the RDF triple are represented by the phrases extracted
from the question – as placeholders (except for pre-defined semantic properties, such as the
property rdf:type which is part of the RDF vocabulary and used as property to state the
class membership of a resource of the knowledge base). RDF facts are represented using
properties to connect a subject and an object. Due to the fact that our approach is working
independent from the underlying knowledge base, we do not know beforehand in which
order properties connect subject and object. For instance, for the phrase “supervisor” the
knowledge base could contain the property onto:supervisor which connects a student in
the subject with the respective supervisor in the object. The knowledge base could also
contain the property onto:supervisorOf which connects the supervisor in the subject with
the student in the object. Therefore, we provide two versions for each triple generated from
a POS tag combination resulting in more than one SPARQL query for each question. All
queries are scored and ranked in a later step.

10 The triple looks like this before mapping the property and the object to the underlying knowledge base.

From Natural Language Questions to SPARQL Queries: A Pattern-based Approach 295

8 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

3.2.2 Knowledge Base Specific – Mapping and Execution

After the question is parsed and the general triples are generated the underlying knowledge
base is taken into account to create the final queries including the knowledge bases specific
entities, properties and classes/categories. Therefore, the extracted phrases from the parsed
question are replaced URIs and finally the question specific aggregations and other operators
are added. The queries are then executed on a SPARQL endpoint.

Subject/property/object mapping. In this step, the generated general queries are trans-
ferred to actual RDF triples as specific for the underlying knowledge base.

For the mapping of the subjects of the general triples the extracted phrases from the parse
tree are directly looked up. For the objects, three different options are possible:

• direct lookup in case an entity is required according to the pre-defined pattern
• lookup for ontology classes in case a triple for rdf:type information is required
• the phrase is inserted as literal.

All mapping processes – for subject, property and object – may result in more than one result
per phrase. For each result a query is generated in combination with all already derived
queries. Taking into account the mapping scores from PATTY and the entity lookup an
overall score for each generated query is calculated by multiplying all derived scores.

The result of this step is a set of RDF triple combinations (as required within the WHERE
clause of a SPARQL query) and the corresponding mapping score for each combination. In
the next step the final queries are generated and executed.

Fig. 3: Components specific for the Underlying Knowledge Base

Query execution. In this step the final queries are created and necessary operators added.
The required operators are derived from the question type. For instance, for a WHADJP
question – starting with “How many” or “How often” – the expected answer should by a

296 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

From Natural Language Questions to SPARQL Queries 9

number. As the underlying knowledge base is unknown – as one of the challenges – to our
system, the result type “number” can be derived in two different ways: either the range of
the mapped property already provides a number or a COUNT operator has to be applied to
count the number of resulting entities. Therefore, we create queries for each possibility, such
as the example in Figure 4a depicts. In addition to the COUNT operator, other aggregation
operators might be applied to the query. For instance, the question “Who is the Formula One
race driver with the most races?” requires ORDER, LIMIT and OFFSET operators in the
query. According to the POS patterns the required triples are generated and the respective
variable used for the ORDER operation is identified. The type of ordering is identified
according to pre-defined list of phrases: “most”, “highest”, “tallest” etc. for descending
order or “least”, “smallest”, “youngest” for ascending order. Figure 4b shows the resulting
SPARQL query for the mentioned example. After all queries are created and all required
operators are applied the resulting queries are executed on the specific SPARQL endpoint.

(a) ... for questions where a number is expected as
answer type.

(b) ... for questions where ordering of results is
required.

