
Timing Attack on a Modified Dynamic S-box

Implementation of the AES InvSubBytes Operation

Johannes Obermaier, Tobias Laas and Markus Roner

Institute for Security in Information Technology

Technische Universität München

Arcisstr. 21

80333 Munich, Germany

{johannes.obermaier, tobias.laas, markus.roner}@tum.de

Abstract: This paper demonstrates a novel timing attack on a software implementa-
tion of the AES decryption algorithm. The implementation was optimized to reduce its
code and memory footprint by utilizing an inverse S-box operation which directly cal-
culates the substitution values instead of fetching them from a pre-computed look-up
table. This code-size optimized implementation was created as part of a laboratory for
which a smart-card emulator was designed and physically tested. Later on, we noticed
that the implementation shows a data-dependent execution time for which we devel-
oped a novel timing attack. It is based on a timing-model which was derived from an
analysis of the implementation. The feasibility of the approach was first proved by a
simulation. The subsequent application of the attack on the smart-card emulator in a
real setup was successful. This paper describes the analysis done to conduct the attack
and emphasizes the dangers of incautiously implemented cryptographic algorithms.

1 Introduction

The Advanced Encryption Standard (AES) is one of the most widely used standards for

symmetric encryption employed in today’s embedded applications. The widely used ci-

pher implementation, AES-128, uses a key length and block size of 128 bits and is con-

sidered to be secure against all cryptanalytic attacks known to this date. The attack pub-

lished by Bogdanov et al. [BKR11] reduces the computational complexity from 2128 to

2126.1, speeding up the process although still not making it computationally feasible. De-

spite its mathematical security, hardware and software implementations of AES may be

vulnerable to a different class of attacks known as Side-channel Analysis (SCA) attacks.

These attacks are based on exploiting the non-intended leakage of information, which oc-

curs during physical operation of the cipher, to retrieve its cryptographic secret. The first

publications, which represent a cornerstone for what has become an important field of

research in both academia and industry, correspond to Kocher’s papers on timing attacks

published in 1996 [Koc96] and on power-analysis published in 1999 [KJJ99]. Since then

a vast number of publications have dealt with novel SCA attacks and their correspond-

ing countermeasures. A comprehensive study of power-analysis on AES implementations

2437

is given in [MOP07] by Mangard et al.. Timing attacks are usually treated separately to

those related to power consumption. In 2004, Bernstein published the first cache-timing

attack to break a server using OpenSSL’s AES encryption [Ber04]. In that paper, the high-

precision time-stamp of the server was used for the attack. In 2005, Osvik et al. [OST05]

demonstrated cache-timing attacks on a PC platform kept under control, requiring only a

few hundred measurements. In that attack, the timing information was extracted from the

CPU’s memory cache. While there are approaches to secure speed or memory usage opti-

mized AES implementations against timing attacks on modern 64-bit CPUs [KS09], these

methods are not fully applicable to the simpler processors used in embedded applications.

Smart-cards are widely used for applications ranging from authentication and encryption

to any kind of payment. Common to all those applications is the requirement for a secure

and reliable operation, while preventing the extraction and replication of sensitive data

from the card’s embedded integrated circuit. In the case of the pay-tv smart-card (emu-

lator) in the laboratory, a key encryption key (KEK) is stored on the smart-card and used

for decryption of a session key, which is then used for the video stream decryption. The

smart-card emulator uses a standard, low-cost, 8-bit ATmega microcontroller, which was

utilized for testing the implementation of the AES-128 and of the timing attack. Since

the embedded system on the smart-card operates widely isolated from the environment,

not many indications are left to deduce relevant timing information. It is a convenient

way to use power traces in order to gain this information. To exclude unwanted influence

from power-analysis deviations on the timing attack however, the use of a trigger signal

for timekeeping on a pin of the microcontroller is often helpful and sufficient for a proof

of concept.

In Sect. 2, we begin with the explanation of an alternative implementation of the

InvSubBytes function. We continue with its weakness and the attack’s theory, together

with its simulation, in Sect. 3. The practical implementation of the attack is demonstrated

in Sect. 4. Finally, the results are evaluated and countermeasures are discussed in Sect. 5.

2 An alternative approach for InvSubBytes

In the course of an AES-128 decryption, the non-linear byte substitution

InvSubBytes is applied to the internal state of the decryption ten times.

