Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

Enterprise Modeling in Support of SOA Migration Analysis

Sybren de Kinderen™?, Monika Kaczmarek-Hef3?

4 University of Duisburg-Essen, Universititsstrasse 9, D-45141, Essen, Germany

Abstract. This paper shows how enterprise modeling can support a Service-Oriented Architecture (SOA)
migration analysis in terms of (1) IT infrastructure understanding, (2) identifying and refining candidate
services by means of analyzing both the current IT infrastructure capabilities and business concerns, as well
as (3) understanding how candidate services build on the current IT infrastructure. Based on requirements
derived from a conducted literature study on SOA analysis and SOA migration projects, we identify the
Multi-Perspective Enterprise Modeling (MEMO) method as a suitable language family to support a SOA
migration analysis. Furthermore, we extend MEMO’s language for IT infrastructure modeling, called ITML,
with concepts central to SOA migration, and show how the modeling language can support key phases of a
SOA migration project. We also provide a threefold evaluation of our SOA migration modeling approach
by means of (1) application to documented SOA migration projects, (2) a scenario-based comparison
with ArchiMate, another language that is a promising candidate for a SOA migration analysis, and (3) an
assessment against the identified requirements. Finally, we discuss corresponding software tool support.

Keywords. Enterprise modeling ¢ Service-orientation * SOA migration * Multi-Perspective Enterprise
Modeling

Communicated by A. Koschmider. Received 2017-03-30. Accepted after 2 revisions on 2017-10-16.
1 Introduction which implies that a change in one software com-
ponent has a minimal effect on the remaining
software components. As a concrete example,
Rosen et al. (2008, p. 6) discuss how service-
orientation adopted by a bank allowed for reuse
of IT functionality, which in turn accelerated the
offering of a banking service across different orga-
nizational channels, be it internet banking, mobile
banking, or others.

Service-Oriented Architecture (SOA) is posi-
tioned as an instrument to foster organizational
flexibility and agility (Alwadain et al. 2016;
MacLennan and Van Belle 2014), e.g., by re-
ducing time-to-market, reusing assets across dif-
ferent lines of business, and shortening project
lead times (Rosen et al. 2008). As implied by its
name, a service is the primary object of interest for
a SOA. A service is defined as a “self-contained”
module that provides a business functionality via
a standardized interface, whereby the interface
hides how the functionality provided by a service
is realized (Papazoglou et al. 2008).

Importantly, service-orientation should help
bridge the gap between business concerns and
IT concerns (Bhallamudi and Tilley 2011; Papa-
zoglou and Heuvel 2006). The mentioned gap
results, among others, from the technology-driven

The self-contained nature of services offers
several advantages. For one, service-orientation
promotes loose coupling (Rosen et al. 2008, p. 64),

* Corresponding author.

E-mail. sybren.dekinderen @uni-due.de

Note: This work is based on de Kinderen and Kaczmarek-
HeB (2017).

functional silos of previously designed IT systems,
i.e., legacy systems, which are often developed
over decades using such programming languages
as COBOL, C, or C++ (Sneed et al. 2016). Al-
though legacy systems are usually hard to modify
and expensive to maintain, at the same time, they

http://dx.doi.org/10.18417/emisa.13.1
sybren.dekinderen@uni-due.de

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Sybren de Kinderen, Monika Kaczmarek-Hef3

are critical for the mission of the organization and
thus, must be operational at all times (Khadka
et al. 2013b; Sneed et al. 2016).

Migration of legacy systems to service-based
systems enables achieving advantages offered by
SOA, while, at the same time, reusing the required
capabilities of the legacy systems (Razavian and
Lago 2010). Roughly speaking, a SOA migration
project, i. e., a move towards service-orientation,
encompasses two main steps: (1) determining
which elements of an IT infrastructure should be
migrated, and (2) deciding on how the migration
itself should be performed (cf. e. g., Khadka et al.
2013b; Razavian and Lago 2010).

However, successfully migrating an organiza-
tion towards service-orientation has proven to
be challenging (Bhallamudi and Tilley 2011;
Hirschheim et al. 2010; Khadka et al. 2014; Rabelo
et al. 2015). Among others, this is due to insuffi-
ciently addressing: (1) an alignment of business
and IT concerns related to, e. g., an insufficient
understanding of how SOA should support busi-
ness concerns, such as, e. g., business processes to
be supported by service-orientation (Bhallamudi
and Tilley 2011; Khadka et al. 2014; Rosen et al.
2008, p. 137); and (2) technical concerns, related
to, e. g., inadequate integration with legacy sys-
tems (cf. Bhallamudi and Tilley 2011; Khadka
et al. 2013b; Lewis et al. 2006; Razavian and
Lago 2010). Therefore, an instrument is needed
that would support analysis of such business and
technical aspects in tandem.

In this context, a promising instrument seems
to be the application of enterprise modeling (EM),
which focuses on supporting sense-making of
organizational concerns in tandem with informa-
tion system concerns (Frank 2012). Enterprise
modeling indeed has the potential to play an im-
portant role in supporting SOA migration (Winter
and Ziemann 2007; Ziemann et al. 2006). In
particular, enterprise modeling can support un-
derstanding of current IT infrastructure, which
provides a baseline of IT capabilities that can
potentially be offered as services (Khadka et al.
2013b; Razavian and Lago 2015). Furthermore,
EM may help identifying and refining candidate

Special Issue Wirtschaftsinformatik 2017

services, based upon aforementioned IT function-
alities, as well as an analysis of business concerns.
As an example of the latter, one can translate SOA
migration objectives such as “share capabilities
across different lines of business” into concrete
SOA designs. Finally, EM may foster understand-
ing of how candidate services build on the current
IT infrastructure (Khadka et al. 2013b; Razavian
and Lago 2015).

Nevertheless, although various (enterprise)
modeling approaches exist that allow for model-
ing IT infrastructures and/or expressing a service-
orientation from various angles (OMG 2012; Ter-
louw and Albani 2013; The Open Group 2013, to
name a few), these approaches often on purpose
forgo the level of detail that is required to analyse
IT infrastructure for the needs of SOA migration.
In addition, as we detail in Sect. 3, often they in-
sufficiently relate I'T concerns and organizational
concerns.

Also other existing initiatives fall short when
it comes to supporting SOA migration projects.
For instance, in tandem with the emerging use of
so called microservice architectures, DevOps is
often discussed as an approach to help manage
a migration to a service-orientation (see, €. g.,
Zimmermann 2017). Following Lwakatare et al.
(2015), we define DevOps as “a set of engineering
process capabilities supported by certain cultural
and technological enablers. Capabilities define
processes that an organization should be able to
carry out, while the enablers allow a fluent, flexi-
ble, and efficient way of working” (p. 170). Thus,
it encompasses a wide set of potential tools and ca-
pabilities. However, due to its wide scope DevOps
practices are often heterogeneous, fragmented,
and difficult to integrate (Wettinger et al. 2014).
Also, since DevOps is such a broad term, there
are no clear criteria to determine what falls under
its umbrella. As a result, although we consider
DevOps as a potentially complementary approach,
with its orientation towards management, it does
not provide the model-based support that we are
after.

As a response to the observed research gap, we
focus on the following research question: What

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

should be the scope and characteristics of a model-
ing language/modeling approach able to support
a SOA migration analysis? To address this ques-
tion, in our earlier work (cf. de Kinderen and
Kaczmarek-Hef} 2017), we made a first step by ex-
tending a selected IT infrastructure modeling lan-
guage called ITML (Heise 2013), being part of the
Multi-Perspective Enterprise Modeling (MEMO)
language family (Frank 2012). This paper contin-
ues this effort by (1) extending the ITML further
and emphasizing how the extended ITML can be
complemented by other languages of the MEMO
language family, so as to link the IT perspective to
organizational concerns. In particular, we discuss
a relationship to business processes (as modeled
in OrgML, Frank 2014), and show how goal mod-
eling (by means of GoalML, Overbeek et al. 2015)
can help translate SOA migration objectives into
concrete SOA designs; (2) showing, based on a
set of key SOA migration activities distilled from
literature, which role modeling can play across
the entire life-cycle of SOA migration analysis.
This is opposed to focusing only on the to-be anal-
ysis, as in our earlier work (cf. de Kinderen and
Kaczmarek-HeB 2017); (3) highlighting the added
value of choosing MEMO for supporting the SOA
migration analysis compared to other candidate
modeling languages. In particular, we do this
by a scenario-based comparison of the MEMO
language family with the enterprise architecture
language ArchiMate. To this end we rely on a
realistic, extensively documented SOA migration
scenario from the insurance industry, reported by
Rosen et al. (2008, pp. 541-578). Finally, (4) dis-
cussing software tool support for the extended
ITML, and other MEMO languages.

This contribution follows the design-oriented
research paradigm (Osterle et al. 2010). The result-
ing IT artifact (i. e., the EM approach MEMO with
an extended IT modeling language) aims at provid-
ing a benefit to organizations by supporting SOA
migration projects. To extend ITML, we follow
the language development method proposed by
Frank (2010), which has already been successfully
used in other projects (e. g., Goldstein and Frank

2016; Overbeek et al. 2015). This method pro-
vides a macro-process and corresponding roles, as
well as guidelines that support a language designer
in the language design process.

This paper is structured as follows. First, we
discuss specific features of SOA migration ap-
proaches and derive requirements that a modeling
language/modeling approach should fulfill. Next,
we check the fulfillment of those requirements
by existing approaches. Then, we present the
proposed extensions to the modeling approach
that comes closest to fulfilling our requirements:
ITML, being part of the MEMO language family.
Subsequently, we evaluate the proposed approach
(a) against the defined requirements, (b) by means
of an application to an extensively documented
SOA migration scenario, and (c) by means of
a comparative discussion, in the sense of com-
parative reflections on modeling the same SOA
migration scenario in ArchiMate. The paper con-
cludes with final remarks and an outlook on future
research.

2 Modeling Support for SOA Migration
Analysis

In the context of the field of Information Sys-
tems (IS), “migration” is usually understood as
a modernization approach that moves an exist-
ing, operational system to a new technological
or computing platform, while retaining the data
and functionalities of the moved system and caus-
ing as little disruption as possible to the existing
operational and business environment (cf. Bisbal
et al. 1999). Following Almonaies et al. (2010),
depending on the required level of system under-
standing, migration strategies can be classified into
two different categories: “black-box” migration
(mostly: wrapping) and “white-box™ migration
(e. g., application re-engineering)! . With a black-

! ' We follow a broad interpretation of the term “migration”
in line with Khadka et al. (2013a) and Razavian and Lago
(2015), encompassing a wide variety of SOA migration
strategies, such as wrapping, application re-engineering, and
more. This is opposed to Almonaies et al. (2010) who
interpret migration as one type of SOA “modernization”
strategy.

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Sybren de Kinderen, Monika Kaczmarek-Hef3

box strategy, one focuses on the external behavior
of a legacy system. Thus, one analyses its inputs
and outputs so as to understand the system inter-
faces, and abstracts away from the inner workings
of the system. Differently, as implied by name,
white-box strategies require understanding of the
legacy system internals. Thus, one requires exten-
sive knowledge about the programming languages
used, whether a legacy system is proprietary, etc.

In this section, we review the existing SOA
migration approaches. This allows us to discuss
the role that modeling can play, and to identify the
information required by a SOA migration project.
Following this, we derive a set of requirements
(cf. Tab. 1) for a language supporting a SOA
migration project.

2.1 SOA Migration Analysis and the Role
of Modeling

The subsequent analysis is based on a literature
review comprising the fields of legacy systems
reengineering, SOA migration and development as
well as cloud migration. In selecting our sources,
we first of all rely on well-established approaches
such as, e. g., SOMA (Arsanjani et al. 2008), and
SoDD (Papazoglou and Heuvel 2006). Second,
we rely on recent literature reviews on SOA mi-
gration and cloud migration, such as the work
of Jamshidi et al. (2013), Khadka et al. (2013a),
and Razavian and Lago (2015); using their ag-
gregated insights, and treating them as “portal”
papers for follow-up. For instance, Razavian and
Lago (2015) in their systematic literature review
identify commonalities and differences between
75 identified approaches and propose a reference
model of typical activities that are carried out for
the legacy to SOA migration. In turn, Khadka
et al. (2013a) provide a historical review of legacy
to SOA migration approaches. Based on the
evaluation of 121 primary studies the authors
conclude that there is a lack of (a) adequate au-
tomation level and techniques for determining
the decomposability of legacy applications, and,
(b) investigations of an organisational perspective
on migration. Also, they report on after-migration
experience. Finally, Jamshidi et al. (2013) focuses

Special Issue Wirtschaftsinformatik 2017

on different approaches to SOA/cloud migration
and evaluate 21 studies on cloud migration against
different dimensions such as contribution type,
evaluation method, means of migration, migration
type, migration tasks, intents of the migration, mi-
gration tool support, and constraints. In addition
to the literature review, we investigate various re-
ported SOA migration projects, e. g., Brandner et
al. (2004), Rosen et al. (2008), and Zimmermann
et al. (2004).

SOA migration approaches such as Service Mi-
gration and Reuse (SMART, Balasubramaniam
et al. 2008; Lewis et al. 2005), Service-Oriented
Modeling and Analysis (SOMA, Arsanjani et al.
2008), and Service-oriented Design and Devel-
opment (SoDD, Papazoglou and Heuvel 2006),
typically consider a SOA analysis phase to com-
plement SOA implementation and management.
Although the emphasis on a SOA analysis dif-
fers across the approaches, the idea is similar:
SOA migration is as much an organizational as a
technical undertaking (Razavian and Lago 2015;
Rosen et al. 2008). As such, to complement
technical SOA implementation issues (such as a
service interface specification, e. g., in terms of
Web Service Description Language (WSDL) and
various complementary WS-* specifications such
as WS-Coordination and WS-Security, cf. Gus-
tavo et al. 2004, p. 140) a SOA analysis supports:
(1) aligning services with the business context,
in terms of fulfilling organizational goals and/or
having a clear role in business processes, and
(2) making sure that service-orientation builds on
the capabilities provided by existing assets.

Fig. 1 shows the key SOA analysis activities:
“Business Context Analysis”, “Legacy System Un-
derstanding”, “Candidate Service Identification
and Refinement”, and “Target System Understand-
ing”. Per activity, we also show the information
required, and thus, a role that modeling can play.
Those SOA analysis activities have been identi-
fied as a synthesis and summary of (a) methods
dedicated to SOA migration analysis: SMART
— Migration Planning (SMART-MP, Balasubra-
maniam et al. 2008), a part from the SMART

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

Models of
organizational
structure, business
processes, business s
goals Context
Analysis

Legacy System
Understanding

IT Infrastructure
models. Focus: legacy
systems, design
knowledge

Candidate
Service

IT Infrastructure 'de"t't"zatm"
models, service a

) N Refinement

identification

modeling, goal-service
modeling

Target System
Understanding

IT Infrastructure
models. Focus: service
orientation, targeted
non-functional aspects

Figure 1: SOA analysis activities — a synthesis and summary based on Arsanjani et al. (2008), Balasubramaniam
et al. (2008), Khadka et al. (2013b), and Papazoglou and Heuvel (2006)

SOA migration method family focused on migra-
tion planning, and the SOA migration method
proposed by Khadka et al. (2013b); as well as
(b) the initial phases of the comprehensive SOA
migration approaches, such as SOMA, SoDD,
and the approach by Rosen et al. (2008). The
identified, non-sequential activities are discussed
subsequently.

Business Context Analysis. In the initial stage
of SOA migration, this activity aims at providing
understanding of (1) expectations towards the
migration project (Balasubramaniam et al. 2008),
and (2) business processes to be supported. In
addition, this activity should also already allow
to roughly identify candidate services. At a later
stage of SOA migration, the “Business Context
Analysis” activity is used to support analysis of
business concerns within the other activities, such
as “Target System Understanding”.