Fig. 4: Examples of query generation

3.2.3 Knowledge base Independent – Finalization and Result Output

Result ranking. For each query the results are derived and final ranking is applied
according to the expected answer type (as pre-defined from the question type). For most of
the question types the answer type is an entity or a list of entities. For question starting with
“When” the resulting answer must be a date. And for questions starting with “How many” or
“How often” the answer type is a number. The final ranking of the queries and the respective
results is applied by comparing the expected answer type and the actual answer type. If the
expected and actual answer type are matching the query receives the full score of 1.0. If
the query does not produce any result the score naturally is set 0.0. If the query produces a
result, but the answer type is not matching to the expected one, the mapping score is set to

From Natural Language Questions to SPARQL Queries: A Pattern-based Approach 297

10 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

0.5. We do not suppress answers with incorrect answer types, because of several reasons.
On the one hand, knowledge bases (especially the ones that are automatically extracted or
created) some times do not provide any literal types. Dates might not be formatted as date,
but still be a correct answer. On the other hand, a question starting with "When"might often
require a date as answer type, but a year (“1980”) or a season (“Spring 1968”) might also
be a reasonable answer and contained in the underlying knowledge base like this (instead of
a date).

The overall ranking of a query including results is calculated from the mapping score and
the answer type score by multiplying both scores. Each query only receives one overall
score. The set of results of a query (in case of a list of entities) is regarded as one answer. In
this way, all queries are scored and sorted. The query with the highest score is assumed as
potentially correct and the respective produced result is set as answer for the input question.
At the current stage, our system assumes that a given natural language question actually has
an answer. The case of a question that cannot be answered using the underlying knowledge –
because of missing information11 – is not taken into account, yet.

4 Evaluation

Evaluation Dataset. To evaluate our approach a dataset containing the natural language
questions as well as the answers formatted as SPARQL endpoint results is required. As
stated in [Hö17] only two challenges provide benchmarks with the required structure:

• Open Challenge on Question Answering over Linked Data (QALD) - as introduced
in Section 6

• BioASQ – a challenge on large-scale biomedical semantic indexing and question
answering12

The second challenge only provides questions from the bio-medical domain and the first
challenge provides all-purpose QA benchmarks. The DBpedia constitutes the most well-
known all-purpose knowledge base provided as RDF. We therefore choose to take into
account the QALD challenge and use the dataset of the latest challenge to evaluate our
approach13. The challenge provides a training dataset some weeks before the submission
date and a test dataset to provide the final results of a submitting system. The latest challenge
was the first one where participating systems were requested to provide their system as
Docker image. In this way, the challenge organizers were able to evaluate the submitted
systems directly – in contrast to submitted result files as XML/JSON the years before this last
challenge. As the challenge already took place at the Extended Semantic Web Conference
(ESWC) we are able to compare our results to the results of the participated systems.

11 And according to the open world assumption, missing information might mean that something is not existent, but
this is not compulsory.

12 http://bioasq.org/
13 https://project-hobbit.eu/challenges/qald2017/

298 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

From Natural Language Questions to SPARQL Queries 11

The QALD challenge is organized in four tasks. For our evaluation we chose “Task 1:
Multilingual question answering over DBpedia” using the English version of the questions.
The dataset for this task provides the following information for each question record:

• id – sequential order of the questions
• answertype – either “resource”, “string”, “number”, “date”, or “boolean”
• aggregation – true/false – stating if the required query contains aggregation operators
• onlydbo – true/false – stating if other knowledge bases than DBpedia are required
• question – the actual question provided in eight different languages, for each question

additional keywords are provided
• query – a SPARQL query which provides the correct results
• results – the (list of) results – for each result the type and the value are given

For the evaluation of our system we only used the actual natural language question (without
the given keywords) and the (list of) results. Everything else (answer type, result type,
necessity of aggregation) is not used from the dataset and detected by our system (identified
as pattern in the question).

Evaluation Measures. For the comparison of our approach to competing systems the
measures Recall, Precision and F1-Score are used. For each question q recall, precision and
F1-score are calculated as following:

recall(q) =
number of correct system answers for q

number of benchmark answers for q

precision(q) =
number of correct system answers for q

number of system answers for q

F1-score = 2 ∗ recall (q) ∗ precision(q)
recall (q) + precision(q)

We calculated all measures as macro measures which means that they have been calculated
separately for each question and all measures are averaged over all questions for the overall
result.

