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Abstract
In this paper, a specific concept to implement  adaptive fuzzy rules systems is described. This is achieved  by
integrating weight factors directly into the membership functions of the rules.  The resulting possibility to change
the influence of individual rules is discussed in detail. The scheme  also supports the systematic growing of
specialized  mutants  from  existing  rules.  In  this  way,  a  combination  of  precautious  behaviour,  and  more
specialized, e.g. also performance-related operations, can be achieved. Some examples of rule schemes  illustrate
the potential of the concept.

1    Introduction

For  autonomous   robots  moving   in   environments
which are partially or mostly unknown, the impact of
sudden conditions or events that might disturb the gait
of  the  robot  or  other  aspects  of  its  operation,  can
produce effects which are equivalent to the impairing
influence  of  component  faults.   Especially,  sudden
changes in the ground surface (holes, steps, channels,
edges  etc.)  which  are  not  easily  detectable,  might
affect the robot´s actual movement, and, by leading to
accidents,  impair  its  health.  So, there is  the need to
achieve robustness against  such unknown, undesired
external effects, according to the principles of Organic
Computing, as e.g. self-organization [1, 2].
Especially  for  such situations,  the  classical  artificial
intelligence  techniques,  based  on  organizing  expert
knowledge in a  fixed set  of  behavioural  rules,  have
turned out to be insufficient. As an alternative, the use
of  fuzzy  rules  has  also  been  considered  for
autonomous  robots.  Using  ordinary  fuzzy  rule
systems,  however,  implies  as  disadvantage  that  the
win of experience that might be gained during robot
operation cannot be exploited to further optimize the
control  system.  Here,  a  combination  with  adaptive
strategies  might  be  a  remedy.  To  prepare  this
discussion, first,  in section 2.1, the basic operational
principles  of  fuzzy  rule  systems  are  shortly
introduced.  Then in section 2.2  a specific approach
for  an  adaptive  fuzzy  rule  base  organization  is
described. Section 2.3 outlines the advantages of the
approach for developing, from such rules, again more
specialized mutations.

2   Adaptive Fuzzy Rule Bases
2.1 Basic Principles of Fuzzy Rule Systems
Fuzzy  rule  systems  are  utilized  to  enable  decision-
making based on vague, “fuzzy” information [3]. Let
us  sketch  the  basic  working  principle  of  fuzzy  rule
systems  by  the  example  of  an  autonomous  robot
which receives certain input signals from the values of
which decisions have to be derived about the values of
output signals controlling certain actuators for moving
the robot.
Here, it is  usually (except for the case of disturbed
signals  which  we  shall  not  consider  here)  not  the
problem that the values of the input signal variables
are  not  distinct   (i.e.   they usually  possess  distinct,
“crisp”  values),  but  to  interpret  them  in  a  distinct
manner, i.e. the semantics of the signal value might be
“fuzzy”.
So, to draw conclusions in such a situation, as a first
step of  the fuzzy decision calculus,  the  crisp input
signal values which are  to be used for deciding about
the actuator operation, are  “fuzzified” into so-called
linguistic variables, which have,  as their values, fuzzy
terms  like  e.g.   “warm”  “  cold”,  “great”  “middle”,
“fast”, “slow” etc. This mapping is implemented by a
so-called membership function F the value of which,
from the interval [0,1], gives a “degree of intensity”,
i.e.  how strongly a given crisp value is corresponding
to a fuzzy term of a linguistic variable. Fuzzy rules are
setting  such  linguistic  variables  into  relation  with
other linguistic variables that are to govern the  output
control  signals,  which  then  e.g.  might   trigger  the
intensity of action of certain actuators. 
For  ease  of  understanding  we   confine  here  the
discussion to  the simple case  where in the left and
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right side of  rules just one fuzzy term appears.   In
Figure 1 as an illustrating example, the membership
functions F1 and F2 of two fuzzy terms  x1 and x2,
respectively, of a linguistic variable  v are shown.  As
type  of  these  functions,    the  classical    tri-angle
functions  are  considered;   everywhere  outside  the
triangle region, the value of these functions is 0 [4].  A
second linguistic variable w depends on v according
to the two fuzzy rules

R1: IF v=x1 THEN w=y1
and 

R2: IF v=x2 THEN w=y2.