In order to understand the business context of
SOA migration projects, different aspects of the
organization at hand are considered. First and
foremost, the SOA migration objectives need to be
clarified, and the owners of these objectives should
be identified. As we illustrate in Sect. 5.2, this
allows to identify conflicts and complementarities
between different SOA migration objectives, as
well as to translate high-level SOA objectives into
more concrete ones. Also the impacted business
processes and their role for an enterprise need to

be considered. Therefore, the role of modeling
is here to provide the required understanding of
the above mentioned aspects and facilitate the
communication between different stakeholders
involved.

Indeed, within this stage of SOA analysis vari-
ous modeling approaches and languages already
have proven to be useful. For example, Rosen et al.
(2008) propose to use the Business Motivation
Model (BMM, OMG 2015a), which may be help-
ful to describe the motivations behind the SOA
migration project and the stakeholders that have
these motivations. However, as BMM has a lim-
ited expressive power for modeling motivations,
it lacks, e. g., the capability to show conflicts and
complementarities.

Furthermore, Papazoglou and Heuvel (2006)
suggest to use business process modeling for both
eliciting business functionality that is to be sup-
ported by services, as well as (in a later stage,
during service refinement) for understanding de-
tailed workflows in which a service plays a role, so
that desired non-functional properties of services
can be elicited.

Legacy System Understanding. This activity
supports both identifying an IT functionality that
can potentially be offered as a service, and ana-
lyzing how the envisioned service-orientation can
build on the existing IT infrastructure (Arsanjani
et al. 2008; Khadka et al. 2013b).

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Sybren de Kinderen, Monika Kaczmarek-Hef3

An important part of current systems are legacy
systems. As succinctly expressed by Gustavo et al.
(2004, p. 10), a system turns into a legacy system
as soon as it is used for a different purpose or in a
different context as it was originally intended for.
Legacy systems are usually hard to modify (e. g.,
due to a lack of expertise and documentation) and
expensive to maintain. However, at the same time,
these systems are critical for the mission of the
organization and thus, must be operational at all
times (Khadka et al. 2013b; Sneed et al. 2016).

As organizations usually have different types
of complex and mission critical legacy systems,
it is important to consider their different (non-)
functional aspects in this analysis. For instance,
some legacy applications are proprietary, some
are custom made. Each type poses different sets
of challenges or limitations. For example, if a
legacy application is a proprietary application,
exposing its functionality as services may violate
the terms of use (cf. Bhallamudi and Tilley 2011).
We observe such (non-) functional aspects also
in documented SOA migration projects. For ex-
ample, Brandner et al. (2004) and Zimmermann
et al. (2004), discuss a SOA migration project
to create homogeneous access to functionalities
offered by shared service centre for a chain of
banks. Here, predominantly technical migration
challenges were encountered with regards to the
legacy systems, particularly when it comes to
achieving interoperation between a variety of dif-
ferent technologies used by the service requestors
of the shared service centre, e. g., Java, (D)COM,
and .NET (Zimmermann et al. 2004).

Thus, we argue that a rich set of characteristics
of legacy system should be considered, such as,
e. g., type (proprietary, custom), age, language,
interface and used data types, as well as lower-
level technical aspects such as, e. g., messaging
technologies or communication protocols (e. g.,
Lewis et al. 2006).

In the investigated SOA migration analysis ap-
proaches no specific modeling technique is rec-
ommended to foster understanding of the current
system. Nevertheless, various tools and methods
have been proposed to support the analysis of the

Special Issue Wirtschaftsinformatik 2017

legacy systems and/or existing architecture. These
include: code analysis and reengineering (e. g.,
Ducasse et al. 2000), feature analysis (whereby
features of legacy systems are extracted from code,
execution traces, or user interviews, see, e. g., Mill-
ham 2010) or spectral clustering (e. g., Deiters
et al. 2013). A modeling technique would form a
useful complement to the mentioned legacy iden-
tification techniques and methods, in the sense
that conceptual modeling allows for characterizing
different IT infrastructure elements in terms of spe-
cific concepts, their attributes, and their (allowed)
interrelations. For example, to express that “mid-
dleware” runs on a “mainframe server”, but not the
other way around; or that a software component
allows for asynchronous communication, which
has implications for other components trying to
interact with this component. Such knowledge
forms a useful analysis complement to informal IT
infrastructure drawings or plain text descriptions,
such as the list of features derived by the feature
analysis, e. g., as done by Millham (2010).

Candidate Service Identification and Refine-
ment. For this activity, in an initial SOA mi-
gration stage we are interested in identifying ser-
vice candidates, as supported by business pro-
cess analysis and service identification techniques.
Subsequently, these candidate services are grad-
ually refined into a smaller set of services that
“...perform concrete functions, that have clear
inputs and outputs, and that can be reused across a
variety of potential service consumers. These can-
didate services are now specified more completely
to include a definition of service inputs and out-
puts, and quality of service (QoS) requirements”
(Balasubramaniam et al. 2008, p. 681).

In terms of modeling support, Arsanjani et al.
(2008) propose service identification modeling
techniques such as Goal Service Modeling, which
decomposes high level stakeholder goals into an
(IT) functionality being concrete enough to be
offered as a service.

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

Target System Understanding. This activity sup-
ports understanding of the target (to-be) service-
oriented design in terms of both the desired ser-
vices, as well as how these services relate to the
current system (Khadka et al. 2013b).

In terms of modeling, Razavian and Gordijn
(2015) advocate using SoaML to express service-
orientation in the target (to-be) architecture, since
it expresses services exactly in terms of their rel-
evant concepts, such as interfaces, and service
contracts. However, as we point out in Sect. 3.1,
modeling support for relating services to the un-
derlying system is lacking.

Finally, at the end of the SOA analysis activity
a decision on the SOA migration strategy needs to
be made (Balasubramaniam et al. 2008; Khadka
et al. 2013b). In brief, this concerns decisions on
keeping existing applications, or to replace or out-
source them (Khadka et al. 2013b), and on how the
SOA migration will be planned (Balasubramaniam
et al. 2008). For instance, Khadka et al. (2011)
propose an approach using method engineering to
determine the economical and technical feasibility
of the migration based on the characteristics of
legacy systems and the requirements of the target
SOA application. Also decision-support methods
and tools exist to facilitate selection of the migra-
tion strategy, such as the one proposed by Salama
and Aly (2008). However, since enterprise model-
ing is not central to this phase of SOA migration
planning, and a model-driven decision support
on keeping existing applications arguably would
require a dedicated paper, we leave this activity
out of the scope of this particular contribution.

2.2 Requirements on Modeling Support

Based on the role that modeling can play in the
discussed SOA migration activities, we now for-
mulate a set of high-level requirements on mod-
eling support for SOA migration analysis. The
identified requirements are summarized in Tab. 1.

As discussed, three main aspects are impor-
tant for SOA migration analysis (cf. Khadka et al.
2013a,b; Razavian and Lago 2015): (1) the as-is
and (2) to-be state of the IT infrastructure, as
well as (3) business concerns, which should be

accounted for in each state. Therefore, the aim of
the modeling approach should be to: (a) provide
knowledge on the as-is state of the IT infrastructure
with the focus on the legacy systems (cf. R1-R3 in
Tab. 1) and accounting for existing dependencies
and its relationship to organizational concerns (cf.
R7); and (b) express the fo-be state of the service-
orientation and reflect the changes that should
be performed following the selected SOA migra-
tion strategy (e. g., wrapping, re-engineering) (cf.
R4-R6), and again accounting for the business
concerns (cf. R7).

R1: The modeling language should allow for
expressing IT landscape elements.

Rationale. For the SOA analysis activities
“Legacy System Understanding” and “Target Sys-
tem Understanding”, we are interested in express-
ing the observable functionality of individual IT
infrastructure elements constituting an enterprise
IT landscape and encompassing both software and
hardware artifacts (Hanschke 2010). In this way,
as stated in Sect. 2.1, we can use the language to
understand the current IT landscape and identify
candidate services.

R2: The modeling language should allow for
expressing the dependencies between I'T
landscape elements.

Rationale. 1T infrastructure elements can be
related to each other in different ways, e.g., a
software “runs on” hardware, and, at the same
time, it “provides” an interface that can be used
by other software to access it (Hanschke 2010).
Such relationships both (1) encode in a model-
ing language domain “rules” as to what elements
can be related and how, for example, to express
that software “runs on” hardware, but not vice
versa; and (2) show, for a model expressed with
the language, the relevant dependencies that need
to be accounted for during the SOA migration.
In particular, this is relevant for analyzing how
service-orientation can be built upon the current
IT infrastructure (Balasubramaniam et al. 2008;
Khadkaetal. 2013b). For example, cf. the scenario
detailed in Rosen et al. (2008): many different end-
user applications can depend on the transaction

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Sybren de Kinderen, Monika Kaczmarek-Hef3

Special Issue Wirtschaftsinformatik 2017

Table 1: Requirements on a conceptual modeling language supporting SOA migration

Supporting Sources

Arsanjani et al. 2008; Gus-
tavo et al. 2004; Khadka et
al. 2013b; Sneed et al. 2016

Arsanjani et al. 2008; Bal-
asubramaniam et al. 2008;
Khadka et al. 2013b; Rosen
et al. 2008

Bhallamudi and Tilley 2011;
Khadka et al. 2013a; Lewis
et al. 2006; Razavian and
Lago 2015

Arsanjani et al. 2008; Raza-
vian and Gordijn 2015

Balasubramaniam et al.
2008; Gustavo et al. 2004;
Khadka et al. 2013b

Arsanjani et al. 2008; Raza-
vian and Gordijn 2015
Rosen et al. 2008, pp. 94—
98

Balasubramaniam et al.
2008; Khadka et al. 2013a;
Papazoglou and Heuvel
2006; Rabelo et al. 2015;
Rosen et al. 2008

Bhallamudi and Tilley 2011;
Frank 2013; Khadka et al.
2014, 2013a,b; Lewis et al.
2006; Razavian and Lago
2015

No. High-Level Requirement Exemplary Concepts and Relation-
ships that Should Be Accounted For
Requirements towards as-is models

1 The modeling language should allow for express- database, database management sys-
ing IT landscape elements. tem, middleware, server

2 The modeling language should allow for express- uses, provides, runs on
ing the dependencies between IT landscape ele-
ments.

3 The modeling language should account for char- mission criticality, source code avail-
acteristics of legacy systems as well as for legacy ability, implementation language,
system dependencies. code complexity, availability of doc-

umentation, strength of support
Requirements towards to-be models

4 The modeling language should provide dedicated IT service, web service, interface
concepts that allow to model a concept of service
and its relevant types.

5 The modeling language should allow for relating wrapps, provides, runs on, uses
a service to its underlying implementation, in
accordance with the migration strategy used.

6 The modeling language should account for quality QoS attributes, e. g., response time,
attributes of services. throughput, availability, reliability,

average execution time
Accounting for business-IT alignment in as-is models and to-be models

7 The modeling language should allow for express- e. g., supports — to relate IT infrastruc-
ing dependencies between the IT landscape and the ture elements with business processes
organization action system, encompassing, among or business goals, accountable for —
others, business processes, organizational struc- to relate IT infrastructure elements
ture as well as business goals. with the organizational structure

General Requirements

8 The modeling approach should support the pro- to support productivity and enable

ductivity of modeling and analysis. various analyses, semantically rich
concepts are needed, cf. Frank (2013)
9 The modeling approach should provide a corre- n.a.

sponding tool support that would facilitate the
design and analysis process.

Frank 2013; Khadka et al.
2014

processing capabilities of a mainframe, implying
that if a change is made to the mainframe (e. g.,
to expose the transaction processing capabilities
via web service technology), then the end-user
applications relying on the mainframe need to be

modified accordingly.

R3: The modeling language should account
for characteristics of legacy systems as well as
for legacy system dependencies.

Rationale. Concerning the SOA migration analy-
sis activities “Legacy System Understanding” and
“Target System Understanding”, for any mean-
ingful analysis on the possible behavior of IT
infrastructure elements, we need to consider their

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

characteristics (Razavian and Lago 2015). To
illustrate this, recall here our discussion of exem-
plary legacy system properties in Sect 2.1, such
as the programming language used, or whether
a legacy system is proprietary or custom made.
These properties influence how one interacts with
the legacy system by, for example, having to in-
vest an additional effort to abstract away from the
used programming language, or to avoid violat-
ing terms of use in case of a proprietary legacy
application. In addition, please note that the re-
quired level of details depends on the migration
strategy followed: the black-box strategy requires
information on the functionality offered by the
legacy system and how to access it, whereas the
white-box strategy requires detailed information
about the inner workings of a legacy system, going
down to code characteristics and its availability
(Comella-Dorda et al. 2000).

R4: The modeling language should provide
dedicated concepts that allow to model a
concept of service and its relevant types.
Rationale. For the SOA migration analysis ac-
tivities “Target System Understanding” and “Ser-
vice Identification and Refinement” the language
should provide (rudimentary) expressiveness for
service-orientation. First and foremost, this en-
tails that it should provide concepts to express a
service. Three features of services are considered
to be crucial (Bouguettaya et al. 2017, p. 70): func-
tionality (specified by the operations offered by
a service), behavior (how the service operations
can be invoked), and quality, which determines
the non-functional properties of a service (we will
discuss the latter in R6). Therefore, we need to
account for concepts to describe the functionality
offered by a service as well as, among others, its
operations and how the service is to be accessed
(Razavian and Gordijn 2015).

R5: The modeling language should allow for
relating a service to its underlying
implementation, in accordance with the
migration strategy used.

Rationale. Often, a service-orientation comple-
ments elements of an existing IT infrastructure

instead of replacing them (Arsanjani et al. 2008;
Khadka et al. 2013b). For example, a web service
can be used to expose existing transaction process-
ing capabilities of a mainframe via a standardized
interface (cf. Rosen et al. 2008). Therefore, to pro-
vide a meaningful analysis of how a service builds
upon, and interacts with, the current IT infrastruc-
ture, modeling support should show how to relate
service concepts to elements of the existing IT
infrastructure that are necessary for realizing the
desired functionality.

R6: The modeling language should account
for quality attributes of services.

Rationale. Expressing quality attributes of ser-
vices (such as throughput, response time, and
availability) is relevant for both activities “Target
System Understanding” and “Service Identifica-
tion and Refinement”.

For the SOA migration analysis activity “Ser-
vice Identification and Refinement” the quality
attributes are relevant for the specification of can-
didate services. In particular, according to Bala-
subramaniam et al. (2008, p. 681), during service
refinement, candidate services are gradually re-
fined into a smaller set of services that “include
a definition of service inputs and outputs, and
Quality of Service (QoS) requirements”.

For the SOA migration analysis activity “Tar-
get System Understanding”, we desire to know
such quality attributes because they constrain how
one uses the functionality offered by a (web) ser-
vice (D’Ambrogio 2006), for example, in terms
of how quickly a request is responded to, or how
quickly a transaction is processed.

R7: The modeling language should allow for
expressing dependencies between the IT
landscape and the organization action system.
Rationale. In line with the SOA migration analy-
sis activity “Candidate Service Identification and
Refinement” (see Sect. 2.1), a SOA migration
analysis focuses not only on the IT infrastruc-
ture itself, but equally on a business perspective.
Business processes largely drive what is imple-
mented in terms of IT support (Papazoglou and
Heuvel 2006; Rabelo et al. 2015), and vice versa:

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Sybren de Kinderen, Monika Kaczmarek-Hef3

IT infrastructure characteristics, such as, e.g.,
the average processing speed of a request by a
web service, influence what is possible from a
business point of view (Papazoglou and Heuvel
2006). As such, this imposes the requirement that
any conceptual modeling support should consider
service-orientation from multiple perspectives, so
as to be able to analyze business and I'T concerns
in tandem (Bucher et al. 2006).