Evaluation Results. For the QALD 7 challenge only two systems have been submitted
providing results for English language: ganswer2 and WDAqua[UNC16]. Thus, we used
only these two systems for comparison because only for these systems the results are
reproducible. For the calculation of recall, precision and F1-score only questions have
been taken into account for which the system was able to provide a result. We therefore
calculated our measures for the evaluation in the same way. The results for the training and
test dataset are shown in Table 2. Our approach achieves similar results or even outperforms
the other competing system which participated in QALD 7 challenge. For QA systems
the precision of the provided answers is more important than the recall: We would rather

From Natural Language Questions to SPARQL Queries: A Pattern-based Approach 299

12 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

provide an answer like “Amongst others correct answers are the following” – which means
some correct answers might be missing – than proving something “Our answer is this, but
it might incorrect”. Therefore, our future work will focus on an increased precision – of
course in best combined with a reasonable high recall. Nevertheless, these first results show
that our approach which is set up to be as independent as possible from the underlying
knowledge base is able to compete with other systems that might be trained specifically for
a domain and dataset.

Tab. 2: Evaluation results for the QALD 7 training and test datasets

Training Dataset Recall Precision F1-Score
Our approach 0.588 0.570 0.578
ganswer2 0.592 0.557 0.556
WDAqua 0.540 0.490 0.510
Test Dataset Recall Precision F1-Score
Our approach 0.665 0.584 0.622
ganswer2 0.498 0.487 0.492
WDAqua 0.160 0.162 0.161

As our approach consists of several separate steps we took a closer look at success and failure
of our approach. Therefore, we evaluated each step separately and counted the questions
where the step succeeded in comparison to the initial set of questions at the beginning of
each step. The results are shown in Table 3. In this overview, two steps respectively the low
success rates of two steps are striking: property mapping and final ranking. As described in
Section 3.1 we are using the PATTY dataset for the property mapping. Unfortunately, the
dataset only contains 58% of all properties contained in the DBpedia ontology. For some
reason, very common properties, such as dbo:deathDate or dbo:birthDate, are missing
in the dataset. This fact leads to the low success rate of 52.1% regarding the property
mapping. The second lowest success rate is achieved by the overall ranking, which partly
is again caused by the PATTY dataset. For each property mapping, a score is provided
regarding relevance (cf. Sect. 3.1). Unfortunately, this ranking is sometimes misleading. As
this ranking score (together with the scores from subject and property mapping as well as
the validity check of the answer type) influences the final ranking, sometimes the wrong
query is ranked highest although the used property does not match the phrase of the natural
language question at all. The next paragraph will discuss the evaluation results in detail and
regarding the proposed challenges.

Discussion. The evaluation results show that our system achieves similar or even better
results than the systems that have been submitted to the 7th QALD challenge. However,
the detailed analysis of the evaluation results reveals the weakest parts of our approach. As
we are using the PATTY dataset to map natural language phrases to properties from the
underlying DBpedia knowledge base, there are several questions that cannot be answered,
because the dataset does not contain any property for the given phrase. This means, that

300 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

From Natural Language Questions to SPARQL Queries 13

Tab. 3: Success rates of separate steps of our algorithm, evaluated on the QALD 7 training dataset

Algorithm step Evaluation
Overall Questions 166
Focus detection successful 154 / 92.7%
Parsing successful 152 / 98.7%
Triple Generation successful 132 / 86.8%
Subject Mapping successful 127 / 96.2%
Property Mapping successful 62 / 48.8%
Object mapping successful 60 / 96.8%
Query Building successful 60 / 100%
Ranking successful 44 / 73.3%