If  for a crisp input c, the value of  F(c) is larger than
0,  c is said to fulfil the left hand side of the rule. As a
consequence, the rule is activated. The result of this
activation is an area,  produced by truncating the area
under  the  membership  function  of  the  right  side´s
fuzzy term, at height F(c) (see Fig. 1).
Usually all rules, for which the fuzzy transforms of the
crisp  input   fulfil  the  left  side  of  those  rules,  are
concurrently  activated.  For the   crisp value c of   v

shown in Fig. 1, the left hand sides of both of the rules
are fulfilled, i.e. both of the rules are active. Carrying
out  the first rule for the crisp value c means that the
area under the membership function of  y1 is truncated
at  the  height  F1(c),  creating  the  area  A1.  In  a
corresponding   way,   for  rule  R2  the  area  A2  is
resulting. The common concurrent processing step of
all activated rules is also called a fuzzy inference of
the fuzzy rule system.  To obtain, for one inference,  a
common  result  reflecting  the  influence  of  all  rules
activated  in  this  case,  the  union  of   the  mentioned
areas is formed. As both rules in Fig. 1 are active, the
common result area is given by the union of A1 and
A2.  In a final step,  from this area as the  output result
of an inference of the fuzzy rule base, again a crisp
signal  value  for  controlling  an   actuator  has  to  be
gained.  This  is  carried  out  e.g.,  as  one  classical
method, by computing the “center of gravity” of  the
mentioned area;   from the – crisp  – coordinates of
this center of gravity then the desired crisp actuator
control  signal  is  directy  derived.  A  detailed
description  of  the  working  principles  sketched  here
can, e.g.,  be found in [4].
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2.2 Adaptive Fuzzy Rule Systems
Quite a lot of work has been dedicated to research on
neuro-fuzzy rule systems, where the basic fuzzy rules
are optimized by training them via neural nets [5].  As
a  consequence,  a  “collective”  learning  of  the  rule
system  is  implemented;  i.e.  the  contribution  of  an
individual rule to the success of the  entire rule base
system  cannot  be identified any more.   Just  in  the

recent years,  also more attention is being paid to other
kinds of fuzzy rule adaptation  [6]. 
In  the  approach  introduced  here,  the  individual
influence  of   each  fuzzy  rule   is  considered  and
exploited.  To  do  so,  as  a  basis  we  need  a  metric
measuring the tendencies of success or failing of the
robot in solving certain movement tasks. To establish
such a metric,  we consider a small number of central, 
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critical parameters of the autonomous robot, as e.g. the
inclination  angle  of  the  main  robot  body,  battery
power  consumption,   temperature  at  servo  motors,
number (or weighted sum) of components diagnosed
to be partially or completely faulty. Their values are
mapped into a  scalar  function,  the so-called general
health function ghf. For each instance of the fuzzy rule
system,  the  effect  of  the  resulting   movement  is
checked whether it has increased or decreased the ghf,
or  whether it has left  it (approximately) unchanged.
Correspondingly,  this  change  of  ghf  is  reflected  by
updating the  influence  of  the  rules  which  had  been
active during the instance. To enable such changes, to
each rule an additional weight factor wr  is associated.
The  weight factor governs the rule in the way that the
membership function F of the fuzzy term at the rule´s
left hand side, is transformed into

Fw =  Min (F   *  wr , 1) 

This  formula reflects the condition that the maximum
of  the  membership  function  at  most  can  be  1;  this
latter case represents the strongest activity of the rule
that is possible. Thus, we have created a mechanism to
change the  truncation height mentioned above, and,
correspondingly, also to change the result area under
the membership function at a rule´s right hand side.  In
Figure 2,  for the example treated in Fig. 1, now the
membership  function of x1 has been  scaled down by
a weight factor. It can be seen that correspondingly the
result area changes.  Thus, also the union of the two
result areas is changing.
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Changing  of  the  weight  factor  of  a  rule  by  an
increment or decrement, respectively, should depend
on

• the resulting  amount of  change of the general
health function after the inference (either toward
“success” or toward “failure”) where that rule was
active;

• the  influence  of  the  considered  rule  among the
other activated rules of that inference  (measured
in terms of its  result area compared  to the union
of  the   result  areas  of  all  active  rules  of  the
inference).

A further modification of the update strategy  for the
weight  factors  results,  if  the  change  of  the  weight
factors is  constructed as a non-linear function of the
entities mentioned aboved. E.g. marginal changes of
the ghf could be responded by a sub-linear change of
weight factors, or completely neglected.  Also, if the
value of the resulting membership function at the left
side of a fuzzy rule is already close to 1, the result of
this  saturation  could  be  reflected  by  a  sub-linear
change  of  the  weight  factor.  Combining  these  two
additional principles, a sigmoid curve for the change
of the weight factor, depending on the change of the
ghf, would result.
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The  approach  described  here  so  far,   is  mainly
dependability-oriented,  i.e.  its  aim  is  to  keep  the
general  health  function  within  the  required  stability
range, or  to improve it. However, it cannot be stressed
too strongly that the concept can be extended to reflect
also  the   general  success  of  robot  operations,   by
corresponding  changes  in  the  weights  of  successful
rules. Such a success could e.g. be the timeliness of
the  robot,  i.e.  reaching  certain  coordinates  in  the
operation field of the robot within a given time bound.
Here  as  additional  constraint,  also  the  successful
carrying of a given specific load within such a time
bound could be required.  Other performance aspects
to  be  considered  might  be  the  consumption  of
resources,  as long no critical  point  of  exhaustion is
reached. 
These aspects have to be measured  by an additional
performance metric.  By combining  that metric and
the  ghf  metric,  we would  extend the  approach  to  a
performability-oriented  strategy.  Alternatively,  key
performance issues, as e.g. timeliness,  could directly

be  integrated  into  the  general  health  function,
expressing that  this property is  a part  of the robot´s
health.   