R8: The modeling approach should support
the productivity of a modeling and analysis
process.

Rationale. So far, we have discussed several
aspects of SOA migration analysis that hint at
a rich variety of domain concepts and domain
“rules”. This includes quality of service attributes
of a web service (e.g., the average processing
speed), which influence what is possible from
a business point of view, or attributes of legacy
system elements (such as the used programming
language) which determine how one subsequently
interacts with them.

In designing our language in support of SOA
migration analysis, we desire to capture this rich
variety. Therefore, there is a need to emphasize
modeling productivity (cf. Frank 2013) over reuse:
we aim to provide analysts with a language that
encodes already most relevant domain concepts
and domain “rules”, so that the analyst does not
have to reconstruct such concepts from scratch.
Instead, s/he can (1) create models that are in
line with the rules of the domain. For example,
stating that a piece of software runs on a piece of
hardware, but not the other way round; and (2) use
concepts that are readily available to support de-
tailed relevant analyses. For example, we require
an explicit consideration of QoS attributes for web
services when it comes to assessing how business
processes interact with these web services.

Of course, we are aware that we cannot capture
every detailed domain characteristic into our lan-
guage since our language would simply grow out
of control, especially when increasing the number
of analysis scenarios it is supposed to support.
Rather, we opt for a trade-off between language

Special Issue Wirtschaftsinformatik 2017

productivity and reuse (cf. Frank 2013): we want
to make sure that our language contains sufficient
semantic richness to support an analyst, yet not at
the expense of considering every detail. For ex-
ample, while it can be relevant for very particular
application scenarios, we do not capture that the
size of data invocations/replies of CICS (a partic-
ular type of legacy application) transactions is a
maximum of 32 bytes (Rosen et al. 2008, p. 373).

Note that we return to the balancing of reuse and
productivity in the conclusion, where limitations
of the currently used modeling language paradigm
are discussed.

R9: The modeling approach should provide a
corresponding tool support.

Rationale: In order to support cross-aspect analy-
sis and support productivity of the modeling and
analysis process, we require a corresponding soft-
ware tool (Khadka et al. 2014). The application
of each modeling method significantly benefits
from the availability of a corresponding modeling
environment that guides the modeling process and
avoids the creation of syntactically incorrect mod-
els by performing automated syntax checks. The
tool can also support automated analyses, thus,
facilitating SOA migration analyses on created
models.

3 Existing Approaches and Fulfillment of
Requirements

The relevant modeling approaches can be roughly
divided into approaches for modeling services and
SOA, standalone languages for modeling business
and IT concerns, and enterprise modeling (EM)
approaches. These three groups of approaches are
discussed subsequently.

3.1 Service and SOA Modeling

Different service and SOA modeling approaches
exist, some as stand-alone modeling languages,
some in support of comprehensive SOA migration
methods. An example of a stand-alone language
is SoaML (OMG 2012), which is an OMG stan-
dard language for analyzing service-orientation,
with a basic capability of linking business aspects

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

and IT aspects (OMG 2012, p. 7). SoaML fo-
cuses on service-oriented concepts, such as the
interfaces and contracts between SOA participants.
By focusing on service-orientation, SoaML has
proven useful in practice. For one, by applying
SoaML to the health-care industry (Silva et al.
2015), authors compare SoaML favorably to using
(generic) UML class diagrams by pointing out that
SoaML offers concepts relevant for expressing ser-
vice customers and service suppliers. However,
by focusing on service-orientation, SoaML pur-
posefully abstracts away from the realization of
services in terms of the underlying infrastructure.
Furthermore, SoaML is a UML profile and, as
such, lacks a dedicated concrete syntax for ex-
pressing its concepts. Also SoaML provides no
concrete conceptualization of QoS attributes.
Further consider SOMA-ME, which is a design
framework that supports the model-driven design
of SOA solutions using the SOMA method (Zhang
et al. 2008). As a part of SOMA-ME, an inte-
grated development environment is provided that
builds on the IBM Rational software development
platform. It uses UML as the language for mod-
eling software systems. Thus, UML profiles are
provided to capture information about services,
such as origins, associated goals, key performance
indicators (KPIs), non-functional requirements,
and interdependencies among services. In SOMA-
ME, the profiles are contained in two packages:
the SOA method-profile package and the SOA
architecture-profile package (Zhang et al. 2008).
Considering the goals of this paper, only the first
package is relevant for our further discussion. This
package includes the following aspects: SOA busi-
ness processes profile (containing stereotypes to
support service identification techniques), SOA
services profile (containing stereotypes that ad-
dress the service identification and service specifi-
cation steps), and SOA service components profile
(capturing information related to service realiza-
tion). However, like SoaML (a) SOME-ME lacks
a dedicated visualization, it being largely built as
a UML profile, and (b) SOME-ME lacks a rich
sets of attributes to, for example, express QoS.

The Service-Oriented Modeling Framework
(SOMF) is a service-oriented life cycle modeling
method proposed by Bell (2008). According to
it, all software assets can be subject to modeling
activities and are seen as services, i.e. service-
oriented modeling elements. Bell (2008) proposes
concepts for expressing service-orientation, such
as “atomic service” versus ‘“‘composite service”.
Also, he includes a link between business services
and the IT services needed to realize these. How-
ever, Bell (2008) proposes only a set of concepts.
Relationships between concepts, constraints, and
attributes are only loosely defined, if at all. For one,
possible constraints are limited to plain text guide-
lines for using the concepts, that are moreover not
always clear or well explained. For instance, a
guideline can be “only business domains can be
layered” (Bell 2008, p. 159), without expressing
it within a language specification.

Next, the Topology and Orchestration Speci-
fication for Cloud Applications (TOSCA) (OA-
SIS 2013), an OASIS standard language, pro-
vides a service template to define the structural
and management-related aspects of IT services.
TOSCA aims to standardize the description of
software applications that run in the cloud. Thus,
it offers the core concepts required to describe an
application, as well as its dependencies and sup-
porting (cloud) infrastructure (Brogi et al. 2014).
However, the key TOSCA concepts are generic.
Namely, there are two basic concepts: nodes
and relationships. Both can be extended, e.g.,
by adding specific Node Types and Relationship
Types (Brogi et al. 2014), in order to describe a
specific situation. However, due to its reliance on
a small set of generic concepts, natively TOSCA
does not support the modeling productivity that
we target (cf. R8).

In turn, Terlouw and Albani (2013) apply the
way of thinking of DEMO (Design and Engi-
neering Methodology for Organizations, cf. Dietz
2006) to conceptualize services for the needs of
service-orientation. They provide a formal de-
scription of a service in terms of business issues,
such as the interaction between customer and
supplier, as specified by the underlying service

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

12

Sybren de Kinderen, Monika Kaczmarek-Hef3

contract. However, in line with DEMO, the service
description is largely implementation independent
(Terlouw and Albani 2013). As such, no details
are provided about the underlying IT infrastruc-
ture. Note that, like SoaML, DEMO has also been
successfully applied in various practical settings.
Among others, the DEMO-way of thinking ap-
plied to service-orientation has proven interesting
for an insurance company, which in particular
appreciated making explicit (linguistic) coordina-
tion acts in specifying a service (cf. Terlouw and
Albani 2013, pp. 98-99).

Finally, regarding detailed IT infrastructure con-
cerns as linked to service-orientation, Fuhr et al.
(2013) and Khadka et al. (2011) propose methods
to convert code of legacy systems into code for
SOAs. To this end, they combine capabilities
of existing SOA design methods (e. g., SOMA,
Fuhr et al. 2013), with model-based techniques
from Model-Driven Engineering/Model-Driven
Architecture (MDE/MDA) (e. g., a graph-based
mechanism, Fuhr et al. 2013) to allow for code
transformation. While both Fuhr et al. (2013) and
Khadka et al. (2011) deal with detailed IT infras-
tructure concerns (namely legacy systems) and use
model-driven techniques, they do not provide a
model-based support analysis of IT infrastructure
per se. Rather their purpose is to use model-driven
techniques for code transformation.

3.2 Standalone Modeling of Business and
IT Aspects

Various (standalone) modeling approaches exist
which support focused understanding of selected
business related aspects and IT aspects. Among
them are approaches targeting at modeling of goals
and motivation, e. g., i* (Yu 1997), Tropos (Bres-
ciani et al. 2004), KAOS (Dardenne et al. 1993)
or the Business Motivation Model (cf. Sect. 2.1);
modeling of business processes, e. g., by means of
the Business Process Model and Notation (BPMN)
(OMG 2011); or rudimentary modeling of IT in-
frastructure by means of deployment diagrams
(OMG 2015c¢, p. 651).

Each of these languages comes with different
sets of concepts and analytic capabilities, which,

Special Issue Wirtschaftsinformatik 2017

as already mentioned in Sect. 2, can be used
within one of the mentioned SOA migration ac-
tivities. However, as these standalone modeling
approaches focus on selected aspects of an enter-
prise only, they do not allow for a more comprehen-
sive, integrated analysis accounting for multiple
perspectives.

This also applies to deployment diagrams. Even
though they are part of the comprehensive Unified
Modeling Language (UML) (OMG 2015c), for
UML a primary unit of concern is software, and
not legacy systems or service-orientation as such.
Therefore, its support for SOA migration projects
is limited.

3.3 Enterprise Modeling Approaches

Unlike standalone modeling approaches, Enter-
prise Modeling (EM) approaches usually cover
multiple perspectives on an organization (e. g., by
considering in tandem organizational goals, busi-
ness processes, or IT infrastructure), and relate
these perspectives to each other. Exemplary ap-
proaches include ArchiMate (The Open Group
2013), Architecture of Integrated Information Sys-
tems (ARIS) (Scheer 2001; SoftwareAG 2017),
4EM (Sandkuhl et al. 2013), and Multi-Perspective
Enterprise Modeling (MEMO) (Frank 2012).
Here, we focus on EM approaches that can
express facets that are of particular interest for
a SOA analysis. In line with our requirements
(see Tab. 1), the EM approach should express IT
infrastructure concerns, service-orientation, busi-
ness context, and various interrelations among
those aspects. Only three EM approaches con-
sider IT infrastructure modeling explicitly and, at
the same time, account for the service-orientation:
ArchiMate (version 2.1, which includes the moti-
vation extension), MEMO with the IT Modeling
Language (ITML) (Heise 2013) and ARIS v10.
ArchiMate is an open enterprise architecture
modeling standard offering different viewpoints
on enterprise architecture (Business, Application,
Information, Technology) (The Open Group 2013).
ArchiMate’s goal is to define a modeling language
for “the representation of enterprise architectures
[...] as well as their motivation and rationale” (The

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

13

Special Issue Wirtschaftsinformatik 2017

Table 2: The selected concepts of EM approaches supporting modeling of an IT Landscape - an overview

Approach Software Hardware Relationship Attributes Constraints
types
ArchiMate v2.1 Artifact, Node, SystemSoftware, ~ Node, Device Access, associa- - -
(The Open ApplicationComponent, Appli- tion, used by
Group 2013) cationInterface, ApplicationSer-
vice, InfrastructureService
MEMO Software, Architecture, License, =~ Computer, PhysicalDataMedium, A set of domain A set of at- A rich set of
ITML (Heise SoftwareProduct, Service, Soft- NetworkComponent, Network, relationships, tributes de- OCL-based

2013)

warelnterface, ComunicationPro-

Printer, Scanner, Fax, Hardware-

e.g., used in,

fined for each

constraints

tocol, Data DeviceRole requires, runs on, concept
refers to
ARIS v10 IT system, Domain, Application = Hardware, Component, Network, = Assignment, con- Name,
(SoftwareAG system, Application system type, = Network Component nection description,
2017) Module type, Interface, Proto- definition,
col, Cluster, Service capability, author

Business service, Software ser-
vice type, IT function type

Open Group 2013, p. 2). This is visible in Archi-
Mate’s intention to “not [...] introduce a language
that can replace all the domain specific languages
that exist” (Lankhorst 2013, p. 77) and to offer
generic concepts for describing main elements of
different organizational domains and relationships
between them (Lankhorst 2013, pp. 76-77).

In turn, the stated key goal of MEMO is to inte-
grate different aspects that should be considered
while designing, implementing and using business
information systems (Frank 1994). MEMO offers
a set of integrated Domain Specific Modeling Lan-
guages (DSMLs), such as languages for modeling
business processes and organizational structures
(OrgML, Frank 2014), goal modeling (GoalML,
Overbeek et al. 2015) and, especially relevant
for our purposes, the Information Technology
Modeling Language (ITML) for IT infrastructure
modeling (Heise 2013). As those DSMLs are
integrated, IT infrastructure models can be re-
lated to organizational concerns, which fosters
communication between stakeholders with dif-
ferent professional backgrounds, and allows for
cross-perspective analyses (Heise 2013).

ARIS offers a high-level framework (the so-
called “House of Business Engineering”, Scheer

2001) together with a large set of diagrams. It
provides, among others, an original modeling lan-
guage, the “Event-driven Process Chain” (EPC),
and refers to existing modeling languages such
as ERM, DFD, or BPMN. The method is sup-
ported by a comprehensive commercial toolset,
which currently offers an extensive set of diagram
types to capture characteristics of IT infrastruc-
ture, such as the application system type diagram,
the application system diagram, the program flow
chart, the network diagram, or the access diagram
(SoftwareAG 2017).

Although these approaches exhibit similarities
(cf. Bock et al. 2014), they are substantially dif-
ferent. For one, there is a substantial difference
in the semantic richness of the modeling con-
cepts. While ArchiMate and ARIS favor a concise
language design by focusing on a small set of es-
sential enterprise (architecture) concepts, MEMO
provides domain stakeholders with elaborate re-
constructions of the (technical) concepts that they
are familiar with. Thus, the languages support
different analysis scenarios. Particularly, while
ArchiMate, ARIS and MEMO offer means to
describe IT infrastructure together with service-
orientation (cf. Tab. 2), they do so at differing

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Sybren de Kinderen, Monika Kaczmarek-Hef3

levels of granularity. And so, ArchiMate provides
a set of generic concepts with no attributes and
constraints. Similarly, although ARIS offers an ex-
tensive set of diagram types, its individual diagram
types offer generic concepts with few attributes
and relationships. For one, in terms of diagrams
ARIS differentiates between an application system
diagram and application system type diagram, so
as to distinguish between analyses pertaining to
the running system versus analyses pertaining to
logical dependencies in the system. However, in
these two diagrams ARIS offers only a limited
expressiveness, e. g., by offering the high-level
concepts “application system type” and “module
type”, with a limited number of attributes and
relationships for each. In contrast, MEMO ITML
offers a set of more fine-grained concepts with a
rich set of attributes.

Differences are also visible in the other areas
covered by the approaches. For one, MEMO offers
a dedicated DSML for business process model-
ing (OrgML), which provides both conventional
business process concepts (e. g., ControlFlowSub-
Process, Event, Task) as well as more elaborate
ones (e. g., an Exception). Differently, by design
ArchiMate provides a limited number of business
process modeling concepts (Business Process,
Business Event). Also for goal modeling, MEMO
again offers a dedicated DSML, GoalML, which
defines a comprehensive set of concepts allowing
to express various aspects of enterprise goals (e. g.,
EngagementGoal, SymbolicGoal, GoalConfigura-
tion, cf. Overbeek et al. 2015), all with a rich set of
attributes. Differently, the motivation extension of
ArchiMate offers concepts such as Goal, Principle
and Driver, but these remain underspecified up
to the point that they are difficult to tell apart by
language users (Engelsman and Wieringa 2014).

Also it is noteworthy that Ziemann et al. (2006)
applies ARIS to support service modeling, in
particular for the business-driven analysis for the
needs of web service development. Namely, the
authors rely on EPC business process models to
identify how web services integrate into the pro-
cesses of an organization. However, this work can
be perceived as preliminary, because the authors

Special Issue Wirtschaftsinformatik 2017

use only business process models and disregard
the other elements of the enterprise action system
and information system. For instance, they did
not relate the business process models to organi-
zational goals, nor to the organizational structure,
or to the overall enterprise IT Infrastructure.

