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Abstract: We present an approach to reduce high-resolution polygonal clothing meshes
for Mixed Reality (VR/AR) scenarios. Due to hardware limitations, current mobile devices
require 3D models with a strongly reduced triangle count to be displayed smoothly. A par-
ticular challenge for mesh reduction of clothing models is that these models usually consist of
several fabric layers, which are spatially tightly together, touching in many places. Conven-
tional decimation approaches and tools result in models with a lot of intersections between
these layers. In this paper, we evaluate an incremental mesh decimation algorithm with the
constraint of intersection-free decimations in each step on high resolution clothing models.
A half-edge mesh data structure enables topological correct decimations and a clustered
Bounding Volume Hierarchy (BVH) of the mesh triangles accelerates spatial neighborhood
searches that are required for intersection tests. We demonstrate the performance of our
approach on several real-world clothing models originating directly from a CAD application.

Keywords: Mesh decimation, intersection-free simplification, collision detection, aug-
mented reality, virtual clothing, BVH

1 Introduction

Mesh decimation algorithms have been explored ever since polygon meshes are used in com-
puter graphics [SZL92]. Today, a variety of tools and algorithms are available to reduce
polygonal meshes. Despite the large body of work in this field, the simplification of clothing
models received little attention.

Cloth simulation systems can handle hundred of thousands [TWL+18] to millions of
triangles [SSIF09]. Clothing models used in the garment industry for virtual prototyping
often consist of about half a million triangles. Moreover many garments have several layers
of fabrics. To render fabrics with real cloth thickness, each layer consists of a front- and a
back-side. The distance between them can be as low as 0.1mm for thin fabrics and up to
several millimeters for thicker ones. The two sides can end up penetrating each other during
conventional reduction as they are in extreme close proximity. In addition, if the clothing is
presented on an avatar, its surface can also penetrate the clothing layers (cf. Figure 1, left).
Both type of intersections are visually undesirable and time consuming to resolve manually.



Figure 1: Intersections (left), patterns (middle), boundary gaps (right)

A possible workaround would be to introduce a safety distance between all fabric layers.
However, this does not completely avoid intersections and can lead to unrealistic looking
clothing. The complete removal of intermediate layers is also not an option, as transparencies
play a significant part in the perception of clothes.

Another characteristics which needs to be considered during a reduction is that clothes
are made of pattern pieces, which are mapped to different mesh parts, that do not share
vertices at their edges (cf. Figure 1, middle). A reduction must maintain the border line of
all mesh parts, and must ensure that mesh parts stay together and do not drift apart and
show gaps between the patterns (cf. Figure 1, right).

Combining all of these considerations, it is evident that cloth simplification is no trivial
task. We tested many commercially available mesh reduction tools, however none provided
satisfactory results. Therefore, we devised and implemented an approach for the simplifica-
tion of complex cloth meshes. Our approach ensures no penetrations between the different
fabric layers or the avatar take place, while preserving the borders of individual patterns and
their topology.

2 Related Work

Mesh simplification is a large and well researched field. Existing algorithms can be classified
into vertex clustering algorithms, incremental decimation algorithms, resampling algorithms
and mesh approximation algorithms [BKP+10].

A very common and well evaluated method is the iterative edge collapse [Hop96]. Many
variants have been proposed and studied. They mainly differ in the order the edges are
picked for collapses. This order can be based on different geometric as well as perceptual
error metrics. The most influential one is the Quadric Error Metric (QEM) [GH97], as it
can be efficiently computed and naturally handles multiple attributes per vertex. Many
decimation approaches use it as a foundation for more sophisticated error metrics based on
perceptual features [LVJ05, TZCL16]. Bahirat et al. [BLMP18] presented a simplification
algorithm for non-manifold meshes targeted at large reduction rates. The key observation for



maintaining an acceptable quality was to preserve boundaries located at surface curvatures.
To find an intersection between two moving triangle meshes, it is sufficient to test all

edges against each other as well as to test all vertices against the faces. This can be solved
by using algorithms proposed for continuous collision detection (CCD), see e.g. [HF07]. But
the elementary tests involved in CCD have been proven to be prone to numerical issues
[TTWM14] and solutions need considerably implementation effort. By concentrating on
the special cases arising during mesh simplification, Gumhold et al. [GBK03] were the first
to describe how edge collapses can be performed efficiently and numerically stable while
retaining an intersection-free mesh.