for many questions no query can be generated, because the respective property is missing.
The current DBpedia lists 1439 properties of which only 225 properties are listed in the
PATTY dataset. Therefore, only 60% respectively 80% of the questions of the QALD
7 test and training dataset can be answered by our system. Thus, the lexical gap is an
essential challenge for QA systems. Another problem constitutes the ranking of queries
based on the separate rankings derived from property and subject/object mapping. For
the relevance ranking of different properties provided by PATTY we use a co-occurrence
measure of phrase and property within the dataset. Unfortunately, this results in some cases
in wrong final rankings. For instance, Table 4 shows the rankings of generated queries
for the questions “How often did Jane Fonda marry?” and “How often did Alan Rickman
marry?”. According to the property relevance ranking the property dbo:child achieves a
higher score than the property dbo:spouse. As all other ranking scores are identical, for
the first question the wrong query is chosen as potential correct which delivers the wrong
answer. This problem only occurs for entities who actually have children – as it is the case
for Jane Fonda. Otherwise – as it is the case for Alan Rickman – the query with the property
dbo:child does not provide a result (which results in a score of 0.0 for the answer type) and
the query containing dbo:spouse is ranked highest. These problems result from the structure
and quality of the underlying knowledge base respectively the transformed/deployed lookup
stores. We discuss this topic further in Section 5. In addition, the evaluation results are
influenced by the quality of the datasets. Unfortunately, the datasets contains questions
where intuitively the provided answers are wrong. For instance, for the question “Which
cities does the Weser flow through?” the entity dbr:Fulda_(river) is listed as expected
correct result. But this entity is a river and not a city and it results from the missing type
check in the SPARQL query provided in the dataset. By adding the type information in
the SPARQL query the retrieved results are reduced which results in a lower recall for the
evaluation.

From Natural Language Questions to SPARQL Queries: A Pattern-based Approach 301

14 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

Tab. 4: Comparison of Ranking of two queries

Query Mapping Answer
Type

Final

Subject Property
SELECT (COUNT(DISTINCT ?y) as ?x) WHERE {
dbr:Jane_Fonda dbo:child ?y . }

1.0 0.23 1.0 0.614

SELECT (COUNT(DISTINCT ?y) as ?x) WHERE {
dbr:Jane_Fonda dbo:spouse ?y . }

1.0 0.08 1.0 0.514

SELECT (COUNT(DISTINCT ?y) as ?x) WHERE {
dbr:Alan_Rickman dbo:spouse ?y . }

1.0 0.23 1.0 0.614

SELECT (COUNT(DISTINCT ?y) as ?x) WHERE {
dbr:Jane_Rickman dbo:child ?y . }

1.0 0.08 0.0 0.0

5 Challenges

In this section we discuss our experiences during the development of our system especially
regarding the challenges described in Section 2.

Lexical Gap. As shown in the evaluation, the lexical gap is an essential factor when
natural language questions cannot be answered. For DBpedia, there are multiple sources
to extract synonymous labels for the entities, as described in Section 3.1. But for the
terminological knowledge – classes/categories and properties – primarily only the original
labels are provided. And this is the case for most knowledge bases. Therefore, the quality of
the results using other knowledge bases than DBpedia depends on how the lookup stores
can be complemented with additional synonymous labels. For this purpose we are following
different strategies to be able to include various knowledge bases:

1. determine synonymous information from external vocabularies, such as WordNet14
2. extract mappings of natural language phrases and knowledge base properties from

embedded RDFa15 information in text/web documents
3. extract additional information from mapped external ontologies

For the first case, WordNet provides synonymous phrases for each entry within the vocabulary.
This information can be mapped to the original labels of the labels of the knowledge base to
be complemented. The problem here is that the semantic character of the knowledge base is
ignored and synonymous information might be applied to wrong resources. Therefore, this
approach requires to be evaluated regarding ambiguity of the knowledge base and quality of
the achieved mappings.

For the second strategy, web documents containing RDFa information are analyzed for
the deployed terminological and assertional knowledge and thereby the natural language

14 https://wordnet.princeton.edu/
15 A markup language extension to HTML5 to enrich web documents with RDF to assign mentioned places, person,

etc.: https://www.w3.org/TR/xhtml-rdfa-primer/

302 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

From Natural Language Questions to SPARQL Queries 15

information can be mapped to the used vocabulary. Web documents with RDFa annotations
are emerging – especially in the field of educational content – and editors have been
developed to provide user-friendly interfaces16. But the problem is that only a few popular
vocabularies and knowledge bases are applied and it might be difficult to find documents
containing very specific information as required for QA systems.