InvSubBytes consists of two steps: applying an affine transformation and taking the

multiplicative inverse in the Galois Field GF(28) [Nat01]. Calculating the multiplica-

tive inverse is computationally expensive. Traditionally, this substitution and its inverse,

SubBytes, have been implemented on microcontrollers using a substitution table (S-

box), as described in the AES specification [Nat01], because that avoids calculating the

multiplicative inverse at run time and thereby increases performance. As described

in [DR98], “there is some ROM/performance trade-off” in every implementation, i.e. if

more execution time is spent, the amount of ROM needed could be reduced. The Rijndael

AES Proposal also gives an example for an optimized implementation: “For implementa-

tions where RAM is scarce, the Round Keys can be computed on-the-fly [...]” [DR98] . As

an answer to those reflections, we decided that in our implementation, not only the round

2438

keys would be computed on-the-fly, but also the entries of the S-boxes. That way more

flash memory and RAM is saved because the S-boxes’ values do not need to be stored.

This is advantageous for devices which are very restricted in memory. The difference is

clearly visible. The traditional implementation in C with static S-boxes requires 2.13 kB of

flash memory on our microcontroller, but with the on-the-fly calculated S-box and inverse

S-box, the demand decreases to only 1.69 kB, which is 20% less. This reduction in size

comes with a performance trade-off. The execution time per decryption is increased from

20 ms to 200 ms.

There are several algorithms to find the multiplicative inverse, including the extended

Euclidean algorithm and the simple brute-force search we used in our implementation,

c.f. Appendix A. There is a special case when computing the multiplicative inverse in

InvSubBytes, as the inverse of 0x00, which can occur as result of the affine transform,

does not exist. In this case, 0x00 has to be returned, as specified in [Nat01]. The al-

gorithms are usually not executed in this case, but instead 0x00 is returned immediately,

which causes a shorter execution time. The question arises whether this data-dependent

execution time has a negative effect on security and if it can be exploited by a timing

attack.

3 Timing attack

3.1 Theory

In this subsection, the theory of a timing attack on the implementation of the AES-128

decryption is described. As already mentioned in the previous section, the brute-force

search algorithm for the computation of the multiplicative inverse described in Appendix A

has a data-dependent execution time, which will be exploited in this timing attack.

In the attack, random ciphertexts were decrypted on the microcontroller and the plaintext

vector p and the execution time t were recorded for each decryption. We know that in its

last round

p = k ⊕ InvSubBytes(s) , (1)

where k is the key and s is the intermediate state vector before the invocation of

InvSubBytes. If both the output of InvSubBytes and p are known, the key can

be computed by rearranging the equation to

k = p ⊕ InvSubBytes(s) . (2)

For byte si of the state, where i ∈ {0, . . . , 15}, this means that

ki = pi ⊕ InvSubBytes(si) , (3)

as InvSubBytes and ⊕ are byte-wise operations. As pi is recorded, the idea of the

following attack is to derive information about the output of InvSubBytes(si) given

the execution time t, in order to find out ki.

2439

Table 1: Probabilities for the number of zeros (a) and votes for the attack.

Zeros (a) Probability vote for value for pi vote for other values

0 53.5% ln(1/10000) ln(9999/(10000 · 255)
1 33.5% ln(1/160) ln(159/(160 · 255))
2 10.5% ln(2/160) ln(158/(160 · 255))
3 2.2% ln(3/160) ln(157/(160 · 255))
4 0.3% ln(4/160) ln(156/(160 · 255))
5 0.04% ln(5/160) ln(155/(160 · 255))
6 < 0.01% ln(6/160) ln(154/(160 · 255))

For one full AES-128 decryption, InvSubBytes is called ten times, excluding the key

expansion, which does not induce timing differences, because the key is assumed to

be constant. Each of those calls applies the transformation to each of the 16 bytes of

the internal state, i.e. there are 160 calls to GF2_8InvMult, which performs the in-

versions in GF(28). If the byte at the input of GF2_8InvMult is zero, significantly

less time is needed to compute its multiplicative inverse. In this case, the output of

InvSubBytes(si) is zero and ki = pi. The remaining operations of the implemen-

tation have significantly less variation in execution time. Therefore the attack focuses on

the number of zeros.

First, the execution time is analyzed and the number of zeros occurring at the input of

GF2_8InvMult, a, is estimated. More about that in Sect. 4.