While the use case of Gumhold et al. was also the intersection-free reduction of clothing
models, our work differs in a few important aspects. The set of intersection tests presented
by the authors can be significantly reduced, resulting in faster run times. In addition,
we employ a clustered BVH to accelerate the spatial neighborhood searches to determine
possible intersections. In contrast to the regular grid used by Gumhold et al., our data
structure scales much better with mesh complexity, as we demonstrate by reducing clothing
models acquired directly from a professional CAD software.

3 Mesh Decimation Implementation

The mesh decimation approach we are mainly following here is based on successive edge
collapses with the main constraint, that an edge collapse is not performed if an intersection
would occur [GBK03]. Mesh simplification algorithms based on edge collapse are flexible
and widely used for reducing the resolution of very detailed meshes. QEM is used as an error
metric due to its efficiency and accuracy for the selection of the edges to be collapsed [GH97].
The implementation of our basic decimation algorithm is based on the OpenMesh1 decima-
tion framework along with its half-edge data structure.

An edge collapse can be performed with different placement strategies for the position of
the merged vertex. A simple, but fast and robust operation is known as halfedge collapse,
which pulls one of the vertices (v0) onto the other (v1) (cf. Figure 4). When an edge collapses,
all faces connected to v0 will be moved to v1 and change their shape. The halfedges between
v0 and v1 and the faces connected to those halfedges will be removed from the mesh, and v1
and the other connected faces to v1 will not change.

Other placement strategies for the new vertex position have been proposed. Previous
research work has shown, that a placement of the new vertex along the edge between v0 and
v1 does not yield better results in quality [LN17]. However an optimal vertex placement as
suggested in [GH97] could improve the quality of the simplified mesh. For a high-resolution
model an additional optimization step for the vertex placement would have a considerable
run time impact, and also the complexity for intersection tests is increasing considerably.

During decimation it is first checked for an edge if a collapse is topologically correct, then

1https://www.graphics.rwth-aachen.de/software/openmesh/



the quadric error for a collapse is calculated and the edge is inserted into a priority heap.
There, the edge with the lowest error contribution is always on the top. One by one, the edges
are picked from the heap and collapsed. Beside the QEM metric, other criteria can be taken
into account, because an edge collapse could lead to an undesired visual artifact, despite of
a low geometric error contribution. In the following we call these criteria constraints.

3.1 Constraints

3D models have different characteristics and need different criteria to be checked during the
reduction to achieve a visually convincing result. For cloth models boundary preservation
and intersection prevention are important constraints. It also turned out beneficial to prevent
normal flipping and to assure a healthy aspect ratio for the triangles.

The order in which the constraints are checked is influencing the overall performance. If a
fast check already prevents the collapse, slower and more complex checks like the intersection
check do not need to run. Furthermore, it is an advantage to put aspect ratio tests before
other tests, because this already eliminates collapses leading to degenerated faces, which
could cause numeric problems in later checks. When an edge collapses, the faces connected
to the deleted vertex will be moved to the new vertex and can intersect with other faces of
the mesh, especially in a layered or folded mesh. As the intersection constraint is the main
focus of this work, this constraint is described in more detail in chapter 4.

For the preservation of mesh boundaries [GH97] have introduced perpendicular penalty
planes for the border edges, to artificially increase the error and so preserve the boundaries.
For many models this works well, but for the cloth models this approach has proven to
be insufficient to ensure that the borders are kept. A more strict boundary check had to
be implemented, to prevent that edge collapses lead to a fringed boundary or reveal gaps
between cloth patterns. It is obvious that collapses from a boundary vertex to an inner vertex
must be prevented (cf. Figure 2 a)). If both vertices of the edge are on the boundary, then
there are two cases. The edge connected to the contracting vertex has a different direction as
the contracting edge (cf. Figure 2 b)), which would lead to a changed border shape. In the
second case, the edge connected to the contracting vertex is collinear with the contracting
edge (cf. Figure 2 c)), where the boundary shape does not change and the collapse is valid.