2.3 Deriving More Precise Rules
The described mechanism can also be used to grow up
detailed rules from more vague original  ones. Such an
original  vague rule can be characterized as  follows:
The  membership  function  of  its  left  hand  side  is
relatively  flat,  i.e.  it  has  a  broad  range  where  it  is
larger than 0, and,  on the other hand,  also a relatively
low peak.  In  addition,  experimentally   mutations  of
this   rule  are  produced,  where  the  left  hand  side
membership  function  has  a  narrower  range,  but   a
higher peak.  Fig. 3 shows the example of a “mother”
rule  R1 with a membership function F1 at its left hand
side,  and two mutants R1* and R1**. The  triangle
regions of the membership functions  F1* and F1** of
their left  hand sides,  are situated within the triangle
region of  F1. 

Fig. 3 Example of a rule R1 and two “specialized” mutants R1* and R1** of it,  with corresponding membership
functions F1,  F1* and F1**.  For the shown crisp value c, rule R1 and  R1* are fulfilled and active, whereas
R1** is passive, as F1**(c) is 0.

The use of  such more specialized versions of the rule,
together  with  the  original  vague  rule,  is  monitored,
and  according  to  success  or  failure  tendency,  the
influence of the mutants is changed by updating their
weight factors.   So, under the shelter of the mother
rule  some  successful  child  rules  might   grow  up,

whereas other, less successful child rules loose their
influence  and  might  finally  be  negligible.  Fig.  4  as
example  shows  a  case,  where  the  influence   of  the
mother rule R1 has increased (peak of F1 increased),
the influence of the mutant R1*  strongly increased to
the  saturation  value   (peak  of   F1*  equaling  1),
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whereas the influence of the second mutant R1** is
much weaker (peak of F1**  considerably smaller).

Fig. 4   Case where, compared to Fig. 3, the influence of  mutant R1* has grown, whereas that one of mutant
R1** has  strongly decreased. 

So, the sketched scheme allows that as a  first phase of
robot  operation  in  an  environment  not  completely
known, a set of relatively general, precaution-oriented
rules is  tried.   The influence of the successful  rules
among them remains,  and  is,  in  addition,  gradually
superimposed  by  the  influence  of  more  specialized
mutants of them. I.e. from an given initial start-up rule
base, the robot control develops by a self-organizing
process,  as  required  by  the  principles  of  Organic
Computing.
With regard to the strategy  for creating, for a given
specialized  mutant,  competitor  mutants  to  be
compared  with  it,  little  pre-knowledge  is  needed.
Simply, initially an assumption has to be made about
the position behaviour  of their fuzzy terms´ triangle
regions:  E.g., for a given mutant like R1*  in Fig. 3,
its right hand side fuzzy term is placed in the left part
of its mother rule´s triangle region. Now, if we create
a competitive mutant with a triangle region of its left
hand side, placed more to the right as that one of R1*,
should  the  same  also  hold  for  its  right  side
(“monotonous“  behaviour  of  the  spectrum  of
competing  mutants)   or  the  other  way  round  (anti-
monotonous behaviour)?  In Fig. 3, e.g., the triangle

regions of the fuzzy terms  F1 and F2  show an anti-
monotonous behaviour.
If an initial mutant turns out to be very unsuccessful,
the value of its weight approaches 0; i.e. the influence
of the mutant is marginal or completely vanishing.  In
this  case,  to  replace  this  mutant,  also  a  quite
alternative rule  can be created: Here the alternative
property   means  that,  for  given,  identical  left  hand
sides  of   both  mutated  rules,  their  right  hand  side
fuzzy terms are quite different:  I.e. in terms of their
triangle regions, these regions are placed into opposite
parts of their mother rule´s triangle region. E.g. for a
new  mutant  R***  which  is  to  replace  the  failing
mutant R** of Fig. 3,  the triangle region of  its  right
hand side fuzzy term should be placed into the left
part of its mother´s right hand side triangle region.
It has to be noted  that simultaneous creation of such
quite  different,  “antagonistic”  mutants  should  be
avoided,  since,  due  to  their  identical  left  hand  side
fuzzy terms,  they are activated always concurrently,
and,  because  of  their  symmetric  placement  with
respect to their mother rule´s triangle region,  the area
effects of this activation would compensate each other
(see Fig. 5).
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Fig. 5 Creation of two antagonistic rules R1** and R1***. As can be seen,  the triangle regions of their right
hand sides are situated symmetrically with regard to that one of the mother rule R1. So, for all truncation heights,
the center of gravity of the union of their result areas with that one of the mother rule R1, is identical to the
center of gravity of the mother rule´s result area alone; i.e. the area effects of the two mutants are compensating
each other.