Finally, of note is that (by design) none of the
discussed EM approaches offers dedicated con-
cepts for expressing specific aspects of legacy
systems or SOA migration projects, such as wrap-
pers or middleware.

3.4 Fulfillment of Requirements by the
Discussed Approaches

Tab. 3 provides a short summary of the evaluation
of the discussed approaches. In order to assess
whether the discussed approaches fulfill the identi-
fied requirements, we have analyzed the available
documentation of those and contrasted it with,
among others, candidate concepts and relation-
ships. A subset of these candidates is provided in
Tab. 1. Please note that we are primarily interested
in the productivity of modeling and semantically
rich concepts (cf. R8). This implies that if a con-
sidered language offers a set of concepts (like, €. g.,
a ‘“node” in TOSCA) that can be used to define
the element of interest from scratch, we do not
consider the relevant requirement as fully fulfilled.
Indeed, we consider the given requirement to be
fully fulfilled, only if a language specification as
such is already providing the required abstractions,
so that they do not have to be recreated anymore
from scratch.

The first part of Tab. 3 summarizes the dis-
cussed service/SOA modeling languages in terms
of their fulfillment of the identified requirements.
Observe that, while the existing service modeling
approaches (such as SOMA-ME) provide con-
ceptualizations of a service and a (rudimentary)
relationship to business concerns, they notably
lack a capability to express existing IT infras-
tructure and its relationship to service-orientation.
Even if such a capability is offered by providing a
set of generic, extensible concepts (cf. TOSCA),
a substantial effort is required in order to define
all required aspects. For example to encode basic

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

15

Special Issue Wirtschaftsinformatik 2017

Table 3: Summary on the requirements fulfillment by the main discussed approaches

Approach RI R2 R3 R4 RS R6 R7 R8 R9
SOMA with SOMA-ME O O @) [J > [O [D
SOMF (@) @) O [J O [[[O
SoaML O @) @) [O O [[©)
TOSCA > d d d > [[[[]
DEMO-based Service Concept O O O o O U [J d O
ArchiMate with motivation exten. o) O [} [] O [J D D
MEMO [] [] [> d D ® ® []
ARIS d) @ [] @ O [(] @

Legend: O- not covered; - partly covered; @— largely covered

“domain rules” such as software runs on hardware,
but not vice versa.

The standalone modeling approaches, as al-
ready mentioned in Sect. 3.2, focus on selected
aspects of an enterprise only, and thus, they do not
allow for a more comprehensive, integrated analy-
sis accounting for multiple perspectives. Although
it is of course possible to select a few standalone
approaches (such as BPMN, or KAOS), their in-
tegration would not be straightforward. This is
mainly because those languages are not necessar-
ily compatible: each approach is based on different
modeling assumptions and a different language
architecture (Bock et al. 2014), thus, using them in
tandem and being able to conduct cross-language
analyses would require moving them to one lan-
guage architecture/one paradigm. In addition,
a corresponding tool would need to be created,
and/or a tooling chain needs to be catered for.
Therefore, the standalone modeling approaches
do not support the formulated requirements and
thus, are not accounted for in Tab. 3.

Finally, although various enterprise modeling
approaches exist that allow for modeling IT infras-
tructures and/or expressing a service-orientation
from various angles (OMG 2012; Terlouw and
Albani 2013; The Open Group 2013, to name a
few), these approaches often on purpose forgo
the level of detail that is required to analyse IT
infrastructure for the needs of SOA migration. In

addition, as we detail in Sect. 3, often they in-
sufficiently relate IT concerns and organizational
concerns.

As shown in Tab. 3, ArchiMate, ARIS and
MEMO offer (1) concepts for expressing IT infras-
tructure (R1-R3), (2) the possibility to express
service-orientation (R4-R6), (3) linking of busi-
ness concerns and IT concerns (R7). Nevertheless,
there is a difference in the extent to which MEMO,
ARIS and ArchiMate provide model-driven sup-
port to SOA migration projects. In particular,
ArchiMate and ARIS lack expressiveness for IT
infrastructure concepts that we would need to
meaningfully analyze requirements for moving
towards a service-oriented IT infrastructure. First,
consider ArchiMate. By design ArchiMate of-
fers a concise set of coarse-grained IT infras-
tructure concepts — just enough for expressing
enterprise architecture concerns. However, due to
their abstract nature these concepts are too multi-
interpretable for a meaningful domain-specific
analysis. Furthermore, ArchiMate concepts lack
attributes, which limits their semantic richness
and hence, suitability for various detailed domain-
specific analyses.

This similarly holds for ARIS. Although a set of
concepts is offered that allow to express software
and hardware related aspects of an IT infrastruc-
ture, the concepts are still generic (e. g., “module”
for the application system type diagram). Further-
more, although the concepts as such are equipped
with attributes, those attributes are limited and

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Sybren de Kinderen, Monika Kaczmarek-Hef3

do not allow to express required information. In
addition one does not have an access to ARIS meta
model, and the corresponding software tool is pro-
prietary. As a result of the restricted access, one
cannot extend the set of concepts and attributes of
the ARIS meta model, and neither make the nec-
essary corresponding tool modifications (hence
the “partly covered” score on the tool support
requirement (R9) in Tab. 3 for ARIS: while a tool
is available, it is proprietary and therefore, not
extendable).

In contrast, the language architecture followed
by MEMO offers an extensive set of IT infrastruc-
ture concepts as a representation of the universe
of discourse of IT experts. All of the concepts
are equipped with a rich set of attributes, and
thus, also account for their non-functional aspects.
However, ITML has not been designed to support
SOA migration projects (Heise 2013; Kirchner
2008). As such, ITML does little in the way of
expressing legacy systems and service-orientation.
As a result, to use ITML for a SOA migration
analysis, we require additional concepts and at-
tributes. Therefore, as shown by the fulfillment of
the identified requirements (cf. Tab. 3), extensions
are needed to MEMO ITML so that it is able to
fully support the SOA migration analysis.

A critical success factor for extending an ex-
isting modeling approach is that its specification
is both, precise and complete, as well as publicly
and freely available. As all of the MEMO lan-
guage specifications are available to interested
audience and in addition, the introduced changes
can be reflected in the current software tool sup-
porting MEMO, we deem it to be more suitable
for extensions compared to ARIS.

To summarize: in the light of the above dis-
cussion and conducted analysis, we deem MEMO
to be the most promising candidate. However, to
make ITML suitable for our purposes, we extend
it to provide support for SOA migration analysis.

4 Extended MEMO ITML

As already discussed in Sect. 3.3, ITML is part
of a comprehensive method for multi-perspective

Special Issue Wirtschaftsinformatik 2017

enterprise modeling MEMO (Frank 2012). We
extend the MEMO ITML in order for it to better
support analyses in the context of SOA migration
projects. In addition, by doing that we can benefit
from the already developed other MEMO DSMLs
focusing on the selected aspects of an enterprise
action system.

4.1 MEMO MML and Modeling
Decisions

Several means of defining a modeling language
exist, however, the one frequently used, also in
case of MEMO), is by specifying a meta model,
i. e., a model of models. A meta model defines the
abstract syntax and semantics of a given language
together with additional constraints (Frank 2011,
p- 3). Thus, a model (the M, level) is specified by
a modeling language, which in turn is specified
by a meta model (the M; level). Constraints are
usually formulated by using the Object Constraint
Language (OCL) (Warmer and Kleppe 2003).

As we extend the MEMO ITML, we use
the MEMO method’s common Meta Model-
ing Language (MML) (Frank 2011), which al-
lows for integrating the extended ITML into the
MEMO method’s language architecture (Frank
2012, pp. 947-950). Consequently, this allows us
to use the extended ITML in tandem with other
MEMO languages.

When compared to “traditional” meta model-
ing languages, MML provides additional language
constructs for expressing: (a) intrinsic attributes
and relationships, and (b) language level types.
Intrinsic attributes and relationships are instanti-
ated only on the instance level and not on the type
level, and are visualized with a white letter “i” on
a black background. In turn, language level types
are instantiated on the type level only, no further,
and are visualized with a grey background of the
concept’s name (Frank 2011, pp. 23-24).

Defining a meta model implies making mod-
eling decisions, such as: if a concept should be
part of the language specification (meta type, M,
level) or part of the language application (type, M
level). To support making design decisions and to
ensure the required quality of the developed meta

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

model, the guidelines proposed by Frank (2013)
have been applied to extend and enrich the pre-
vious version of ITML with additional concepts,
attributes and relationships (cf. Fig. 2).

4.2 Extended Abstract Syntax

Fig. 2 presents a fragment of the extended ITML
meta model. It also highlights the modifications
to the original ITML meta model (Heise 2013)
by adding colored squares to the upper right cor-
ner of added/modified concepts, colored squares
to definitions of new relationships, and transpar-
ent boxes over added attributes (cf. the legend,
Fig. 2). For comprehensibility purposes, we struc-
ture the discussion of the meta model in three
parts: (1) “software”-related concepts, and the
functionality offered by this software. This is
largely relevant for identifying characteristics of
legacy systems, and the functionality offered by
such legacy systems; (2) selected specializations
of software, e.g., “middleware” and “wrapper”
concepts, that are relevant to enable interoper-
ation between heterogeneous system elements;
(3) “service-oriented” concepts, i. e., we discuss
here concepts to express service-orientation, such
as web services.

As, in line with RS, our aim is to support the
productivity of modeling as well as analysis, each
of the modeled concepts has a rich set of domain-
specific attributes and relationships. However, in
order for the proposed language to be still usable
in case relevant changes occur (e. g., a new type of
software system is introduced), the generic meta
types, such as “Software” have not been made
abstract, thus, they can be instantiated to model
newly identified phenomena whenever necessary.

In the following, we discuss selected design
decisions, which are relevant for the needs of our
further discussion.

Software and its main relationships

The concept “Software” captures any software ar-
tifact that provides some functionality. It is further
specialized into different categories of software
artifacts to account for the different roles software
can play in the enterprise IT landscape (Hanschke

2010), such as application software, operating
system, or otherwise.

Extended ITML expresses both functional and
non-functional aspects of “Software”. Regarding
the former, firstly, the extended ITML offers the
concept of a “Topic” (defined as a Language Level
Type) with its specializations “DataTopic” and
“Function”, cf. Fig. 2. A function is understood as
a task, a process or an activity that is intended to
achieve one or several (business) goals. By taking
advantage of a “Function” (for example, a function
“financial report generation”), it is possible to state
the functionality offered by any “Software” arti-
fact, which is particularly helpful for identifying
candidate services. Please note that, analogous to
the function trees from ARIS (Software AG 2017,
p- 14), “Functions” are organized in hierarchies
(by using the “partOf” relationship), thus, it is
possible to define the function topics on different
levels of granularity. Finally, “Functions” can be
related to the defined goals and processes of an
organization (via the relationship to the “Specific-
Support” concept).

Furthermore, the extended ITML offers added
expressiveness regarding the software “Interface”
so as to enhance analysis capabilities with respect
to how to access it. In particular, this concerns
(1) the addition of a relationship “described_with”,
which allows to relate the interface to the corre-
sponding language level type “Language”, to ex-
press what language the interface is specified with
(this language is also called the interface descrip-
tion language); (2) the specification of particular
parameters with the auxiliary type “Parameter”.
This constrains the format of interface inputs and
outputs, compared to an earlier version of ITML
(Heise 2013), which expressed inputs and outputs
as strings (thus, allowing for anything).

Also the “CommunicationRelationship” has
been enhanced with additional attributes (e. g., re-
garding messaging and transportation protocols),
information about the exchanged format (cf. the
corresponding language level type) and, if appli-
cable, the middleware configuration required for
a communication.

http://dx.doi.org/10.18417/emisa.13.1

10.18417/emisa.13.1

saiinbal P ¥0

Buins : uonduasap
UL : aweu

2|1qnoq : [, 0] Ayeuad
Aj[enDaIeMY0S : a1s1ydeIeY)SOD [T

ren de Kinderen, Monika Kaczmarek-Hel3
Special Issue Wirtschaftsinformatik 2017

Syb

Vol. 13, No. 1 (2018). DOI

Enterprise Modelling and Information Systems Architectures

18

UM paguasap B

an3[q0IPAdINIDS A
S
T "INX# "NSOH) : Ye0IddyaInonISeoUeISURUAWNI0p] g
(- ‘0La# "eWaPSTINXH} : YoeoaddyuoneaypadsadA3uawinaop UE3[008 T BUIo0UOTIAUI03 g
BuLs : pJepueisasueyIxzadA uawnaop wsipeieqdgq : wiipesed Tea1008 1 115305 4
Buis : sweu 3 waishsiuawadeuepaseqeieq S uN
1a10wWeed H
& Jeun0398uRYIXIOI & 21nias49M prr——
0 v
0
{8% ‘9N ‘89 ‘L] : Junawnjon 3ums : oNienas |l
« uopiseq
0 m_nmon_ AWNOA |, =0 adALYS| : 2IN32931Y2yI2SUORINISUL
20 <5900 IS £ OWEY T g sassanoe T S—— 9L AIT) I
WaWSS3ESY | ROUANBB OO aseqeieq WauIssasSY UOIRISHES IBSNTeIINe LS owey
) ' d
0 D 1014uonea| 21emyos uopeayjddy EM.: woy
Ued|o0g { UolAUODAIMDSsD.inbay [<ol - g0
uea|oog : ANAIY| * P P . H
o eatbon snovonpky) | 0 0 N s v oo 4
JUBWISSasSY : [T70) Ewswmmw-_ {* ‘50/2 sO1 ‘iU ‘smopuIm} : Ajiwey-s0 o3
JUBWISSaSSY : JUBWISSISSYENE veo Nl
o Sus : un b
ypuAsys 29603l YfoS S aignog : [10] anjen [l ES
Sallduw SNOUOIYIUASYSI o5 2| IBR Ueajoog : PanadIads! m— - 2z
AU d1YSUIOREOUOEIIUNLUILIOYD.IEMIHOS XU 3 a1anoq : anjeadae BRI uonepoy aempaey asemyos [
v Bups : sweu
T F——— 2s0mfosbiursiafos -0
Buis : aameudss | * 0 T uis : sjeuoneyudisap
Tea[00g T IPUASYSTIOAANS EaE\amEt&HE 21eq : uopayelsul 5
Ja1pweded : [40] indino Il +0 T 21eQ : parepdnise| {Aieaqnisse|d ‘Aresgruonoung} : adky
saaueded : [, 0] ndul @[50 a1eq : pasnposul ueajoog : Aloyisodayuonejuauajduy
0 —— <o T7T|_| ueajoog : d(qejienyuoneiuawnaop U3|00g : UIIIWEUAP
* ueajoog : aponaoinos | NS " ueajoog : Aloyisodayadeaul
+°0 < soproid ueajoog : apewolsnd | ! a8endue) : 1a|
ndanpse i
ues|oog : ISNOHU!
(4195)s9pn|oxa<-jOMEd Y5 0 vlo| o [@HOwed 0) mm,s?ﬂ\, Miesan
. o
AU Ido e1eq X230 [wesiooa © Indujde | BUMS : [, 0] uonipuosod 380[: 39U143d150 _
" 8uins : [,0] uonipuodaid N 10]4 1 150)92UBUBIUIRW Uea|00g : paseqNOSS
* UeB|00g ! [BI1}IDUOIS: . uea|o0g : PaseqINX
sapinold o
o uogouny <« sapinoi JUBWSS3SSY : 3|Ge|eISS] 470 +T UBaJ00g : JUIWUOIAUIIWI | UNYSPIDU
- 0 2 050 T JUaLussassy - alqeidepysi _ {4B1y ‘wnipaw ‘moy) : 23ua1iadXIASNOHUI
Urps)sapnipxa<-jouedtjos < soned Buissessy - RapEIdu0Daped Gm-paiuawaldui p- ueajoog : o1dAdIweuAp
AU UORIUNS X@IU0D UG ; UOISIOA ‘leanpasoid ‘pajualio-19algo} : adA agensue|
15 1831008 1eINPONSI Surns : ouieu
Buis : uondiosap Buis : aweu 28ensuey
3uis : aweu mi;
(pasegNOsIaden8ueT’ Jox paseg X adenduey SioL 1a1 1T
| @2ep193U] | }193U]'J|35 pue (B4IDIU|'J|9S
AU 2OIIISGIM XOIUOD Sopinoid P 100DIIBLSqY ssa201dAuy 155005 MaN O
PayIPON g
Tuawssassy | Aouspuadap Wieos @
((1)sapnpui< Ue3]00g : 9J0D5!
0| uawssassy : Ayjenpioddns 00§ * 210351
(JAdw3touc-asepa3ur s -sapinoud “Jjas 10X (1)sapnj. pinoid- affor] Ivi0f<-u0pasoq-fjas +0 2N (g - : 2d2uewiopad wsio O
! > Saunbal ‘puage
A1 JUBUOdWI0) X@IU0D AUl dIySUORDYUONDIIUNUILIO)IDMIOS XN T pre— puasal

An Excerpt of the Meta Model of the Extended ITML

Figure 2

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

Moreover, we added the “Library” concept. A
library is a collection of resources that are written
using an implementation language, and that are
used by some software. A “Library” has a well-
defined interface description language by which
the behavior is invoked. A “Library” may be used
by some “Software”.