Another effect, that is to be prevented, is a face folding over after an edge collapse (cf.
Figure 3). In that case the face’s normal will point in another direction than before. This is
called a normal flip. As this can lead to shading artefacts and also to self intersections within
the same mesh layer, the collapse can not be allowed. The criterion takes into account the
angular deviation between each face normal before and after the collapse. The collapse will
pass the test, if the deviation is below a given threshold.

Faces also shall not degenerate during the decimation process. We have used the aspect
ratio criterion, that requires that the edges of a triangle have similar length. For each
collapse it is required that the aspect ratio for all affected faces is either better than before
the collapse or better than a specified threshold.



Figure 2: Illegal collapses a) and b), legal collapse c)

Figure 3: The dark blue face folds over when the edge collapses

4 Intersection Tests

4.1 Intersection Cases

The examination of intersection cases is based on the precondition that the mesh to be
reduced is triangular, manifold and intersection-free from the start. The output of most
cloth simulation systems is intersection-free. If this is not the case, the output can be
untangled [BRB+19].

At each step of the decimation only intersection-free collapses are allowed, that means
that we keep the mesh always intersection-free during the decimation. For this we follow the
approach of Gumhold et al. [GBK03], but with a crucial distinction, as we use the halfedge
collapse operator, which only moves one vertex at a time to the position of the vertex at the
other end of the edge. This simple, but efficient operation reduces the number of intersection
tests to be implemented considerably.

Let’s assume, an edge shall be contracted from v0 to v1. The contraction operation can
be described as a parameterized movement over time v(t) = v0 + t(v1 − v0) with t ∈ [0, 1].

The vertex v0 and all edges and faces connected to v0 are the simplices that are moved
over time and could potentially collide with the other non moving (stationary) simplices of
the mesh. In Figure 4 the contraction is illustrated for t = 0 (case a)), t = 0.5 (case b)),
t = 1 (case c)) and shows some stationary simplices of the mesh colored in blue, moving
simplices in red, and contracting simplices in grey. The blue colored simplices, which are a
subset of the stationary simplices, play a special role and are called the outer vertex ring of



Figure 4: Edge collapse as an operation over time (from left to right)

v0 in the following explanation.
A fold-over of faces connected to the moving vertex is excluded with a preceding normal

flip test. Therefore we can safely move the red simplices without a collision with an edge or
vertex from the outer vertex ring.

We can also exclude that contracting simplices do collide with other simplices. The
Vertex v0 will move along the edge between v0 and v1, and as this edge is intersection-free,
the move is collision-free. The same applies for the edges el and er, they will move along the
surface of the faces fl and fr during contraction. As the faces are intersection-free, the edge
moves are collision-free.

So it only remains to be checked if the group of moving simplices collide with any of
the other stationary simplices. Collision detection algorithms will be applied on the moving
vertices. In Figure 4, the moving simplices are the edges e1, ..., e4 and faces f1, ..., f5.

Figure 5: Time Sweeps for collision detection of contracting edges (left) and faces (right).

The movement of an edge over time corresponds to a triangle (cf. Figure 5), which
needs to be collision tested against all stationary edges in the neighborhood. If there is no
collision hit between the edge time sweep and another edge, then the face time sweep, which
corresponds to a tetrahedron (cf. Figure 5) must be collision checked against all stationary
vertices in the neighborhood. These two collision tests are sufficient to find all potential
intersections. We query the neighbouring edges and vertices via a BVH with fast bounding
box intersection tests. The two collision cases can be realized with an elementary geometric
segment-triangle intersection test and a tetrahedron-point inclusion test.

We have added an ε value to slightly blow up the bounding volume of all faces to prevent
numeric imprecisions and to not overlook any intersections. Degenerated time sweeps can



arise, which are not trivial to handle numerically, but fortunately these cases can be disre-
garded. The time sweep of an edge could theoretically be a line or a very needle-like triangle.
In that case the edge is moved along the stationary edge itself and the collapsed edge, in this
line no collision can arise. The other time sweep is a tetrahedron, which could be coplanar or
even collinear. The collinear case can be excluded for the same reason as the collinear edge
time sweep. In the coplanar case, the face would move along the intersection-free surface of
the face itself and a neighbouring face, which is also collision free.

The edges directly connected to the contraction affected faces (coloured in red and grey
in Figure 4) cannot collide with the moving faces. As edge and face time sweeps would touch
these edges at their vertices, this kind of intersection must be excluded. A simple solution
is to tag all the edges that shall be excluded from the collision check.