The third strategy is the mapping of separate parts of an ontology to other ontologies and
get thereby additional information about the mapped parts. Different ontologies might use
different labels for equivalent classes or provide additional mappings to further ontologies.
Thus, synonymous information might be extracted and complemented in the original
ontology.

Ambiguity. Our approach uses scores to rank different generated queries resulting from
multiple entities achieved by the mapping process. As shown in Section 4 this separate
mapping step is mostly successful (96,2% and 96,8% respectively for subject and object
mapping). Therefore, our approach has proven to be successful regarding ambiguity of
mapped entities. As discussed in the previous section, the problem of ambiguity is even less
difficult for other knowledge bases than DBpedia because of mostly missing synonymous
information.

Complex Queries. A natural language question that seems to be simple to be answered
might result in a very complex formal query within the QA system. For instance, the
question “What is the second highest mountain?” requires the actual triple to find heights of
mountains, an operator to sort the heights in descending order, the limit of only one result
and an offset to start with the second result in the descending order. All this information
needs to be derived from the given natural language phrase. Our approach deduces this
information from the question type and specific keywords from the lexically parsed question.
The phrases “second” or “third” can be mapped to pre-defined patterns of operators (as
described in Section 3.2.2). However, the pre-defined lists of keywords might be dependent
on the underlying knowledge base where specific terms and facts might require specific
aggregation functions. Therefore, we will explore specific characteristics of domains and
topics with the application of our approach to further knowledge bases.

Templates. For the QALD 7 training dataset containing 216 questions we identified six
different question types and 36 lexical patterns. Obviously, many lexical patterns are not
specific to a question type and occur in various questions. We therefore do not expect the
number of required patterns when applying different knowledge bases to increase excessively.
It might be necessary to observe knowledge bases more in detail to derive specific patterns.
For instance, property-object combinations that occur very often in a knowledge base might

16 http://aksw.org/Projects/RDFaCE.html

From Natural Language Questions to SPARQL Queries: A Pattern-based Approach 303

16 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

be a hint that this is a common fact and might be handled similar to class memberships –
without the actual RDF triple of rdf:type and the URI of a specific class. For instance,
the triple res:some_City onto:isMetropolis "true". would be equivalent to a class
membership information such as res:some_City rdf:type onto:Metropolis . This class
membership information must be derived to be able to answer questions like “Which
metropolises are located in Europe?”. In addition, more general query patterns might be
helpful to find the correct fact within the knowledge base. This applies for facts that might
be distributed over more than one triple. For instance, within a knowledge base containing
information about software projects the question “Who committed the most lines of code?”
the information about lines of code might be assigned to a “commit event” including the
original committing developer and the facts need to be aggregated over several commit
events. This again requires knowledge about the deployed knowledge base which should be
extracted during the preprocessing step.

Knowledge Base. Although our approach is set to be as independent from the knowledge
base as possible, we are aware of the fact that available information and structure of
the data contained in the knowledge base is an essential factor for the quality of a QA
system. As described in the previous section, some information might be very domain
specific and characteristic for knowledge base and is required to be detected and extracted
or complemented before our system could answer specific questions. Another problem
might be missing or wrong information in the knowledge base which is often the case for
automatically extracted data, as applies for DBpedia. For instance, the information about the
elevation of Mount Everest is missing in DBpedia although it is included in the respective
Wikipedia article (this fact might be a hint that Siri is using DBpedia for its QA system
– cf. Sect. 6). Furthermore, the type information is often missing for entities which leads
to missing results when the type is checked in the SPARQL query. Otherwise, too many
results might be provided when the type of the questioned subject is omitted. On the other
hand, sometimes the type information is set incorrectly for certain entities. For instance, the
actor “Terence Hill” is typed as dbo:Mountain (strangely along with other persons with
the surname “Hill”). This again leads to wrong results when the SPARQL contains the
type check. Here again, the solution might be to omit the type check in the query which
demands an appropriate query generation algorithm to be able to rule out irrelevant results
by additional facts in the query.