For the non-functional aspects of software, to
aid further in legacy system understanding, we
added a set of attributes to the “Software” concept.
Selected examples follow. A dedicated attribute
has been added allowing to express whether the
software is commercial off-the-shelf (COTS) or
in-house, which is largely relevant since, as per
Sect. 2, exposing the functionality of proprietary
applications may violate their terms of use. Sec-
ondly, we added attributes to express user-based
assessment of different aspects of either a service
or a software (partly accounted for in a “Software”,
partly in “ApplicationSoftware”, partly in an “IT
Service”). Such user based assessments include
(a) the possibility to flag (legacy) software as
mission critical, thus, indicating its particular im-
portance to the organization, as well as (b) various
assessments that help to understand the complexity
of modifying the software in line with the migra-
tion, by, e. g., assessing its scalability (through the
attribute “isScalable”) or adaptability (through the
attribute “isAdaptable”).

Finally, we consider the relationship between
the IT landscape and the enterprise action sys-
tem (cf. R7). To model such relationships, we
use two concepts: “SpecificSupport” and “Use-
Context” (cf. Fig. 2). “SpecificSupport” allows
for relating the IT landscape concepts, specifically
“Software”, to organizational concerns. Observe
that “SpecificSupport” has a set of non-functional
attributes, which allow to annotate the relation-
ship between ITML concepts and concepts from
other MEMO DSMLs, being specializations of
“UseContext”. Thus, “UseContext” allows for
connecting a “SpecificSupport” to a key concept
of any of the organizational DSMLs that are part of
the MEMO family, e. g., a concept “BusinessPro-
cess” defined within OrgML (Frank 2011) or

“AbstractGoal” specified in GoalML (Overbeek
et al. 2015).

Middleware and wrapper concepts
Middleware and wrapper are important to achieve
interoperation amongst heterogeneous systems.
“Middleware” refers to programming abstractions
(cf. Gustavo et al. 2004, p. 30) that hide (some of)
the complexity involved in building distributed
software applications.

To account for different ways one interacts with
middleware, as can be seen in Fig. 3 we distin-
guish between four middleware types (Gustavo
et al. 2004, pp. 32—40): Remote Procedure Call
(RPC)-based middleware, message-oriented mid-
dleware, transaction processing middleware, and
object-oriented middleware. RPC-based middle-
ware provides programming abstractions to make
a call to a remote procedure appear as if it were a
local procedure call, thus, allowing one to abstract
away from networking details and the internal
details of the called procedure. Message-oriented
middleware, transaction-based middleware and
object-oriented middleware build on the same
ideas as RPC-based middleware, while adding
additional programming abstractions to respec-
tively account for (1) message-orientation. The
basic idea behind message-orientation is that dis-
tributed applications communicate with each other
a-synchronously, by exchanging messages (mes-
sages are structured datasets, cf. Gustavo et al.
2004, p. 60). Typically the message-oriented
middleware enables such asynchronous communi-
cation by providing message queues, which store
messages placed there by a client, so that a re-
ceiving application can pull messages from the
queue when it is ready to do so. This is opposed to
RPC-based middleware, whereby the distributed
applications have to be constantly listening for
calls (Gustavo et al. 2004, p. 62); (2) transactions:
roughly speaking, this means that in addition to
individual procedures one needs mechanisms to
account for collections of procedures to be exe-
cuted, and their ordering, as part of a transaction
(e. g., to account for receiving a “reply” after a
“request”); (3) object-orientation, which means

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

20

Sybren de Kinderen, Monika Kaczmarek-Hef3

Special Issue Wirtschaftsinformatik 2017

wraps > [

0.*

ﬂ context Component inv:
st + self.Software->excludes(self)

context Component inv:
self.actsAsWrapper implies (self.Software->notEmpty() or
self.Interface-> notEmpty())

wraps P

Component

componentType : String
legacyUsesWebservice : Boolean

Ccas actsAsWrapper : Boolean

ApplicationServer

componentModel : String
webAccessLanguage[1..] : Language

MiddlewareConfiguration =

description : String
name : String

definedAsMicroservice : Boolean

*
M 0.1
WebServer Suses [0
Lot | Mpart of >

Middleware

protocol : String
synchronous : Boolean

asynchronous : Boolean

loadManagement : Boolean

transactionManagement : Boolean

middlewareType : {component, service, oo, message-based, functional...}

0.1

B uses »

0.1 0.1 0.*

] o0.1
WorkflowManagementSystem

DatabaseManagementSystem

« has_connector_to [

Figure 3: Extended ITML metamodel: Middleware and wrapper concepts

that, roughly speaking, one provides additional
mechanisms for accessing remote objects. An
example mechanism is encapsulation (Gustavo
et al. 2004, p. 57), which hides the internal de-
tails of objects being exchanged, such as the used
programming language.

Middleware can be part of application server,
or a web server. While an “ApplicationServer”
and “WebServer” act very much like conventional
middleware, they have one key difference: web
access capabilities (Gustavo et al. 2004, p. 103).
Such web access capabilities are prominently visi-
ble in the form of web access languages supported
by the application/web server, such as HTTP.

Various relationships exist between middleware
and other software, of which we exemplary mod-
eled two: a workflow management system “uses”
middleware to enable interoperability amongst
various possibly heterogeneous components of
the workflow system (Gustavo et al. 2004, p. 89),
and middleware ‘“has_connector_to”’ a database
management system, to emphasize that middle-
ware solutions allows different types of software
database access, in terms of submitting a query
and retrieving results (Rosen et al. 2008, pp. 375-
376).

Whereas a middleware can provide a complex
set of functionalities for enabling interoperation,
a “Wrapper” is a relatively basic type of software.

Their role is to allow for abstracting away from
the inner workings of legacy systems, focusing
on their inputs and outputs instead. Wrappers
take on a particularly important role when follow-
ing a black-box migration strategy, see Sect. 3.
Indeed, wrapping components provide several fea-
tures to expose parts of a legacy application (data,
logic, interface) and assist in encapsulating the
implementation details of the required service,
defining a descriptive interface and publishing
the service in a discoverable location (Baghdadi
and Al-Bulushi 2015). Thus, by hiding the in-
ternal workings of a single (legacy) system, as
detailed by Baghdadi and Al-Bulushi (2015), they
offer the toolset to expose a legacy system in an
interoperable manner.

To account for a wrapper, we introduce it as a
type of software component, and further detail it by
means of (1) various “wraps” relationships to dif-
ferent types of software that are wrapped, (2) the at-
tribute “legacyUsesWebservice : Boolean” which
expresses a key difference in the behavior of wrap-
pers, namely as per Belushi and Baghdadi (2007):
if the access relationship between a web service
and a legacy system in uni-lateral, i. e., a web ser-
vice can access a legacy system but not vice versa,
or if it is bilateral, i. e., the legacy applications and
web service can access each other’s functionality.

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

Service-orientation concepts

As stated in Sect. 1, a service is a “self-contained”
component that provides a business functional-
ity via a standardized interface (Papazoglou et
al. 2008). Thus, in order to account for service-
orientation and required non-functional and func-
tional aspects (cf. R4-R6), e. g., new specializa-
tions of “Software” have been added. Being
specializations of “Software”, each of them offers
some (business) functionality (‘“Function™) and
has some “Interface”.

Amongst “Software” specializations, particu-
larly the concept “Web service” needs to be dis-
cussed. Here we added attributes and a constraint
that set a web service apart from software, in par-
ticular to express the reliance of web services on
internet technologies (Gustavo et al. 2004, p. 124).
We did so through the attributes “URI : String”,
stating the URI over which a web service is ac-
cessed, and a constraint on the interface definition
language of the interface specified for the web ser-
vice, stating that the interface definition language
must be XML- or JSON-based.

To express QoS attributes of a web service or
IT service, such as an average processing speed,
we rely on the meta type software quality and its
attributes. We do so because while these QoS
attributes are relevant for a service specification,
to the best of our knowledge there is nothing that
conceptually sets QoS attributes in general apart
from how we specify “regular” software qualities.
This one can also see in the OMG’s UML profile
for specifying QoS (OMG 2008), which provides
general concepts for specifying qualities, such
as “QoSCharacteristic” denoting the quality one
is interested in, or “QoSDimension” to express
expected values, such as the expected minimum
or maximum values.

Further, to express modularity, an important
aspect of service-orientation (Papazoglou et al.
2008), we use the concept “Component”, and ad-
ditionally express its modularity through (1) the
relationships “part_of” and “depends_on”, corre-
sponding to concept “Software”, which express,
respectively, how a component/software can be

decomposed into smaller constituent components,
and that there exist component dependencies;
and (2) the constraint that a component should
have at least one interface, which hides the in-
ternal workings of a software component, such
as the programming language used. Note that
we base our conceptualization of a component
on the component-and-connector viewtype from
Clements et al. (2002, p. 110), which concerns
itself with the basic ideas of how, at run-time,
several (software) subpieces together constitute a
larger (software) system.

At this point it is important to note that we
explicitly opted to introduce the general notion
of “Component” to cover many similar ideas in
service-orientation. Of particular note is the re-
cently emerging term “microservices”. Architec-
tures organized around microservices follow prin-
ciples similar to service-orientation (e. g., loose
coupling, interfaces hiding internal complexity,
Pautasso et al. 2017), yet place an additional em-
phasis on following particular principles. For ex-
ample, for microservices centralized functionality,
such as offered through an Enterprise Service Bus,
is kept to a bare minimum (Koschmider 2017;
Pautasso et al. 2017; Zimmermann 2017), and
the software components acting as microservices
typically execute fine-grained business capabili-
ties. Yet, while for microservices SOA principles
are followed more strictly, apart from the use of
specific novel technologies (e. g., lightweight mes-
saging systems cf. Zimmermann 2017) and man-
agement principles (prominently DevOps, to keep
software management closely tied to software de-
velopment cf. Zimmermann 2017), the underlying
ideas remain — for now — similar to those of service-
orientation and component-based/modular soft-
ware development. Therefore, we opt to not in-
troduce concepts related to microservices in their
own right. However, since microservice architec-
tures are an emerging and active research field, for
future research our conceptualization of microser-
vices may change.

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

22

Sybren de Kinderen, Monika Kaczmarek-Hef3

Table 4: Examples of Concrete Syntax

&
3
S
S8

Explanation

web service

5

=l

e] source code available
o

=l

°"°°6'@ source code unavailable

4.3 Concrete Syntax and Supporting
Modeling Tool

After extending the abstract syntax of ITML, we
have extended its concrete syntax with the aim
to ensure its intuitiveness. To this end, we use
well-established guidelines from Moody (2009)
for designing cognitively effective visual notations
(i. e., notations that are optimized for processing
by the human mind). These guidelines include
Semiotic Clarity, Perceptual Discriminability, Se-
mantic Transparency, Visual Expressiveness and
Graphic Economy. For example, semantic trans-
parency implies that the meaning (semantics) of a
symbol is clear (transparent) from its appearance
alone (Moody 2009). In this case, the use of a
suitable domain-specific graphical representation
is considered important, as it allows domain stake-
holders to quickly grasp the idea, thus, avoiding
a long learning process. Tab. 4 shows exemplary
symbols used to represent the language concepts
of extended ITML.

The set of MEMO DSMLs (namely GoalML,
OrgML-Organizational Structure and OrgML-
Business Processes) has been implemented with
the meta modeling software environment ADOxx
(Fill and Karagiannis 2013). It has been made
available under the name MEMO4ADO? (Bock
and Frank 2016). However, due to the lack of sup-
port for intrinsic features and language level types

2 The modeling tool can be downloaded from http://www.
omilab.org/memo4ado

Special Issue Wirtschaftsinformatik 2017

in the ADOxx meta meta model (Fill and Kara-
giannis 2013)3 , in order to implement MEMO
modeling languages in ADOxx a redesign of the
meta model was required, so that the desired do-
main aspects could all be modeled at exactly the
same abstraction level (Bock and Frank 2016).

Being aware of this limitation, however, to
benefit from the already implemented languages,
we modify and extend the meta model of ITML
within MEMO4ADO. The introduced extensions
resulted also in new diagrams types that have
been added. Thus, currently the tool offers the
following diagram types: (1) IT Infrastructure Di-
agram, which focuses on modeling the overall I'T
landscape, including concepts related to service-
orientation (such as a web service and its various
attributes); (2) ITML Implementation Languages
Diagram, which allows to model different imple-
mentation languages (and their characteristics) at
the language level. The defined language level con-
cepts are referenced within the IT Infrastructure
Diagram type; (3) ITML Topic Diagram, which al-
lows to define Functions and Data Topics. Similar
to the ITML Implementation Languages diagram
type, the modeled Topics are being referenced
from the IT Infrastructure Diagram; (4) ITML
File Exchange Format Diagram, which allows to
model different types of file exchange that specify
the format of the files being exchanged, which
may be then referenced from the level of the main
diagram; (5) ITML Library Diagram allows to de-
fine the used libraries, which again are referenced
from the main diagram.

We summarize the used and implemented di-
agram types per SOA migration analysis phase
in Tab. 5. Note that, as discussed in Sect. 3, the
SOA migration analysis activities are not sequen-
tial. For example, “Legacy System Understand-
ing” may partly overlap with “Candidate service

3 The ADOxx meta meta model includes concepts to define
meta classes, attributes, and relationships at level M5, which
can be instantiated at type level M| in the ADOxx Modeling
Toolkit (Fill and Karagiannis 2013, 6-7). Yet, it does not
support instantiating and managing instance populations
at level My that would represent instantiations of model
elements from the level M.

http://dx.doi.org/10.18417/emisa.13.1
http://www.omilab.org/memo4ado
http://www.omilab.org/memo4ado

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

identification and refinement”, in the sense that
functionalities are identified that one would like to
offer as services. Also target system analysis may
overlap with business context analysis, so that one
takes into account the organization action system
while designing the target system.

