
Challenges of Network Traffic Classification Using Deep

Learning in Virtual Networks

Daniel Spiekermann1, Jörg Keller2

Abstract: The increasing number of network-based attacks like denial-of-service and ransomware
have become a serious threat in nowadays digital infrastructures. Therefore, the monitoring of network
communications and the classification of network packets is a critical process when protecting the
environment. Modern techniques like deep learning aim to help the providers when detecting anomalies
or attacks by learning details extracted from a network packet or a flow of packets. Most of these
models are trained in networks without any kind of virtualisation, especially network virtualisation
overlay environments are not investigated in detail. In this paper, we analyse the classification rate of a
Convolutional Neural Network (CNN) faced with encapsulated packets. We evaluate this approach
with a proof-of-concept based on a binary classification of a self-curated data-set.
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1 Introduction

The use of network virtualisation overlay (NVO) is a common technique in modern network

infrastructures. A static network design does not provide the required flexibility for modern

environments, which demand for dynamic and ubiquitous network access, high speed packet

transfers, east-west traffic, customizability and secure tenant isolation [BAM10]. With the

evolution of dynamic overlay protocols, limitations of traditional networks were eradicated

and the flexibility inside the network as well as the automation of the environment increases.

Overlay protocols like VXLAN, GENEVE or NVGRE encapsulate the original network

packet by preceding one or more additional header information. Overlay protocols increase

the possibilities inside the network, but add complexity for involved devices like switches,

routers and firewalls when analyzing network packets because of the additional layers. In

addition to this, security staff, digital forensic investigators or support teams are faced with

a higher complexity when capturing and analysing the transferred network protocols, i. e.

for troubleshooting, malware detection or law enforcement.

Typically, a provider uses only one of these protocols in the environment, but the use of

different protocols simultaneously or the combination of protocols at the same time is

possible. Using one or more of these encapsulating protocols results in changed network
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packets inside the environment. Whereas network packets inside specific network areas

(e. g. a tenant network) remain without any overlay protocol, packets transferred inside the

backbone network might be changed depending on the path they are traversing. Figure 1

shows an exemplary network with only two different tenants and three network segments.

VTEP

No VXLAN

No VXLAN

No VXLAN

VTEP

VXLAN

VTEP

VXLAN VXLAN

Fig. 1ȷ NVO usage in networks, machines of different tenants are marked in different colours.

Each rectancle represents a single subnet (e. g. a rack or compute node), the VTEPs manage the

communication of nodes of the same color.

Inside a tenant network, e. g. the upper square with two red VMs, no VXLAN encapsulation

is needed, but if the red VM in the left square is connected, each network packet is

encapsulated if sent to this VM. Depending on the position of capturing, this protocol

change effects all types of network classification, intrusion detection or security devices

like firewalls and application layer gateways.

Providers of modern networks use traffic classification techniques to get insights about

communication inside the environment. Static approaches like deep-packet inspection as

well as dynamic techniques like machine learning or deep learning are used to increase

the security of the infrastructure. Anomalies, outliers, adversarial attacks and unwanted

traffic can be classified for further processing. So, the knowledge of network traffic inside

an environment is crucial for every modern infrastructure.

Prior implementations mostly focus on a static ruleset to classify benign or malicious network

traffic. As shown in [SK20], a shift from a static to a dynamic network infrastructure might

result in more complex techniques, so static approaches are now insufficient.

With the evolution of machine learning approaches, the possibilities of network traffic

classification, anomaly detection and the overall network-security increases. Different

algorithms provide improved techniques to eradicate common issues like the heterogeneous

traffic or user-customized network infrastructures. But these techniques still have issues
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when faced with virtualised network traffic, which demands for new or adapted training sets

to avoid inappropriate detection and protection results. As an example, [SK21b] details, that

different algorithms like IsolationForest have fail in the detection of anomalies when faced

with virtualised traffic. Using deep learning algorithms further enlarge the possibilities of

artificial intelligence. But similar to machine learning algorithms, most of these applications

do not cover the aforementioned virtual environments.

Deep learning techniques use multiple layers in an artificial network to provide various

applications like image classification, speech recognition, recommendation systems or fraud

detection, which gain an advantage over human or static implementations [GBC16]. In

network environments, techniques like Convolutional Neural Networks (CNN) or Generative

Adversarial Network (GAN) are used to improve the security [SSE19] of intrusion detection

systems [Ta16], detect malware [Vi19] or spam [He17] and classify the network traffic

[XLJ21].

An improved detection rate in network classification is reported in the literature [Lo20],

but most of the research is focused on plain or encrypted network traffic. In this paper,

we analyze the application of a CNN when classifying NVO traffic. As done in [Li19]

for networks without virtualization, we convert network packets to pictures and train our

CNN with these information. The detection rate of ≥ 99% is similar to approaches like

[Li19, Wa18, MMS19]. However, the analysis of the same network traffic encapsulated with

different NVO protocols shows a reduced detection rate depending on the protocol.

The main contribution of our research areȷ

• We identify the role of different network virtualization protocols on anomaly detection

algorithms.