For random data which is decrypted, the probability for a zeros is

PA(a) =

(

160

a

)

(1/256)a(255/256)160−a , (4)

under the assumption that the zeros are uniformly distributed over all invocations of

GF2_8InvMult. The evaluated probabilities can be seen in Table 1.

It is unknown in which round and at which byte the zeros occurred, but the probability of

n zeros appearing in the last round of the AES decryption, i.e. in the last invocation of

InvSubBytes, given that there are a zeros in the whole decryption, is

PN |A(n | a) =

(

16
n

)(

144
a−n

)

(

160
a

) . (5)

When the information acquired from the measurements is combined, the zeros arising in

the last round provide so-called correct information about the key and the zeros arising

in the other rounds provide so-called misleading information. They cannot be separated,

since only the whole execution time is measured. Using equations (4) and (5), the proba-

bility of correct information can be computed by

Pcorrect(a) =
a

∑

n=min(a,1)

PN |A(n | a)PA(a) , (6)

2440

and the probability of misleading information by

Pmisleading(a) = PA(a) − Pcorrect(a) =

{

PN |A(0 | a)PA(a) a 6= 0

0 a = 0
. (7)

a = 0 is special because in that case, the bytes pi in the plaintext cannot be the respective

key bytes ki, because then InvSubBytes(si) 6= 0 in (3), i.e. the information is correct

all the time. See Fig. 1 for a plot of the probability of correct and misleading information

in relation to a.

0 1 2 3 4 5
0

0.2

0.4

0.6

Number of zeros, a

P
ro

b
ab

il
it

y

Misleading Information

Correct Information

Figure 1: Probabilities of correct and misleading information in relation to the number of zeros, a.
They are calculated using (6) and (7).

In order to combine the information acquired with the N individual measurements, a max-

imum likelihood (ML) estimator with the likelihood function Lki
has been used. In order

to reduce the arithmetic range during the computation, the log-likelihood function using

the natural logarithm ln(·) has been taken and is computed as follows

ln (Lki
(j)) = ln





N

√

√

√

√

N
∏

x=1

Pki,x(j)



 = 1/N

N
∑

x=1

ln (Pki,x(j)) ,

∀i ∈ {0, . . . , 15}, j ∈ {0, . . . , 255} , (8)

where Pki,x(j) is the probability that key byte ki = j in measurement x. A normalization

by N has been added. The ML estimator then is

k̂i = arg max
j∈{0,...,255}

{lnLki
(j)} . (9)

In the implementation, the likelihoods are stored in a likelihood matrix V ∈ R
16×256,

where vi+1,j+1 stores the likelihood for ki = j. For each decryption x ∈ {1, . . . , N},

2441

the likelihood matrix V , which is initialized with zeros, is updated by adding the “vote”

ln (Pki,x(j)) to the entry vi+1,j+1. That way, after summing up the votes for all measure-

ments, vi+1,j+1 = N ln (Pki
(j)), c.f. (8). As a last step, each vi+1,j+1 has to be replaced

by exp(vi+1,j+1/N) such that V stores the log-likelihood at the end of the estimation.

If the timing information is not considered, the probability that a single byte of the key

is correct is 1/256, because there are 256 possibilities, as usual. But if exactly one zero

occurred, the probability is 1/160 since there we assume that the zeros are distributed

uniformly over the 160 inversions. Consequently, for a zeros the probability is a/160 and

the probability for each of the other possible values is (160 − a)/(160 · 255), again since

we assume a uniform distribution. Taking the natural logarithm leads to the voting table

in Table 1 with one exception: if no zero occurred, the probability that the current bytes

in the plaintext are the respective key bytes is zero. The likelihood of those bytes then is

also zero, i.e. in practice a single measurement error can prevent finding the correct key,

c.f. also Sect. 4. Therefore in that case, the probability for the pi has been increased to

1/10000 and the probability for the other values has been decreased to (1−1/10000)/255
instead of 1/255.

After a certain number of measurements, there should only be one entry per key byte in

the matrix which has a significantly larger vote than the other bytes, and these entries form

the correct key.

3.2 Attack simulation

To test and verify the attack’s theory, a simulator which is able to emulate the behavior

of the AES implementation on the microcontroller was implemented in C++. If a zero is

processed on the microcontroller, the algorithm skips several hundreds of cycles, which

is easily measurable. The simulator therefore observes the input of GF2_8InvMult and

counts the number of zeros, a, during decryption. Random input data is decrypted until

the desired number of decryptions has been simulated and then the attack is performed.