Table 5: MEMO SOA Migration Analysis Method:
Phases and Corresponding Diagrams

Phase Exemplary Diagrams

Business Context | Organizational Structure Diagram,

Analysis Goal Diagram, Business Process
Map

Legacy System IT Infrastructure Diagram, ITML

Understanding Library Diagram

Target System IT Infrastructure Diagram

Understanding

Candidate Service | IT Infrastructure Diagram, ITML
Identification and | Topic Diagram
Refinement

5 Evaluation

We have conducted a threefold evaluation of the
proposed approach: (1) against identified require-
ments, (2) by its application — using an extensively
documented SOA migration scenario, we show
how the extended ITML, in tandem with other
languages from the MEMO language family, can
be used to support a SOA migration analysis,
(3) by showing the added value of MEMO with
the extended ITML in a scenario-based compar-
ison with ArchiMate, another language that is a
promising candidate for SOA migration analysis.
In the following, we briefly discuss the obtained
results.

5.1 Requirements Fulfillment

Tab. 6 summarizes the fulfillment of the identified
requirements by the extended ITML, when it is
applied in tandem with other MEMO family lan-
guages. Thanks to the integration of the extended
ITML with GoalML, OrgML (business processes)
and OrgML (organizational structure) (e. g., via
the relationship “supports”) we have been able

to account for the business concerns as required
by R7. We have extended ITML to account for
different types of services as well as for their non-
functional aspects (RS and R6). In turn, to support
the analysis and decision which migration strategy
should be followed (e. g., black-box or white-box),
we have accounted for the detailed characteristics
of legacy systems (R3) as well as accounted for
concept allowing to express those (R1-R3, and
RS5). We also provided the extended version of the
corresponding modeling tool (R9).

5.2 Applicability Evaluation: ACME
Insurance — A SOA Migration
Scenario

To evaluate the applicability as well as added
value resulting out of the proposed extensions, we
have applied the proposed method to scenarios
documented in the literature, e. g., (Brandner et al.
2004; Rosen et al. 2008; Zimmermann et al. 2004).
Here, we report on the most comprehensive one.
Namely, we now model a running scenario of an
ACME Insurance company discussed by Rosen
et al. (2008, pp. 541-578). To this aim we use the
extended version of ITML in tandem with the other
MEMO languages, i. e., GoalML and OrgML. We
follow the SOA analysis activities depicted in
Fig. 1 as a guideline. After the extensive scenario,
we briefly discuss the SOA migration scenario
as documented by Brandner et al. (2004) and
Zimmermann et al. (2004).

Business Context Analysis and Legacy System
Understanding. ACME Insurance, a fictitious
insurance company that is an aggregate of sev-
eral SOA migration projects at actual insurance
companies, specializes in two line-of-business:
commercial auto and commercial property (Rosen
et al. 2008, p. 541). ACME focuses on the full
insurance life-cycle, which implies that it deals
with preparing quotes and ratings, underwriting
and servicing policies.

ACME Insurance decides to introduce service-
orientation having the following key objectives in
mind: (1) to share IT capabilities across different
Lines of Business, (2) to achieve synergy between

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

24

Sybren de Kinderen, Monika Kaczmarek-Hef3

Special Issue Wirtschaftsinformatik 2017

Table 6: Requirements Fulfillment — Summary

Requirement Description

Explanation

Expressing IT landscape el-
ements

The basic elements of IT landscape have been accounted for, e. g., Database, Database
management system, Middleware, Server. To allow for expressing additional concepts,
not revealed by the conducted analysis of migration related concepts, the concept
Software may be used.

Expressing the dependen-
cies between IT landscape
elements

We have accounted for a rich set of domain specific relationships, e. g., uses, provides,
runs on, based on.

Characteristics of legacy sys-
tems and dependencies

A set of attributes/relationships has been added to facilitate the analysis of legacy
systems, e. g., mission criticality, source code availability, implementation language,
code complexity, availability of documentation, strength of support.

Service and its types

A set of Software specializations (e. g., IT Service, Web Service, Component) has
been added (all with additional attributes and constraints) in order to express different
aspects of service-orientation

Relating a service to its un-
derlying implementation.

Relevant relationships have been defined: wraps, provides, runs on, uses

Quality attributes of services

Quality of Service attributes are specified using the meta type software quality and
its attributes.

Dependencies between the
IT landscape and the organi-
zation action system

Different relationships and association types (e. g., SpecificSupport, UseContext)
allow to link IT infrastructure elements with business processes;

Semantically rich concepts

Each extended ITML concept, including relationships to concepts from other MEMO
languages, has been equipped with a rich set of domain-specific attributes.

Modeling Tool

The implementation of ITML in the MEMO4ADO tool has been modified to account
for the introduced changes. Also the additional integration with the concepts from
other MEMO languages has been accounted for.

legacy applications, (3) to address the fragmenta-
tion of the IT landscape, and (4) to ease addition
of new insurance products.

For scoping reasons, we focus our case study
on the process of insurance underwriting, which
is concerned with matching a customer profile to
an appropriate insurance package and fee. The
following are key process steps for underwriting:
gathering information for quote, underwriting, and
sending a quote to the customer.

Fig. 4 shows the business context in terms of
this underwriting process, and how it is supported
by the current IT infrastructure. We focus our
discussion on outstanding features of the extended
ITML and MEMO for the SOA migration analysis,
marked by labels @ - @

First, the extended ITML, in conjunction with
OrgML, helps identifying how current business
processes are supported by IT infrastructure (in

line with R7, Tab. 1). This provides a baseline IT
infrastructure on which the SOA should build, and
helps with identifying key IT functionality that is
important to transform into service-orientation.
In Fig. 4, this feature is illustrated by labels

and . These mark the “supports” relationship
between the functions that are part of the func-
tion “Car policy administration” as provided by
the application “Car policy and products adminis-
tration”, namely: the function “Establish policy
submission” supporting the business processes
“Gather information for quote”, and the function
“Rate insurance policy” which supports the busi-
ness process “Underwrite quote”. Note that we
show the functions of the car policy application
only, to avoid overcrowding the model. Thus,
the extended ITML helps us identify the legacy
system functionality and its support to the orga-
nizational action system by (a) using functions to

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

25

Special Issue Wirtschaftsinformatik 2017

<Insurant>

Request for Gather information Required
., property of car required for quote information
\ insurance gathered

Attributes view
relevance:high

Car policy
) supports
supports

Business Process (OrgML)

<Insurant>

T

Underwrite the quote ~ The quote
is

<Insurant>
sTOP

Send the quote to the Quotation
customer sent to the

underwritten customer

supports

SUPPOTts supports

Attnbutes view

> S

o supports

= Ril— ¢ = - Ly
: @ i L
E =
B Car policy and products Property policy and products
T administration administration Property rating Auto rating
g 1 _— s
2 1) < |
§ ._.y/ |
[H
b]
a o |
> —]
o H
[y cics i
] H
-]

; |
) T i
5 :' =
- [H
1%

3 o
-

=

[%]

©

“
o«
E g
E

IBM Z9 server General purpose server

Puln:y notice Motor vehicle
generation retrieval

State motor vehicle Content management
application system

n" T~ ’b/
l —

Policy financials
database

\,b\ /(Q/

General purpose
database

Oracle DBMS

]
Functiontopic m \

Application software

Server Database DBMS
“—m «—a supports —Cc—>
manages accesses supports communicates

&y O

isMissionCritical i rocess (OrgML) Event (OrgML)

Software interface

—u—> “—p
runs on uses provides

Figure 4: ACME Insurance’s current system and its business context, modeled in the extended ITML and OrgML

express the functionality provided by a software,
including potentially finegrained functionalities of
which an abstract functionality is composed. For
example: we can express that the function “Car
policy administration” is composed of functions
“Establish policy submission” and ‘“Rate insurance
policy”; (b) annotating the “supports” relation-
ship with an importance score (e. g., in this case:
“relevance = high”); (c) considering all business
processes that are supported by the functionality,
as provided by a particular application. Note that
we can further mark important applications with
the attribute “isMissionCritical : Boolean”.

Second, the extended ITML helps identify spe-
cific relationships between IT infrastructure ele-
ments, in line with R2 (Tab. 1). In Fig. 4 this is
illustrated by labels and . The label located
on the “communicates” relationships expresses
that three applications communicate with CICS
middleware* . In turn, label on the “runs
on” relationship indicates that the CICS middle-
ware runs on the Z9 server, but not the other way
around.

4 CICS middleware supports the processing of large amounts
of transactions, and often runs on (Z-series) mainframes.
Despite it being costly to maintain, CICS is still popular in
organizations that deal with large volumes of transactions,
being mostly banks and insurance companies.

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

26

Sybren de Kinderen, Monika Kaczmarek-Hef3

Special Issue Wirtschaftsinformatik 2017

<Insurant>

<Insurant> <Insurant>

stop

SOA Migration Objectives
(GoalmL)

Business Process Layers
(OrgmL)

e et

A

services

IT Infrastructure — Legacy System
(extended ITML)

Request for Gather information Required Underwiite'the quote The quote Send the quote to the Quotation = &/
car required for quote information customer sent to the Address fragmentation
gathered underwritten P Ease adfjition of 2
uotation of IT Iandscape
a new insurarice products /8 ap
B SUPPOS-——— === === === === ===~~~]
supports supports
Pe—— Share capabilities across
= | supportQuality: 2 different lines of business]
] Relevance: high y
2 .
s E
: g 77777777777777 /1B
4
83 e D
s supports v 9
3
Q£ E K Achieve synergy amongst
@ % @ _Gay W@ SUPPOIts —————— -~ — ®] D yneray ameng
= Policy management service Driver management service (5‘) Document management service Provide integrated 'e92cy applications
=] \2 Y Attributes view - [policy management
— \ \
\ isAsynchronous=True 1R
\ \
\ | T
\ o S— a i o =
e oXH b
S e e U L L
Folicy notice motor vehilcle report State motor vehicle Content managemeht
Auto rating Commercial auto no.my\ Commercial progérty policy senarnon vehilcle report retrieval application T e
and administration o and admfiistration

Policy financials

\a -
supports— —————\\————— 7777777 /:A ,,,,,,,,,,,,,,,,, @

2

Wrap transaction

processing capabilities

General purpose

T datebase database
. I o,\ /«
—
"""""""""" 0| <3
E
General purpose server cics middleware 18M 29 server Oracle DBMS
R
o N & | =
@ L
Web service Application software Middeware Server Database DBMS SymbolicGoal Event
<~ -supports—~ L e T S— —us L
communicates runs on uses o
m 2 Wrapper IshissionCritical BusinessProcess
provides manages accesses

Figure 5: ACME Insurance’s desired service orientation, modeled in the extended ITML, OrgML and GoalML

Third, the extended ITML can help describe
the non-functional attributes of legacy systems,
which in turn helps understanding the legacy sys-
tem. In Fig. 4 this is exemplified by label (3),
which allows an analyst to understand why the
ACME Insurance’s “Auto rating” application has
a COM interface® , namely: because it is one of
few applications that has been programmed in
Visual Basic 6, and thus, needs an interface for
applications programmed in different languages
to be able to interact with it.

5 We do not want to suggest that COM component technology
is a superficial “shell”. We are aware that (D)COM consists
of an extensive set of supporting libraries, and that it is
based on the wider notion of component-based development.
However, it is the interface only that we focus on here, since
this determines how one interacts with the application.

Candidate Service Identification and Refine-
ment and Target System Understanding. Fig. 5
shows the ACME’s to-be service-oriented IT in-
frastructure modeled in the extended version of
ITML. In it, we find the following candidate ser-
vices (in line with Rosen et al. 2008, p. 548):
Policy management service, Driver management
service, and Document management service. Be-
sides reusing current IT capabilities that play an
important part in the current IT infrastructure (as
identified in Fig. 4), the goal analysis by means
of GoalML plays an important role in identifying
these services.

Labels @, , and . illustrate the role that
the goal analysis plays in service identification.
First, the goal analysis can be used to structure
the plain text list of SOA objectives identified

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

(Rosen et al. 2008, p. 542), and to translate high
level goals into more concrete ones. For exam-
ple, in terms of structuring, we see that fulfilling
the SOA migration objective “Share capabilities
across different lines of business” contributes to
fulfilling the objectives “Ease addition of new
insurance products”, and “Address fragmentation
of IT landscape”. Furthermore, we find that the
objective “Achieve synergy amongst legacy ap-
plications” positively contributes to the objective
“Share capabilities across different lines of busi-
ness”. So, instead of objectives that are at first
sight orthogonal to each other, we can see how
they are interrelated, which helps identify how
fulfilling one goal can contribute to (or negate)
the fulfillment of another goal. Also, we see how
the goal analysis can be used to translate high-
level goals into more concrete ones. For example,
the objective “Provide integrated policy manage-
ment” is introduced as a concrete goal to achieve
“Achieve synergy amongst legacy applications”,
whereas “Wrap transaction processing capabili-
ties” is introduced to “Ease addition of new insur-
ance products” (the idea being that newly build
non-mainframe applications can, thus, capitalize
more easily on transaction processing capabilities)
as well as to “Share capabilities across different
lines of business”.

Labels and show how the identified
objectives translate into service-orientation. By
means of the association class “supports” we iden-
tify how (1) a “Policy management service” is
introduced as a response to the SOA migration ob-
jective “Provide integrated policy management”,
and (2) the wrapper CICS 3.1 Web service is intro-
duced to allow web services access to mainframe
transaction processing capabilities.

Finally, labels and illustrate further
the ability of expressing non-functional attributes
in the extended ITML. Particularly, these labels
illustrate how we can use attributes to express
asynchronous communication between the web
service “State Motor Vehicle Reporting” and the
web service “Motor Vehicle Report” from ACME
Insurance. Furthermore, as can be seen from
Fig. 5, attributes allow us to express that the CICS

3.1 web services wrapper is of type “transaction”,
thus, allowing for a bi-directional communica-
tion between different software (as mentioned in
Sect. 3 in case of a session-based wrapper, the
communication relationship would have to be uni-
directional).

Short summary of findings of a different SOA
migration scenario

We also confronted extended ITML to a SOA
migration scenario from the financial industry, as
documented by Brandner et al. (2004) and Zim-
mermann et al. (2004). The case concerns the de-
velopment of a standardized interface for a shared
service centre providing banking services. On
the one hand, this case follows a largely technical
narrative, making it hard to test business-oriented
aspects of extended ITML. On the other hand, the
cases showed that extended ITML is capable of
expressing the most salient technical decisions, be-
ing amongst others: (1) the decision to use WSDL
as the only interface description language for the
introduced web services, through the extended
ITML concepts “WebService” and “Interface”,
and the Interface attribute descriptionLanguage;
(2) the reliance on different middlewares (CICS,
and Websphere) for the connection to the back-end.
However, unfortunately, Brandner et al. (2004) and
Zimmermann et al. (2004) did not provide details
of the back end legacy systems, hence we could
not fully test the expressiveness of extended ITML
with regards to connecting heterogeneous system
elements for this case.

5.3 Comparison with ArchiMate

In the previous section, we have illustrated how
an EM approach with a focus on IT infrastructure
modeling can play a meaningful role in the SOA
migration analysis. In line with our requirements,
it can be used to: (1) inventory relevant IT in-
frastructure assets and their relationships, such as
the desire to keep using legacy bulk transaction
processing functionality via a wrapper, (2) express
non-functional attributes, such as the necessity of a
web service to support asynchronous communica-
tion, as well as a wrapper supporting bi-directional

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

28

Sybren de Kinderen, Monika Kaczmarek-Hef3

Business services and external actors/roles

Special Issue Wirtschaftsinformatik 2017

Insurance Insurance Insurant O Customer %
quote quote —
registration notification
N N
T i
i i
1]
Internal businegs processes and internal actors !
i i
I I
¥ | CQuote Insurance I =
L 1
quuest calj Gather > Undenwrite =» Present =» Insurer €D ACME
(TS =™ information — the quote — quote | Insurance
quote for quote
Application services
Policy Drriver Motor vehicle Motor vehicle Document
management management retrieval = reporting management
service 7 service service service service
] =~]]]
]]]]
| | i i
T - - ~a T) [
Internal and Ex'ternlal Applications) ! ! !
i i i i i
i i i i i
]]]]]
]]]]]
i i i i i
Policy Motice Commercial auto policy Motor vehicle State Motor Content
Generation administration report Vehicle management
Application system
internal and external Technology Infrastructure
CICS 3.1 web
SErvVices
Policy Financials CICS @ General purpose
Database middleware Database
IBM Z9 Server
Business Actor % Business Role CO Business Event Business o> Application
Service Process Service
Application ([Application System (5 Infrastructure
Interaction Component Software Node Service

Figure 6: ACME Insurance’s desired service orientation, modeled in ArchiMate

communication, and (3) an overview of how IT
functionality supports business processes, such
as the web services “Policy management service”
and “Driver management service” both supporting
the business process “Underwrite the quote”.