6 Related Work

Li et al. introduced an interactive natural language query interface that constructs SQL
queries according to natural language questions [LJ14]. The interface therefore interacts
with the user and requests feedback on chosen queries respectively concepts. The requesting
user is involved in the query construction process at two different stages. First, the natural
language phrase is parsed into a lexical tree. Afterwards nodes of the parse tree are identified

304 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

From Natural Language Questions to SPARQL Queries 17

which can be mapped to components of the requested SQL schema. At this stage the first
warning is given back to the user in case the mapping fails for one or more nodes. Also, the
successful mappings will be presented to the user. After all nodes are interpreted correctly
(with the help of the user) the linguistic parse tree is adapted to be valid for their system.
Implicit nodes can be inserted, if necessary, and the user is able to support this process.
The verified query tree is then transferred to a SQL statement containing joins, aggregate
functions etc.

Deutch et al. presented an similar approach where a natural language query is transferred
to a lexical query tree and the nodes are mapped to variables to be able to construct a
conjunctive query (CQ) [DFG17]. The authors not only focus on the conversion process to
be able to query a database for the requested natural language question, but also provide a
natural language answer according to provenance tracking of tuples from the query tree and
applying them to the answer tree.

Amongst others these two approaches present interfaces to convert natural language to SQL
statements. In contrast to that our approach is built upon RDF knowledge bases respectively
constructing SPARQL queries and does not use any user feedback for creating the formal
queries. The following approaches are therefore all based on RDF knowledge bases and
focus on translating natural language (NL) questions to SPARQL queries.

Freitas et al. developed a vocabulary independent approach for querying Linked Data so the
user does not need to know about the vocabulary of the data sets. The main components
of their system are (1) entity search, (2) spreading activation and (3) measuring semantic
relatedness [Fr11]. The challenges their system is able to deal with are the lexical gap,
ambiguity, complex operators and distributed knowledge. The essential question behind
the key entity search is which components of the natural language query of the user can be
mapped to classes or instances in the knowledge base. After detecting those key entities, the
URI of the key entity is looked up and used as a pivot entity for the next step, which will be
spreading activation. Before spreading activation can be started, the NL query has to be
parsed in a form that can be mapped to the SPO form of data represented in RDF. After that,
every pivot entity is used as a starting point for the spreading activation process. If there is
more than one node that is higher than a given relatedness threshold, it will lead to a second
path and in the end the path with the highest relatedness wins.

The system PARALEX introduced by Fader et al. in 2013 faces the challenges lexical
gap, ambiguity as well as procedural, temporal or spatial questions and uses templates
similar to our approach [FZE13]. However, PARALEX has a slightly different approach
with focussing on a broad range of different questions asking for the same fact rather than
on complex questions. It is only able to handle queries that can be represented as a triple, for
example portrayer(Emma Watson, Hermione Granger). PARALEX tries to map a given
question to be answered by such a triple. Examples for those questions are: “Who portrayed
Hermione Granger?”, “Who is the actress of Hermione Granger?”, “Who played the role of
Hermione Granger?” or “Who is the actress that played the role of Hermione Granger in

From Natural Language Questions to SPARQL Queries: A Pattern-based Approach 305

18 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

Harry Potter?”. Although those questions may differ, they can all be answered by the factoid
triple above. The system stores triple entries in a database that are of the form r(e1, e2) and
it can answer queries with one unknown variable that is either e1 or e2. Therefore queries
look like r(?, e2) for example for the question “Who portrayed Hermione Granger?” or
r(e1, ?), which would answer the question “Which roles did Emma Watson play?” if we
assume a triple like portrayed(Emma Watson, Hermione Granger) alongside others. To
map the phrases of a question to an entry in the triple data store, a lexicon had been built by
means of a learning algorithm which consists of two stages: first it is initially set up and
then derivates are added to increase the precision. The main disadvantage of the system is
the missing ability to answer complex questions, because it is not able to build the query.