Fig  6  shows,  as  a  simple  evolution  example,  the
resulting behaviour of competing mutants of a   rule R.
It It can be seen that first, at time t1,  the rule R  is
created,  with a medium initial  maximum of its left
hand side   membership  function.  As  the  success  of
rule  R  evolves  quite  well  (timepoint  t2)  specialized
mutants R* and  R** of  R  are derived.  At timepoint
t3,  R**  has  moderately  lost  influence.  But,  due  to
missing  success,  the  influence  of  mutant  R*  has
declined and and tends  towards final vanishing. Thus,
as a compensating attempt, now, at timepoint t4,   an
additional  mutant  R***   is  created  which  is
antagonistic to R*.  At  timepoint t5, it can be seedn
that this mutation  turns out to be the most successful
rule among the created mutants. 
An alternative  to  the  need that  antagonistic  mutants
must be creately sequentially,  could be to create them
simultaneously,  but  with  clearly  different  initial
weight  factors.    As   a  consequence,  however,  the
competition   between  the  two  antagonistic  mutants
usually would take longer time, until one of them has
been  driven  into  a  marginal  role.  Such  fine-grain

effects are to be studied by future analyses.  Also, it
will be the focus of future research to investigate, by
simulation,   the  behaviour  of   autonomous  robots,
under the control an adaptive fuzzy rule set, in a more
detailed physical environment.    

3   Conclusion and Outlook 

In this paper, a specific concept has been described to
implement   adaptive  fuzzy  rules  systems,  by
integrating  weight  factors  directly  into  the
membership functions of the rules. The scheme  also
supports  the  systematic  growing  of  specialized
mutants  from  existing  rules.  In  this  way,  a
combination  of  precautious  behaviour,  and  more
specialized,  prerformance-related  operations  can  be
achieved.
It will be the focus of  future research to investigate,
by simulation,  the behaviour of  autonomous robots,
under the control of adaptive fuzzy rules,  in a more
detailed physical environment. 
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Fig. 6 Example of the evolution of the maximum values  of the membership functions, for several versions of a
rule:
a) At timepoint t1 a more general rule R is created, with an initially medium weight of its left hand side fuzzy
term´s membership function.
b) Until timepoint t2 R has considerably increased  its influence (maximum of  the membership function grown
to nearly 1); now two specialized mutants of R,  R* and R**, are created, both with the same medium  initial
value of the membership function maximum.
c) At timepoint t3 it is observed that the influence of R*  has decreased to a marginal role; also the influence of
R** has decreased.
d) Thus, at timepoint t4 as an alternative, a rule R*** which is antagonistic to R*, is created.
e) At timepoint t5 it has turned out that the mutant R*** is the most successful version.
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Finally,  it  cannot  be  stressed  too  strongly  that  the
application of the sketched adaptive fuzzy rule base
organization  is  not  confined  to  the  area  of  robot
control; it can be applied also for the control of other
autonomous systems, e.g. software agents, or, also  to
organizational systems.

4   References
[1] Brockmann,  B. W.; K.-E. Großpietsch,  K.-E;
Maehle, E.;  Mösch, F.: ORCA – Eine Organic
Computing – Architektur für Fehlertoleranz in
autonomen mobilen Robotern. Mitteilungen der
Fachgruppe “Fehlertolerierende Rechensysteme”, No.
33, March 2006, pp. 1 –17

[2]  Grosspietsch, K.-E.;  Silayeva, T.A.: Organic
Computing – A New Paradigm for Achieving Self-
Organized Dependable Behaviour of Complex IT
Systems. Proc. IDMIT 2006 Conference, Ceske
Budejovice 2006, Trauner-Verlag Linz (Österreich),
pp. 1 127-138

[3] Böhme, G.: Fuzzy-Logik, Springer-Verlag Berlin
Heidelberg New York 1993

[4]  Roddeck,  W.:  Einführung  in  die  Mechatronik.
B.G. Teubner Stuttgart 1997

[5]  ��������\
 ����
��������
�����	����������������
�
���������������!�����	����������������

[6] IEEE Computer Society Task Force on Adaptive
and Evolving Fuzzy Systems,
http://www.fee.unicamp.br/IEEE_AFS/

24