To illustrate the added expressiveness of the
extended ITML, let us briefly contrast it with

ArchiMate, another promising candidate identi-
fied in Sect 3.3 for modeling service-orientation.
The analysis of Fig. 6 (depicting the to-be service-
orientation of ACME Insurance) shows that Archi-
Mate lacks expressiveness for IT infrastructure
concepts that one would need for a meaningful
SOA migration analysis. This particularly con-

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

cerns ArchiMate’s multi-interpretable concepts
and the lack of domain-specific attributes.

Multi-interpretable concepts. ArchiMate is on
purpose designed with a limited set of concepts
in mind, while at the same time maintaining suffi-
cient expressiveness for most enterprise architec-
ture modeling tasks (Lankhorst et al. 2010). This
has resulted in a set of abstract concepts that, while
largely suitable for the enterprise architecture do-
main, is too multi-interpretable for meaningful
domain-specific analyses. Often, when it comes
to detailed domain-specific analyses, the abstract
syntax offered by ArchiMate allows one to cre-
ate relationships between concepts that are illegal
from a domain point of view.

Consider the “Server” and “Middleware” con-
cepts from the IT infrastructure domain. As de-
picted in Fig. 6, in the ACME Insurance sce-
nario, but more generally also for large insurance
and banking organizations, ACME Insurance runs
CICS middleware on its Z9 server. While in the
to-be situation CICS is being offered via a wrap-
per (CICS 3.1 web services), ACME Insurance
considers it important to maintain this transaction
processing capability.

Whereas one could in principle express this
server-middleware relationship in ArchiMate, due
to its multi-interpretable nature, one might as well
express it the other way around: that the Z9 server
runs on the middleware® . However, from the
point of view of the IT infrastructure domain, this
is illogical.

Domain-specific attributes. In addition to hav-
ing multi-interpretable concepts that can be related
in different (sometimes illegal) ways, ArchiMate

6 The ArchiMate concepts closest to “Server” and “Mid-
dleware” would be the “Node” concept or its specialization
“System software”, which are defined respectively as “...a
computational resource upon which artifacts may be stored
or deployed for execution” (Node, cf. The Open Group 2013)
and as “...a software environment for specific types of
components and objects that are deployed on it in the form
of artifacts” (Systems software, cf. The Open Group 2013).
However, by expressing both concepts as nodes in Archi-
Mate (or specializations thereof) one might as well let a
middleware run a server.

lacks domain-specific attributes. Consider at-
tributes specific to the “WebService” concept. In
the ACME Insurance scenario we need to espe-
cially express attributes for web services with re-
gards to using either synchronous or asynchronous
communication. To ACME Insurance, expressing
synchronicity of communication is relevant for
retrieving the Motor Vehicle report of a (potential)
customer. If ACME Insurance already has the
full data locally, it can simply retrieve this report
from a local database with a synchronous commu-
nication model. However, if insufficient data is
available, ACME Insurance has to request this in-
formation from the state motor vehicle authorities.
This request often leads to a delayed response,
thus, requiring the web service to be implemented
taking into consideration the asynchronous com-
munication model. ArchiMate’s abstract syntax
lacks such attributes specific to IT infrastructures.

Of course, the decision to include attributes into
a language depends on the analysis scenario to be
supported — in this case what needs to be in place
to enable service-orientation for ACME Insurance.
However, the discussed examples have shown that
dedicated analyses for the IT infrastructure domain
are insufficiently enabled by using ArchiMate as
such.

Thus, as shown in Sect. 5.2, dedicated support
from the extended ITML allows us to express
SOA migration concerns that are insufficiently ex-
pressed by ArchiMate. Particularly, while Archi-
Mate allows for linking business and IT concerns,
as we have shown it lacks support in both model-
ing dedicated IT infrastructure concepts and their
relationships, and in expressing non-functional
aspects.

6 Discussion and Conclusions

In this paper, based upon a literature review on
SOA migration analysis, and characteristics of
migration projects, we have identified a set of
requirements that conceptual modeling languages
should fulfill in order to support SOA migration.
Subsequently, a survey of existing modeling ap-
proaches has shown that none of them fulfills all

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Sybren de Kinderen, Monika Kaczmarek-Hef3

requirements, but that one approach comes clos-
est: MEMO. Following this, we have extended
MEMO, in particular its I'T infrastructure model-
ing language ITML. Then, we have shown how the
extended ITML used together with other MEMO
languages can be applied to a realistic SOA mi-
gration scenario. Finally, we discussed software
tool support, and showed the added value of the
extended ITML by contrasting it with the same mi-
gration scenario modeled in ArchiMate, another
candidate modeling language coming close to sat-
isfying our requirements. Here we have shown
that the extended ITML offers an added value
compared to ArchiMate in terms of expressing
domain-specific attributes, as well as concepts and
relationships specific to IT infrastructure (such as
a “runs on” relationship with specific meaning).

While extending ITML, in line with our pur-
poses we have focused on concepts required for
a detailed analysis of IT infrastructure. Mainly
we did this in terms of legacy systems character-
istics and characteristics for expressing service-
orientation.

Regarding legacy systems, an important con-
cern is that specifications of legacy systems rarely
exist and that hardly anything is documented
(cf. Khadka et al. 2013b; Lewis et al. 2006). So
it follows that extending the scope of a modeling
language is not enough as still the way to acquire
the required information should be accounted
for. Therefore, the next step is to check how
the existing tools and methods aiming at analysis
and re-engineering of legacy systems discussed
in Sect. 2.1, such as the various feature analysis
approaches, can be used to acquire information rel-
evant for populating the models. Furthermore, we
provided basic concepts for expressing databases,
and how they can be related to service-orientation.
However, while sufficient for our scenario, in-
tegration of data from databases into a SOA is
also a more complex research issue. For ex-
ample, one should be careful with the database-
to-schema conversion discussed by Rosen et al.
(2008, p. 199). Here it is pointed out that sim-
ply converting a database to XML results in a
tight-coupling between the original database and

Special Issue Wirtschaftsinformatik 2017

its XML representation. This tight-coupling can
lead to misunderstandings amongst stakeholders
not directly familiar with the database’s schema,
and worse still: it can lead to difficulties when
the database is changed, since the change some-
how needs to be reflected into the XML messages.
So, in database migration, one should take care
of structurally migrating data structures, an area
where modeling can be particularly helpful.
Regarding service-orientation, the extended
ITML provides a basic set of concepts required to
express many of the concerns relevant to service-
orientation. These include a link between busi-
ness concerns and IT concerns, a link between a
service and the underlying IT infrastructure con-
cepts, and service attributes. Although we have
expressed the non-functional aspects of (web) ser-
vices pragmatically, we are well aware, as also
witnessed by, among others D’Ambrogio (2006)
and Jureta et al. (2009), that expressing such
non-functional attributes in a conceptual model
is more complex than simply adding a meta type
“Software Quality” (as we did while extending
ITML). For one, depending on the purpose of
the model, one has to consider aggregate versus
detailed service qualities, such as reliability being
specified into an average number of failures over a
certain time period, and the average duration of a
failure (D’Ambrogio 2006). In addition, one may
have to express contractual agreements relating
to QoS, as well as the possibility to add (relative)
importance values (Jureta et al. 2009).
Regarding the language architecture used, al-
though the application of the MEMO meta model-
ing language (MML) allowed us to take advantage
of the intrinsic features and relationships, and thus,
to refer to the instance level, we faced modeling
challenges due to to the restrictions imposed by
the type/instance dichotomy and the semantic dif-
ferences between instantiation and specialization
(cf. Frank 2014). The MML language architecture
as well as other languages following a “traditional”
modeling paradigm (i. e., in line with the Meta Ob-
ject Facility language architecture (OMG 2015b))
offer no satisfying solution to the above-mentioned
challenges (cf. Atkinson and Kiihne 2001, 2008;

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

Frank 2014; Kaczmarek-Hef} and Kinderen 2017).
As aresult, in the proposed meta model we needed
to restrict the meta types to a few generic ones,
in order to find a balance between productivity
and reuse, in line with the identified requirements.
Nevertheless, taking into account the limitations
imposed by the meta modeling architecture, as a
next step of our research we undertake an attempt
to apply a multilevel modeling language like, e. g.,
the Flexible Meta Modeling and Execution Lan-
guage, FMML* (Frank 2014). Such a multilevel
modeling allows to consider an arbitrary number
of modeling levels, instead of the two that we
currently rely on.

Finally, the evaluation of the performed exten-
sions is limited in the sense of using a documented
case study. Although the documented case study
is realistic and detailed, it would be worthwhile
to gain additional insights from application to
a real world case. For one, we (implicitly) as-
sume that the concepts from the different model-
ing languages are understood by domain experts
(IT analysts, process managers, etc.) and can be
used to communicate with them. However, this
assumption should be verified.

References

Almonaies A. A., Cordy J. R, Dean T. R. (2010)
Legacy system evolution towards service-oriented
architecture. In: International Workshop on SOA
Migration and Evolution, SOAME 2010. IEEE
Computer Society, Washington, DC, USA, pp. 53—
62

Alwadain A., Fielt E., Korthaus A., Rosemann M.
(2016) Empirical Insights into the Development
of a Service-oriented Enterprise Architecture. In:
Data Knowledge Engineering 105(C), pp. 39-52

Arsanjani A., Ghosh S., Allam A., Abdollah T.,
Ganapathy S., Holley K. (2008) SOMA: A method
for developing service-oriented solutions. In: IBM
System Journal 47(3), pp. 377-396

Atkinson C., Kiihne T. (2001) The Essence of Mul-
tilevel Metamodeling. In: Gogolla M., Kobryn C.
(eds.) Proceedings of the 4th International Confer-
ence on The Unified Modeling Language, Mod-
eling Languages, Concepts, and Tools. Springer,
London, UK, pp. 19-33

Atkinson C., Kiihne T. (2008) Reducing accidental
complexity in domain models. In: Software &
Systems Modeling 7(3), pp. 345-359

Baghdadi Y., Al-Bulushi W. (2015) A Guidance
Process to Modernize Legacy Applications for
SOA. In: Service Oriented Computing and Appli-
cations 9(1), pp. 41-58

Balasubramaniam S., Lewis G. A., Morris E.,
Simanta S., Smith D. (2008) SMART: Application
of a Method for Migration of Legacy Systems to
SOA Environments. In: Bouguettaya A., Krueger
L., Margaria T. (eds.) Service-Oriented Computing,
ICSOC 2008. Springer, pp. 678-690

Bell M. (2008) Service-oriented modeling. Wiley
Publishing

Belushi W. A., Baghdadi Y. (2007) An Approach
to Wrap Legacy Applications into Web Services.
In: Intenational Conference on Service Systems
and Service Management. IEEE Computer Soci-
ety, Washington, DC, USA, pp. 1-6

Bhallamudi P., Tilley S. (2011) SOA migration
case studies and lessons learned. In: 2011 IEEE In-
ternational Systems Conference. IEEE Computer
Society, Washington, DC, USA, pp. 123-128

Bisbal J., Lawless D., Wu B., Grimson J. (1999)
Legacy Information Systems: Issues and Direc-
tions. In: IEEE Software 16(5), pp. 103-111

Bock A., Frank U. (2016) Multi-perspective En-
terprise Modeling — Conceptual Foundation and
Implementation with ADOxx. In: Karagiannis D.,
Mayr H. C., Mylopoulos J. (eds.) Domain-Specific
Conceptual Modeling, Concepts, Methods and
Tools. Springer, Cham, pp. 241-267

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Sybren de Kinderen, Monika Kaczmarek-Hef3

Bock A., Kaczmarek M., Overbeek S., Hef3 M.
(2014) A Comparative Analysis of Selected En-
terprise Modeling Approaches. In: Frank U.,
Loucopoulos P., Pastor O., Petrounias I. (eds.)

The Practice of Enterprise Modeling. Springer,
pp. 148-163

Bouguettaya A., Singh M., Huhns M., Sheng Q. Z.,
Dong H., Yu Q., Neiat A. G., Mistry S., Benatallah
B., Medjahed B., Ouzzani M., Casati F., Liu X.,
Wang H., Georgakopoulos D., Chen L., Nepal S.,
Malik Z., Erradi A., Wang Y., Blake B., Dustdar
S., Leymann F., Papazoglou M. (2017) A Service
Computing Manifesto: The Next 10 Years. In:
Communications of the ACM 60(4), pp. 64—72

Brandner M., Craes M., Oellermann F., Zimmer-
mann O. (2004) Web services-oriented architec-
ture in production in the finance industry. In:
Informatik-Spektrum 27(2), pp. 136-145

Bresciani P., Perini A., Giorgini P., Giunchiglia
F., Mylopoulos J. (2004) Tropos: An Agent-
Oriented Software Development Methodology.
In: Autonomous Agents and Multi-Agent Systems
8(3), pp- 203-236

Brogi A., Soldani J., Wang P. (2014) TOSCA
in a Nutshell: Promises and Perspectives. In:
Villari M., Zimmermann W., Lau K.-K. (eds.)
Service-Oriented and Cloud Computing: Third
European Conference, ESOCC 2014, Manchester,
UK, September 2-4, 2014. Springer, pp. 171-186

Bucher T., Fischer R., Kurpjuweit S., Winter R.
(2006) Analysis and Application Scenarios of
Enterprise Architecture: An Exploratory Study.
In: 10th IEEE International Enterprise Distributed
Object Computing Conference Workshops. IEEE
Computer Society, Washington, DC, USA, p. 28

Clements P., Garlan D., Bass L., Stafford J., Nord
R., Ivers J., Little R. (2002) Documenting soft-
ware architectures: views and beyond. Pearson
Education

Special Issue Wirtschaftsinformatik 2017

Comella-Dorda S., Wallnau K., Seacord R., Robert
J. (2000) A Survey of Legacy System Moderniza-
tion Approaches. CMU/SEI-2000-TN-003. Soft-
ware Engineering Institute, Carnegie Mellon Uni-
versity. Pittsburgh, PA

D’Ambrogio A. (2006) A Model-driven WSDL
Extension for Describing the QoS of Web Ser-
vices. In: IEEE International Conference on Web
Services. ICWS 2006. IEEE Computer Society,
Washington, DC, USA, pp. 789-796

Dardenne A., van Lamsweerde A., Fickas S. (1993)
Goal-directed Requirements Acquisition. In: Sci-

ence of Computer Programming 20(1-2), pp. 3—
50

de Kinderen S., Kaczmarek-Hef3 M. (2017) Enter-
prise Modeling Support for SOA Migration. In:
Leimeister J., Brenner W. (eds.) Proceedings der
13. Internationalen Tagung Wirtschaftsinformatik,
WI2017. AIS

Deiters C., Rausch A., Schindler M. (2013) Using
spectral clustering to automate identification and
optimization of component structures. In: 2nd
International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering,
RAISE 2013, San Francisco, CA, USA, May 25-
26, 2013. IEEE Computer Society, Washington,
DC, USA, pp. 14-20