In 2014, Xu et al. introduced their system Xser [Xu14] and participated with their approach
in the QALD 5 challenge (held at CLEF 2015 Initiative) achieving the highest recall and
precision (recall=0.72, precision=0.74) among the competing systems. Their approach is
based on two steps: first the NL question is analyzed for predicate argument structures using
an semantic parser. In the second step, the actual queries based on the underlying knowledge
base are generated. In contrast to our system, their approach requires to be trained using
knowledge base specific training data.

Bast et al. presented an extensive survey in the field of semantic search on text and
knowledge bases [BBH16]. Within this survey several combinations of the search input
and the underlying data are explored. Obviously, a semantic search can be performed by
analyzing a natural language as input. Therefore, the authors examine several approaches on
understanding natural language and finding relevant search items for the input query.

Also in 2015, the system SemaGraphQA introduced by Beaumont et al. participated in
the QALD 5 challenge [BGL15], achieving significantly worse results compared to the
best performing system Xser as previously introduced (recall=0.32, precision=0.31). They
participated again in the QALD 6 challenge achieving an increased precision but decreased
recall (recall=0.25, precision=0.70). Their system uses a graph-based approach matching
parts of the NL question to the knowledge base and building a syntactic graph.

The best performing system of the QALD 6 challenge (co-located with ESWC 2016) has
been CANaLI introduced by Mazzeo et al. [MZ16]. CANaLI achieved a overall precision
and recall of 0.89 for english questions of Task 4 of the challenge (“Multilingual question
answering over DBpedia”). However, the system is working on a semi-automatic basis using
user feedback to map to correct properties and entities in the knowledge base. We also use
the datasets of Task 4 of QALD-6 to evaluate our system, but will not compare to CANaLI,
because our system is working completely self-sufficient from the external help of the user.

When it comes to explaining the research field of question answering to people outside of
the research community popular systems like Alexa, Siri & Co. perfectly fit to describe the
challenges. These systems seem to know and understand everything and the research field
might appear redundant. But, a closer look reveals the limits of the systems. The domain

306 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

From Natural Language Questions to SPARQL Queries 19

of understanding a user is often very limited. For instance, you can ask for tomorrow’s
weather or where some place is or to call somebody from your contact list (using your
smartphone). Additionally, some simple questions can be answered: The question “How
high is Mount McKinley?” is correctly answered with “Denali is 20,308 ft above sea level”
(even replacing the name with current correct one). But the similar question “How high is
Mount Everest?” only answered by providing the article about Mount Everest on Wikipedia.
The more complicated example (from the QALD challenge) “Who became president after
JFK died?” only gives web resources regarding John F. Kennedy. These examples show
that these systems are limited to popular and rather simple questions. The foundation of
these systems are trained databases containing e.g. often requested web queries and the
corresponding most frequent chosen web result.

7 Conclusion

In this paper, we presented our novel approach to question answering over Linked Data
knowledge bases. In addition to the common challenges of QA systems, we designed our
system to be as independent as possible from the underlying knowledge base. The preliminary
transformation process extracts required information from the RDF(S) knowledge base and
this information is used for a mapping step as part of the complete algorithm. Afterwards a
SPARQL endpoint is required to execute the actual queries. A long-term goal is to provide
a web interface where a knowledge base can be uploaded by a user, the transformation
process is conducted and the SPARQL endpoint established. Subsequently, the user is able
to ask natural language questions on the prepared knowledge base. Our approach has been
evaluated on the latest datasets provided by the QALD challenge. First results show that our
approach performs similarly or even better than the competing systems that participated in
the last challenge. Our future work includes two main aspects: on the one hand we want
to achieve a reasonable saturation of patterns for general purpose questions. This means,
we will further explore common natural language questions for so far missing patterns
without overfitting the assembled set of patterns and be as general as possible. On the other
hand, we will transfer our approach to knowledge from other domains and further research
the applicability of the detected patterns so far. Overall, we were able to show that a QA
system is not necessarily required to be trained on a specific domain or knowledge base.
Nevertheless, the discussed challenges provide sufficient input for further enhancements
and developments in this complex research field.