• We explore the difficulties that deep learning algorithms encounter when being

applied on virtual instead of physical networks.

• We provide a proof-of-concept to support our hypotheses with quantitative experi-

ments. We provide a self-curated data-set for these experiments which we plan to

make public.

The remainder of this article is structured as follows. Section 2 discusses related work

regarding network traffic classification and virtual networks. In Section 3 we describe

the initial classification process with a CNN. The trained model is used in Section 4 to

determine the detection rate with encapsulated network packets. Section 6 concludes this

paper and gives an outlook to our future research.
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2 Related Work

Network traffic classification is a well-known and deeply researched area in all fields of

information security like anomaly detection [Ma03] and attack prevention [Fe03] as well

as network management and monitoring [Ts18]. [AKO15] gives an overview of different

traffic classification techniques. Static techniques like port-based, payload-based algorithms

or deep-packet inspection are discussed in [Ac10].

The use of deep learning as discussed in [Li19]. [Wa18] shows the possibilities of a CNN

and residual network (ResNet) to classify network traffic, even when the traffic is encrypted.

NVO changes the internal structure of network infrastructures, which might result in critical

effects for the detection algorithms [SK20]. The impact of an unsupervised packet based

approach is investigated in [SK21c].

3 Deep learning classification

The use of deep learning is a common technique to classify network traffic. Most of the

research is done without any dynamic encapsulation protocol [SSJ21, Ac19] but on plain

network protocols. In addition to this, deep learning is able to classify network traffic

even when it is encrypted or non-plaintext [Ac18]. By this, anomalous network traffic and

malware might be detected and discarded or the knowledge of transferred network packets

helps to improve the performance in a network.

To evaluate the impact of a network change to a CNN, [Ze19] proposes the following

stepsȷ Packet Generation, Traffic Purification, Traffic Refiner, Length Unification and Packet

conversion. To generate network packets, we created a virtual network environment, which

facilitates network packet captures at various positions. Inside this network, we focus on

the transmission of ICMP (Internet Control Message Protocol) packets. These packets

differ from a huge number of common network packets like TCP or UDP traffic which

simplifies the initial process of network packet classification. So, we were able to improve

the analysis of the classification process. The traffic purification and refinement was done by

sanitizing the network traffic to remove unwanted network traffic like ARP requests or other

broadcast packets. After this, our capture files contain only wanted network packets. Our

first capture file contains 14,072 ICMP messages with different types like ICMP request

(type 0) and response (type 8) or destination unreachable (type 3) [Po81]. The next step was

the transformation of every single packet to a picture representing this packet. We use an

adaptation of the Python module file2image3, which ensures the correct transformation of

the packet to a picture in png-format. Every network packet was scaled to 128 × 128 pixels,

a result is shown in Figure 2.

We use Tensorflow and Keras4 to create a CNN for image classification. We use the following

3 Details can be found at https://pypi.org/project/file2image/

4 Details can be found at https://keras.io/about/
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Fig. 2ȷ Image of a network packet generated with file2image and scaled to 128 × 128 pixels

layers derived from [KJ18, SHA17] to create our model, which is trained with 50 epochs,

but without any special optimisationsȷ Conv2D, MaxPooling2D, Activation, Dense, Add,

Dropout and BatchNormalization.

Our binary classification is used to detect ICMP packets in a number of different network

packets and has a validation accuracy of 99%.

After this we analyse the model with a second data-set containing various network packets

and protocols like HTTP, RTP, SSH and ICMP, but no NVO traffic. This data-set 𝑀

comprises 2,761,441 network packets, the subset of ICMP packets is denoted by 𝐼 ⊂ 𝑀 . By

enumerating each picture we are able to verify the prediction for each network protocol

more easily.

Our model analyses each network protocol and predicts the classification rate, i.e. the

probability 𝑝𝑖 that packet 𝑖 an ICMP packet. The following excerpt exemplifies the output

of the analysis.

684.png is 99.97 percent NO ICMP and 0.03 percent ICMP.

685.png is 0.03 percent NO ICMP and 99.97 percent ICMP.

686.png is 99.99 percent NO ICMP and 0.01 percent ICMP.

687.png is 0.02 percent NO ICMP and 99.98 percent ICMP.

We use tshark to validate this results. Packets 685 and 688 are correctly classified as ICMP

packets by the model, the other network packets are correctly classified as non-ICMP,

because they are RTP, UDP and TCP packets. The following snipped illustrates how the

predictions are validated.

tshark -r capture.pcap -T fields -e frame.number -e_ws.col.Protocol

684 RTP

685 ICMP

686 UDP

687 ICMP
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This demonstrates the correctness of our model, which has an average detection rate
∑

𝑖∈𝐼 𝑝𝑖/|𝐼 | of 99.98%.

4 Packet transformation

This section describes the process of creating virtual network packets and the classification

of these adapted packets with the already trained model.