4.2 Bounding Volume Hierarchy

A clustered Bounding Volume Hierarchy (BVH) data structure is used for the spatial sorting
of all mesh triangles to enable fast intersection detection of nearby simplices during edge
collapses. The clustering of triangles has proven as an efficient strategy for collision detection
within topological changing models [Gar09, HOEM15].

Figure 6: Uniform grid for
BVH clusters

The BVH is constructed top-down as a binary tree, recur-
sively splitting the faces along the longest axis of their bound-
ing box. After each collapse the bounding volumes in the BVH
must be adapted, because faces have been moved, changed
their dimensions and some have been deleted. To accelerate
the traversal and updates of the BVH, the triangles are clus-
tered into spatial regions. With a regular grid, the mesh is
partitioned into cuboids (cf. Figure 6) and all faces, which
have their centers in the same grid will be in the same cluster.
With the clustering, there is an additional layer in the BVH,
consisting of a cluster tree. As for triangles, the clusters are re-
cursively splitted into a binary tree according to their bounding
volumes, which yields a tree with the clusters as leaves. Un-

derneath each cluster there is the corresponding BVH subtree of all faces contained within
the cluster. This is very efficient for the adaptation of the bounding volumes, as the affected
faces are usually located within proximity in the same cluster. Therefore, the update is in
most cases limited to only one cluster.

The number of faces in each cluster varies, and there are obviously many empty clusters.
To save storage, the clusters are maintained in a hash table. The distribution of faces
according to a regular grid turned out simple and efficient for BVH updates. The grid
dimensions are derived from a predefined cluster size c. Later on some analysis is presented
for the selection of a suitable value for c.



4.3 Intersection Reevaluation during decimation

After each collapse operation, all moved and connected edges need to be checked again for
constraints and the new quadric error, because the topology has changed. Reevaluated edges
are reinserted in the heap, if they are not constrained. When it comes to intersections, it is
however not sufficient to check only the connected edges, because also other edges need to
be reevaluated, as they could become a valid intersection-free collapse target in a changed
neighboring geometry. In this work it turned out, that a reevaluation does not sufficiently
increase the reduction rate to justify the additional runtime. Another approach was proposed
by Gumhold et al. [GBK03], who put discarded edge collapse operations in a FiFo queue.
With a timer the discarded operations are periodically reconsidered.

5 Performance

5.1 Test Models

Four models are used to demonstrate the decimation approach. The Stanford bunny and
the XYZ RGB dragon are used as reference models and shall demonstrate the general per-
formance of the decimation algorithm, even if those meshes are not layered. The dragon has
an under-title “XYZ - RGB” as detail, that the decimation must keep.

The main focus is to demonstrate the intersection-free decimation capabilities on real
cloth models. One test model are woman shorts, which consist of double layered front and
backsides, another waistband layer with straps, sewn-in pockets with an extra thick seam
layer and a round button. Our second cloth model is a female avatar wearing a fleece jacket
and a pant, to demonstrate also the capability to reduce a garment combination. Both
models present a very challenging case for mesh reduction.

5.2 Results

Experimental results for the runtime behaviour and the resulting mesh quality are shown
in Table 1. The results are for a fixed reduction to 30% of the original mesh. Of course
some of the meshes could be reduced more aggressively, but for cloth models a reduction
beyond 30% currently leads to undesired visual deviations. Testing has been performed with
the following threshold values: 45◦ maximum allowed normal change angle, cluster size 100,
minimum aspect ratio 0.2, 8◦ max. deviation angle for collinearity on boundaries. The times
have been measured on an Intel i7 with 2.9GHz.

The Hausdorff distance was sampled over all vertices of the original mesh and the reduced
model using Meshlab [CCC+08]. It was measured as RMS value relative to the bounding
box of the model, so that the figures are better comparable between models of different
dimensions. Of course the discarding of collapses, that lead to an intersection, and instead
performing collapses with a higher QEM, increase the overall error slightly.