Dietz J. L. G. (2006) Enterprise Ontology: Theory
and Methodology. Springer

Ducasse S., Lanza M., Tichelaar S. (2000)
MOOSE: an Extensible Language-Independent
Environment for Reengineering Object-Oriented
Systems. In: Gray J., Scott L., Ferguson 1. (eds.)
The Second International Symposium on Con-
structing Software Engineering Tools — Workshop
Session. ACM, New York, NY, USA, pp. 24-30

Engelsman W., Wieringa R. (2014) Understand-
ability of Goal-Oriented Requirements Engi-
neering Concepts for Enterprise Architects. In:
Jarke M., Mylopoulos J., Quix C., Rolland C.,
Manolopoulos Y., Mouratidis H., Horkoff J.
(eds.) Advanced Information Systems Engineer-
ing. Springer, Cham, pp. 105-119

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

Fill H., Karagiannis D. (2013) On the Conceptual-
isation of Modelling Methods Using the ADOxx
Meta Modelling Platform. In: Enterprise Mod-
elling and Information Systems Architectures 8(1),
pp- 4-25

Frank U. (1994) Multiperspektivische Un-
ternehmensmodellierung. Theoretischer Hinter-
grund und Entwurf einer objektorientierten En-
twicklungsumgebung. Oldenbourg, Miinchen

Frank U. (2010) Outline of a Method for Design-
ing Domain-Specific Modelling Languages. ICB
Research Report 42. University of Duisburg-Essen.
Essen

Frank U. (2011) The MEMO Meta modeling Lan-
guage (MML) and Language Architecture. 2nd
Edition. ICB-Research Report 43. University of
Duisburg-Essen. Essen

Frank U. (2012) Multi-perspective enterprise mod-
eling: foundational concepts, prospects and future
research challenges. In: Software and Systems
Modeling 13(3), pp. 941-962

Frank U. (2013) Domain-Specific Modeling Lan-
guages: Requirements Analysis and Design Guide-
lines. In: Reinhartz-Berger I., Sturm A., Clark T.,
Cohen S., Bettin J. (eds.) Domain Engineering:
Product Lines, Languages, and Conceptual Mod-
els. Springer, pp. 133-157

Frank U. (2014) Multilevel Modeling — Toward
a New Paradigm of Conceptual Modeling and
Information Systems Design. In: Business & In-
formation Systems Engineering 6(6), pp. 319—
337

Fuhr A., Horn T., Riediger V., Winter A. (2013)
Model-driven software migration into service-
oriented architectures. In: Computer Science-
Research and Development 28(1), pp. 65-84

Goldstein A., Frank U. (2016) Components of a
multi-perspective modeling method for designing
and managing IT security systems. In: Informa-
tion Systems and e-Business Management 14(1),
pp- 101-140

Gustavo A., Casati F., Kuno H., Machiraju V.
(2004) Web services: concepts, architectures and
applications. Springer

Hanschke I. (2010) IT Landscape Management In:
Strategic I'T Management: A Toolkit for Enterprise
Architecture Management. Springer, pp. 105-217

Heise D. (2013) Unternehmensmodell-basiertes
IT-Kostenmanagement als Bestandteil eines inte-
grativen IT-Controllings. Logos, Berlin

Hirschheim R., Welke R. J., Schwarz A. (2010)
Service-Oriented Architecture: Myths, Realities,
and a Maturity Model. In: MIS Quarterly Execu-
tive 9(1), pp. 3748

Jamshidi P., Ahmad A., Pahl C. (2013) Cloud
Migration Research: A Systematic Review. In:
IEEE Transactions on Cloud Computing 1(2),
pp- 142-157

Juretal. J., Herssens C., Faulkner S. (2009) A com-
prehensive quality model for service-oriented sys-

tems. In: Software Quality Journal 17(1), pp. 65—
98

Kaczmarek-Hef3 M., de Kinderen S. (2017) A
Multilevel Model of IT Platforms for the Needs of
Enterprise IT Landscape Analyses. In: Business &
Information Systems Engineering 59(9), pp. 315-
329

Khadka R., Batlajery B. V., Saeidi A. M., Jansen
S., Hage J. (2014) How Do Professionals Perceive
Legacy Systems and Software Modernization?
In: Proceedings of the 36th International Confer-
ence on Software Engineering. ICSE 2014. ACM,
Hyderabad, India, pp. 3647

Khadka R., Reijnders G., Saeidi A., Jansen S.,
HageJ. (2011) A method engineering based legacy
to SOA migration method. In: 27th IEEE Inter-
national Conference on Software Maintenance,
ICSM 2011. IEEE Computer Society, Los Alami-
tos, CA, USA, pp. 163-172

http://dx.doi.org/10.18417/emisa.13.1

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Sybren de Kinderen, Monika Kaczmarek-Hef3

Khadka R., Saeidi A., Idu A., Hage J., Jansen S.
(2013a) Legacy to SOA evolution: A systematic
literature review. In: Ionita A. D., Litoiu M., Lewis
G. (eds.) Migrating Legacy Applications: Chal-
lenges in Service Oriented Architecture and Cloud
Computing Environments. IGI Global, Hershey,
PA, pp. 40-70

Khadka R., Saeidi A., Jansen S., Hage J., Haas
G. P. (2013b) Migrating a large scale legacy appli-
cation to SOA: Challenges and lessons learned. In:
20th Working Conference on Reverse Engineer-
ing, WCRE 2013. IEEE Computer Society, Los
Alamitos, CA, USA, pp. 425-432

Kirchner L. (2008) Eine Methode zur Unter-
stiitzung des IT-Managements im Rahmen der
Unternehmensmodellierung. Logos, Berlin

Koschmider A. (2017) Microservices-based Busi-
ness Process Model Execution. In: 8th Interna-
tional Workshop on Enterprise Modeling and In-
formation Systems Architectures. CEUS WS

Lankhorst M. (2013) Enterprise Architecture
at Work: modeling, Communication and Anal-
ysis, 3rd ed. The Enterprise Engineering Series.
Springer

Lankhorst M. M., Proper H. A., Jonkers H. (2010)
The anatomy of the ArchiMate language. In: Inter-
national Journal of Information System Modeling
and Design 1(1), pp. 1-32

Lewis G., Morris E., Smith D. (2006) Analyzing
the reuse potential of migrating legacy compo-
nents to a service-oriented architecture. In: Confer-
ence on Software Maintenance and Reengineering.
IEEE Computer Society, Washington, DC, USA,
pp- 9-23

Lewis G., Morris E., Smith D., O’Brien L. (2005)
Service-Oriented Migration and Reuse Technique
(SMART). In: 13th IEEE International Workshop
on Software Technology and Engineering Practice.
STEP 2005. IEEE Computer Society, Washington,
DC, USA, pp. 222-229

Special Issue Wirtschaftsinformatik 2017

Lwakatare L. E., Kuvaja P., Oivo M. (2015) Dimen-
sions of DevOps. In: Lassenius C., Dingsgyr T.,
Paasivaara M. (eds.) Agile Processes in Software
Engineering and Extreme Programming: 16th In-
ternational Conference, XP 2015, Helsinki, Fin-
land, May 25-29, 2015. Springer, Cham, pp. 212—
217

MacLennan E., Van Belle J.-P. (2014) Factors
affecting the organizational adoption of service-
oriented architecture (SOA). In: Information Sys-
tems and e-Business Management 12(1), pp. 71—
100

Millham R. (2010) Migration of a Legacy Procedu-
ral System to Service-Oriented Computing Using
Feature Analysis. In: CISIS 2010, The Fourth In-
ternational Conference on Complex, Intelligent
and Software Intensive Systems, Krakow, Poland,
15-18 February 2010. IEEE Computer Society,
Washington, DC, USA, pp. 538-543

Moody D. L. (2009) The Physics of Notations: To-
ward a Scientific Basis for Constructing Visual No-
tations in Software Engineering. In: IEEE Trans-
actions on Software Engineering 35(6), pp. 756—
779

OASIS (2013) Topology and Orchestration Speci-
fication for Cloud Applications Version 1.0. http:
//docs.oasis-open.org/tosca/ TOSCA/v1.0/0s/
TOSCA-v1.0-o0s.pdf

OMG (2008) Profile for modeling quality of ser-
vice and fault tolerance characteristics and mech-
anisms, version 1.1. http://www.omg.org/spec/
QFTP/About-QFTP/

OMG (2011) Business Process Model and Nota-
tion (BPMN), Version 2.0. http://www.omg.org/
spec/BPMN/2.0

OMG (2012) Service oriented architecture Model-
ing Language (SoaML), version 1.0.1. http://www.
omg.org/spec/SoaML/About-SoaML/

OMG (2015a) The Business Motivation Model
(BMM), version 1.3. http://www.omg.org/spec/
BMM/1.3/

http://dx.doi.org/10.18417/emisa.13.1
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://www.omg.org/spec/QFTP/About-QFTP/
http://www.omg.org/spec/QFTP/About-QFTP/
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/SoaML/About-SoaML/
http://www.omg.org/spec/SoaML/About-SoaML/
http://www.omg.org/spec/BMM/1.3/
http://www.omg.org/spec/BMM/1.3/

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Enterprise Modeling in Support of SOA Migration Analysis

Special Issue Wirtschaftsinformatik 2017

OMG (2015b) The Meta Object Facility, Version
1.4. http://www.omg.org/spec/MOF/1.4/About-
MOF/

OMG (2015¢) The OMG Unified Modeling Lan-
guage (OMG UML), version 2.5. http://www.omg.
org/spec/UML/2.5/

Osterle H., Becker J., Frank U., Hess T., Karagian-
nis D., Krcmar H., Loos P., Mertens P., Ober-
weis A., Sinz E. J. (2010) Memorandum zur
gestaltungsorientierten Wirtschaftsinformatik. In:

Zeitschrift fuer betriebswirtschaftliche Forschung
62(6), pp. 664-672

Overbeek S., Frank U., Kohling C. (2015) A lan-
guage for multi-perspective goal modelling: Chal-
lenges, quirements and solutions. In: Computer
Standards & Interfaces 38, pp. 1-16

Papazoglou M. P., van den Heuvel W.-J. (2006)
Service-oriented design and development method-
ology. In: International Journal of Web Engineer-
ing and Technology 2(4), pp. 412-442

Papazoglou M. P., Traverso P., Dustdar S., Ley-
mann F. (2008) Service-oriented computing: a re-
search roadmap. In: International Journal of Com-
putational Intelligence Systems 17(02), pp. 223—
255

Pautasso C., Zimmermann O., Amundsen M.,
Lewis J., Josuttis N. (2017) Microservices in Prac-
tice, Part 1: Reality Check and Service Design. In:
IEEE Software 34(1), pp. 91-98

Rabelo R. J., Noran O., Bernus P. (2015) Towards
the Next Generation Service Oriented Enterprise
Architecture. In: IEEE 19th International Enter-
prise Distributed Object Computing Workshop.
IEEE Computer Society, Los Alamitos, CA, USA,
pp- 91-100

Razavian M., Gordijn J. (2015) Consonance Be-
tween Economic and IT Services: Finding the
Balance Between Conflicting Requirements. In:
Fricker S. A., Schneider K. (eds.) Requirements
Engineering: Foundation for Software Quality.
Springer, Cham, pp. 148—-163

Razavian M., Lago P. (2010) Towards a Concep-
tual Framework for Legacy to SOA Migration.
In: Dan A., Gittler F., Toumani F. (eds.) Service-
Oriented Computing. ICSOC/ServiceWave 2009
Workshops. Springer, pp. 445-455

Razavian M., Lago P. (2015) A systematic liter-
ature review on SOA migration. In: Journal of
Software: Evolution and Process 27(5), pp. 337—
372

Rosen M., Lublinsky B., Smith K. T., Balcer M. J.
(2008) Applied SOA: Service-Oriented Architec-
ture and Design Strategies. Wiley Publishing

Salama R., Aly S. (2008) A Decision Making
Tool for the Selection of Service Oriented-Based
Legacy Systems Modernization Strategies. In:
Arabnia H. R., Reza H. (eds.) Proceedings of
the International Conference on Software Engi-
neering Research & Practice, July 14-17, 2008,
Las Vegas Nevada, USA, 2 Volumes. CSREA
Press, pp. 396402

Sandkuhl K., WiBotzki M., Stirna J. (2013) Un-
ternehmensmodellierung: Grundlagen, Methode
und Praktiken. Springer Vieweg

Scheer A.-W. (2001) ARIS — Modellierungsmeth-
oden, Metamodelle, Anwendungen, 4th ed.
Springer

Silva F. G., de Menezes J. S., Lima J. d. S., Franca
J. M., do Nascimento R. P., Soares M. S. (2015)
An Experience of using SoaML for Modeling a
Service-Oriented Architecture for Health Informa-
tion Systems. In: 17th International Conference
on Enterprise Information Systems - Volume 3.
ICEIS 2015. SCITEPRESS - Science and Technol-
ogy Publications, Lda, Barcelona, Spain, pp. 322—
327

Sneed H., Heilmann H., Wolf E. (2016) Soft-
waremigration in der Praxis: Ubertragung alter
Softwaresysteme in eine moderne Umgebung.
Wirtschaftsinformatik. dpunkt.verlag

Software AG (2017) ARIS Method Manual v.10

http://dx.doi.org/10.18417/emisa.13.1
http://www.omg.org/spec/MOF/1.4/About-MOF/
http://www.omg.org/spec/MOF/1.4/About-MOF/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 1 (2018). DOI:10.18417/emisa.13.1

Sybren de Kinderen, Monika Kaczmarek-Hef3

Terlouw L. I., Albani A. (2013) An enterprise
ontology-based approach to service specification.

In: IEEE Transactions on Services Computing
6(1), pp. 89-101

The Open Group (2013) ArchiMate 2.1 Specifi-
cation: Open Group Standard. The Open Group
Series. Van Haren, Zaltbommel

Warmer J. B., Kleppe A. G. (2003) The Object
Constraint Language : getting your models ready
for MDA, 2nd ed. Addison-Wesley, Boston

Wettinger J., Breitenbiicher U., Leymann F. (2014)
Standards-based DevOps automation and integra-
tion using TOSCA. In: IEEE/ACM 7th Interna-
tional Conference on Utility and Cloud Computing.
IEEE Computer Society, Washington, DC, USA,
pp. 59-68

Winter A., Ziemann J. (2007) Model-based Mi-
gration to Service-oriented Architectures. In:
Softwaretechnik-Trends 27(1)

Yu E. (1997) Towards Modeling and Reasoning
Support for Early-Phase Requirements Engineer-
ing. In: 3rd IEEE International Symposium on
Requirements Engineering. RE 1997. IEEE Com-
puter Society, Washington, DC, USA, pp. 226—
236

Zhang L. J., Zhou N., Chee Y. M., Jalaldeen A.,
Ponnalagu K., Sindhgatta R. R., Arsanjani A.,
Bernardini F. (2008) SOMA-ME: A platform for
the model-driven design of SOA solutions. In:
IBM Systems Journal 47(3), pp. 397-413

Ziemann J., Leyking K., Kahl T., Werth D. (2006)
SOA Development Based on Enterprise Mod-
els & Existing IT Systems. In: Cunningham P.,
Cunningham M. (eds.) Exploiting the Knowledge
Economy Issues, Applications, Case Studies. IOS
Press, pp. 83-90

Zimmermann O. (2017) Microservices Tenets. In:
Journal of Computer Science 32(3-4), pp. 301—
310

Special Issue Wirtschaftsinformatik 2017

Zimmermann O., Milinski S., Craes M., Oeller-
mann F. (2004) Second generation web services-
oriented architecture in production in the finance
industry. In: Companion to the 19th Annual ACM
SIGPLAN OOPSLA Conference. ACM, pp. 283—
289

This work is licensed under

a Creative Commons @ @
“Attribution-ShareAlike 4.0

International” license.

http://dx.doi.org/10.18417/emisa.13.1
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