8 Acknowledgements

This work was partially funded by the German Research Foundation (DFG) under grant no.
SA782/26.

From Natural Language Questions to SPARQL Queries: A Pattern-based Approach 307

20 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

References
[BBH16] Bast, Hannah; Björn, Buchhold; Haussmann, Elmar: Semantic Search on Text and

Knowledge Bases. Found. Trends Inf. Retr., 10(2-3):119–271, June 2016.
[BGL15] Beaumont, R.; Grau, B.; Ligozat, A.-L.: SemGraphQA@QALD5: LIMSI participation

at QALD5@CLEF. In: Working Notes of CLEF 2015 - Conference and Labs of the
Evaluation forum, Toulouse, France, September 8-11, 2015. 2015.

[DFG17] Deutch, D.; Frost, N.; Gilad, A.: Provenance for Natural Language Queries. Proc. VLDB
Endow., 10(5):577–588, 2017.

[Fr11] Freitas, A.; Oliveira, J.G.; O’Riain, S.; Curry, E.; Da Silva, J.C.P.: Querying Linked
Data Using Semantic Relatedness: A Vocabulary Independent Approach. In: Proc. of the
16th Int. Conf. on Natural Language Processing and Information Systems. NLDB’11.
Springer-Verlag, pp. 40–51, 2011.

[FZE13] Fader, A.; Zettlemoyer, L.; Etzioni, O.: Paraphrase-driven learning for open question
answering. In: Long Papers, volume 1. Association for Computational Linguistics (ACL),
pp. 1608–1618, 2013.

[Hö17] Höffner, K.; Walter, S.; Marx, E.; Usbeck, R.; Lehmann, J.; Ngonga Ngomo, A.-C.:
Survey on Challenges of Question Answering in the Semantic Web. Semantic Web
Journal, 8(6), 2017.

[LJ14] Li, F.; Jagadish, H. V.: Constructing an Interactive Natural Language Interface for
Relational Databases. Proc. VLDB Endow., 8(1):73–84, September 2014.

[MMM06] Marneffe, M.; Maccartney, B.; Manning, C.: Generating Typed Dependency Parses from
Phrase Structure Parses. In: Proc. of the 5th Int. Conf. on Language Resources and
Evaluation (LREC-2006). European Language Resources Association (ELRA), Genoa,
Italy, May 2006.

[MZ16] Mazzeo, G. M.; Zaniolo, C.: Answering Controlled Natural Language Questions on RDF
Knowledge Bases. In: Proc. of the 19th Int. Conf. on Extending Database Technology,
EDBT 2016, Bordeaux, France. pp. 608–611, 2016.

[NWS12] Nakashole, N.; Weikum, G.; Suchanek, F.: PATTY: A Taxonomy of Relational Patterns
with Semantic Types. In: Proc of the 2012 Joint Conf. on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning. EMNLP-CoNLL
’12, pp. 1135–1145, 2012.

[St14] Steinmetz, N.: Context-aware semantic analysis of video metadata. Phd. thesis, Universität
Potsdam, 2014.

[UNC16] Unger, C.; Ngonga Ngomo, A.-C.; Cabrio, E.: 6th Open Challenge on Question Answering
over Linked Data (QALD-6). In: Semantic Web Challenges: Third SemWebEval Challenge
at ESWC 2016, Heraklion, Crete, Greece, May 29 - June 2, 2016, Revised Selected Papers.
pp. 171–177, 2016.

[Xu14] Xu, K.; Zhang, S.; Feng, Y.; Zhao, D.: Answering Natural Language Questions via Phrasal
Semantic Parsing. In: Proc. Natural Language Processing and Chinese Computing: Third
CCF Conference (NLPCC), Shenzhen, China. Springer, pp. 333–344, 2014.

308 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