In a mixed reality scenario, where cloth models are presented in a virtual environment, the



Models Shorts Garments+Avatar Bunny XYZ Dragon
# faces 99,928 631,142 69,451 7,219,045
# vertices 60,662 676,548 34,834 3,609,600
# faces (30%) 29,978 189,341 20,834 2,165,713

without intersection constraint
Red. time in sec. 0.035 0.034 0.046 0.037
Hausdorff distance 0.00015 0.000045 0.00016 0.000021

with intersection constraint
Red. time in sec. 0.14 0.14 0.09 0.22
Hausdorff distance 0.00027 0.000051 0.00016 0.000021
# prev. intersections 18,852 40,728 0 314

Table 1: Experimental results for a reduction to 30%. Red. times are per 1000 edge collapses.

visual appearance and the perceived similarity between the original and the reduced model
is however a more important aspect as the geometrical error. We have examined the results
on a desktop system and in a standalone VR headset (Oculus Quest). The original and
reduced models look similar, and especially for the garment combination it takes intensive
inspection to find the deviations. See Figure 7 and 8 for a visual comparison.

Figure 7: Original and reduced shorts model

The XYZ RGB dragon model could be reduced without destroying the lettering and
within reasonable time, although it contains over 7 million triangles. A few intersections were
found during the reduction, these could be numeric imprecisions or real self-intersections, as
the surface is vaulted. For the bunny no intersection was found. The selected cluster size
has a major impact on the runtime. Hence, we measured the runtime for different cluster
sizes (see Figure 9) and found 100 to be optimal.

5.3 Discussion and Limitations

We aimed at presenting virtual clothes on standalone VR/AR Head Mounted Displays
(HMDs). As a consequence of the limited graphic performance of such HMDs, the frame



Figure 8: Original and reduced garment combination on female avatar

rate drops significantly for high resolution meshes. On an Oculus Quest the frame rate drops
to 30 FPS for the avatar model wearing a garment combination. After reducing the mesh to
20% the frame rate reaches an acceptable level of 50 to 72 FPS, depending on how close the
viewer approaches the model, and the visual quality impact of the reduced mesh is hardly
noticeably. Hence, we believe that future mobile VR applications will benefit strongly from
our intersection-free mesh decimation algorithm.

The textures were not explicitly considered as criterion in the reduction, but the result-
ing reductions had minimal texture deviations. The cloth models have straight seams and
patches as textures, but these were barely distorted. For high reduction rates initially tiny
gaps between the mesh parts will become noticeable. The boundary constraint alone is not
sufficient to prevent diverging boundaries completely.

The clustered BVH has proven to be a fast accelerator for neighbor simplex queries and
has outperformed a uniform grid, which has been experimentally implemented. However,
the BVH is currently designed for top-down traversals, which is sub optimal for bounding
volume adaptations, which take place at the leaves and maybe a few iterations upwards the
tree. A BVH supporting bottom-up traversal could decrease the update time.

6 Conclusion and Future work

The step wise decimation method could successfully be carried out for high resolution meshes
with the addition of intersection tests and special handling of boundaries. A powerful and
fast spatial data structure is crucial for the reduction of high resolution meshes. The visual
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Figure 9: Load distribution with BVH details and cluster size variations

appearance of the reduced meshes resemble the original quite well, and can be loaded into
standalone HMDs with acceptable frame rates.

At the moment only the QEM decides which edge is picked, other criteria are only binary
(collapse is allowed/not allowed). The basic decimation algorithm could weight different cri-
teria (QEM, aspect ratio, boundary effects) and visual or perceptual metrics, also considering
texture effects, could be added.

The maximum reduction for cloth models is currently limited to 20-30% of the original
mesh, depending on the model’s complexity. The reduction rate could be slightly better, if
intersections would be reevaluated as suggested in chapter 4.3, or even avoided by choosing
a vertex placement that does not lead to an intersection, as suggested by [GBK03]. An
optimized vertex placement could even preserve the original shape more accurately.

Higher reduction can also be reached, if inner mesh parts are more aggressively reduced
than outer visible mesh parts, provided that the outer parts are not transparent. An intel-
ligent mesh inspection could heuristically analyze which layers are visible and which layers
are hidden, based on normal evaluation.

To safely prevent the diverging boundary effect, vertices within an ε distance could be
merged (welded), but still be marked as boundary vertices before the decimation. Currently,
all calculations are done on the CPU. A GPU implementation of the algorithm would be a
possible optimization candidate.
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