The shift of network packets to virtual packets is done with Encapcap [SK21a]. This

tool helps to create encapsulated network packets from plain network packets by adding

necessary header information and is able to fill randomized, but still plausible values into

the new headers of these network packets, which simulates virtual behaviour like protocol

swapping or changes of the IP addressing scheme. We transformed different network

captures containing network packets with protocols (HTTP, HTTPS, ICMP, RTP, SSH and

QUIC) with Encapcap to data-sets with encapsulating network protocols. We use VXLAN,

NVGRE and GENEVE as NVO protocols.

• VXLAN The most notable protocol to implement NVO is virtual eXtensible LAN

(VXLAN) [Ma14], which is similar to the well-known VLAN protocol, but expands its

features and increases the number of possible virtual separated subnets to 16,777,216

networks. VXLAN uses a 24-bit header field named virtual network identifier (VNI)

to isolate the different networks, the encapsulation is done with the User Datagram

Protocol (UDP).

• NVGRE Network Virtualization using Generic Routing Encapsulation (NVGRE) is

defined in RFC 7637 [GW15]. It bases on GRE as the encapsulating protocol and uses

parts of the packet header to manage and control the network separation. NVGRE

uses 24 bit of the optional fields to add a Virtual Subnet ID (VSID).

• GENEVE Generic Network Virtualization Encapsulation (GENEVE) is defined in

[GGS20] and uses a 24-bit header field named Virtual Network Identifier (VNI). In

addition to this, GENEVE provides huge flexibility for the encapsulation of different

network packets. GENEVE uses a small fixed header followed by variable-length

option fields used for the transmission of specific information like identifiers. Similar

to VXLAN, GENEVE uses UDP as the transport protocol.

All implementations use a 24-bit header field for network isolation, but in combination

with various header fields a resulting network packet differs after the encapsulation process

depending on the used virtualization protocol.

We created one capture file for each aforementioned virtualization protocol. Each capture

file contains the correct number of network packets. As described in Section 3, each network

packet of each capture file is transformed to an image. Due to different protocols and their
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type of encapsulation, different pictures result from this process. Figure 3 shows the different

pictures.

(a) Plain (b) VXLAN (c) NVGRE (d) GENEVE

Fig. 3ȷ Pictures of network packet before and after transformation

The transformed packets have a bigger size because the creation process takes care of the

packet length and therefore creates pictures with a size depending on the packet size, and

thus depending on the virtualization protocol. To ensure compatibility, we scale each image

to 128 × 128 pixels.

5 Discussion

We use our trained model to classify each network packet 𝑖 in the capture file 𝑀𝑃 (the

subset of ICMP packets is denoted as 𝐼𝑃) for virtualization protocol 𝑃 either as ICMP or as

non-ICMP, i.e. for each packet 𝑖 we get probability 𝑝′
𝑖

of being an ICMP packet. Table 1

shows the average
∑

𝑖∈𝐼𝑃
𝑝′
𝑖
/|𝐼𝑃 |, best max𝑖∈𝐼𝑃 𝑝′

𝑖
and worst min𝑖∈𝐼𝑃 𝑝′

𝑖
detection rates for

each protocol 𝑃. For comparison, we repeat that the average detection rate of plain network

packets was 99,98%, as listed in Section 3.

Tab. 1ȷ Detection rate

Protocol Average Best Worst

VXLAN 73.14% 99,99% 14,48%

GENEVE 82.21% 99,99% 29,99%

NVGRE 99.94% 99,99% 99,97%

Figure 4 shows the worst, average and best prediction rate for each protocol. The colored

rectangle marks the upper and lower quartile of the prediction.

Whereas the predicted detection rate of our trained model for VXLAN and GENEVE spread

widely, the prediction rate of NVGRE remains nearly to the prediction rate of plain traffic.

This can be explained by investigating the encapsulation structure in each protocol. VXLAN,

as well as GENEVE, adds UDP and as a second addition, a protocol dependent header in

front of the original network packet. Each UDP packet contains a checksum, which varies

for every packet. This additional information results in a more different network protocol,

which confuses the trained model, and leads to the reduced prediction rate.
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Fig. 4ȷ Prediction distribution per protocol.

6 Conclusions

The use of deep learning algorithms provides an improved classification of network packets

and detection of malicious or unwanted network traffic. But most of the research focus

on plain network traffic without any encapsulation, and are therefore limited in their

significance for modern and virtual environments. In this paper, we analyzed a model with a

high detection rate of 99,98% when classifying non-encapsulated network traffic. Using this

model for traffic classification of encapsulated network packets, the detection rate decreases

to 70 to 80%. As a result, security implementations in modern networks using NVO have to

consider the high dynamic and possible protocol changes inside the environment to reach or

steady the needed detection rate.

The use of ICMP messages does not completely cover the real world, but it shows the risks

of trusting deep learning models in highly dynamic networks. We use a static approach of

network packet transformation, but virtual networks in operation include more possible

shifts and different complex scenarios like user-customized networks. By this, customers are

able to create their own networks in a provider environment, thus the provider does not have

knowledge of these changes. As a result, the provider is unable to react timely. Our future

research will focus on more real-world scenarios, supported by the analysis of well-known

data-sets like CAIDA Anonymized Internet Traces 2016 Dataset5 or KDDCUP996, either

with or without encapsulated protocols.
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