This enables the simulation of thousands of measurements in some seconds without the

need for the hardware setup.

The success of the attack is highly dependent on statistical processes and so there is no

fixed number of required measurements for which the attack will always be successful.

The success ratio was estimated by the simulation of 4000 independent attacks, in which

the number of measurements was increased in small steps from 0 to 6000. The result is

depicted in Fig. 2. For less than 2000 measurements, there is almost no chance to find the

correct key. The next 1000 additional measurements show the highest effect. At around

2750 measurements, the success ratio is about 50 % and at 3000, the success ratio is about

66 %. It reaches 90 % at around 3550, 99 % at 4600 and finally approaches 100 %. The

total time needed for such an attack is only several minutes. Most of the time is required

for taking the measurements. The attack itself can be computed in a few seconds on a

standard computer. Eventually the attack requires neither very special equipment, nor

excessive computational power and therefore can easily be performed.

2442

0 1000 2000 3000 4000 5000 6000

0

10

20

30

40

50

60

70

80

90

100

Measurements

S
u
cc

es
s

ra
ti

o
in

%

Figure 2: Success ratio in relation to the number of measurements. The curve was determined using
a simulation model of the attack and executing it 4000 times with 0 to 6000 measurements each.

4 Practical implementation of the attack

The alternative implementation of the AES algorithm was loaded into the smart-card em-

ulator, c.f. Sect. 1, so that the implementation could be tested in a real environment. The

emulator was inserted into a smart-card reader, which was connected to a computer. An

inexpensive USB oscilloscope was used to measure the timing, which was forwarded to

the computer. The setup is depicted in Fig. 3.

The execution time is measurable in various ways, e.g. through power consumption, inter-

Figure 3: Measurement setup for timing attacks. The smart-card emulator is inserted into the card
reader. A probe of the oscilloscope is connected to the microcontroller in the smart-card emulator.
The attack is controlled by the attached PC.

2443

0 0.5 1 1.5

·104

0.2015

0.202

0.2025

0.203

0.2035

0.204

0.2045

0.205

0.2055

no zero

one 0

two 0s

three 0s

four 0s

five 0s

six 0s

Measurement number

R
u
n
ti

m
e

in
se

co
n
d
s

Figure 4: Input time distribution (dots) and expected run times (dashed lines). The number of points
in each line complies with the predicted distribution. The dashed lines in the center of each group
were automatically determined by the attack script.

face communication or dedicated pins, which indicate ongoing decryption. It is assumed

to be trivial for an attacker to obtain this information through these or other methods. In

our test, a microcontroller’s pin was used, since it is the simplest solution and is suffi-

cient for testing. The oscilloscope is able to determine the execution time very accurately,

down to single clock cycles. The timing deviations are in the range of 0.5 ms per zero at

a microcontroller clock frequency of 5 MHz. Therefore a sample rate as low as 10 kS/s is

enough for these purposes and has the advantage of limiting the amount of measured data,

making it easier to process. Both, the timing information and the plaintext are stored and

preprocessed by a MATLAB script. Next, the number of zeros has to be estimated. The

algorithm goes through the timing data and searches for the execution time, which was

exceeded by more than 50 % of all measurements. The same is done for 83 %. These are

the cases, including some safety margin, where no zeros and one zero occurred. It gives

a very good estimate for the time-saving due to each zero. The execution time for two,

three and more zeros is derived from the result. There are no fixed timing values, the in-

formation is extracted by only using the expected execution time distribution. This brings

0 100 200
3.86
3.88
3.9

3.92
·10−3

0 100 200
3.86
3.88
3.9

3.92
·10−3

0 100 200
3.86
3.88
3.9

3.92
·10−3

0 100 200
3.86
3.88
3.9

3.92
·10−3

Figure 5: 4 rows of the likelihood matrix V , representing the log-likelihood for each key byte. The
other 12 rows look similar, only the peak position changes. The x-axes show their value, the y-axes
their log-likelihood values. Each subplot shows exactly one significantly higher positive peak, which
forms the correct estimated key after 15000 measurements.

2444

0 20 40 60 80 100 120 140 160 180 200 220 240

3.86

3.88

3.9

3.92

·10−3

Key Byte Value

L
o
g
-l

ik
el

ih
o
o
d

Figure 6: The full likelihood matrix V . Each symbol type and shading depicts a different key byte.
The incorrect estimates are concentrated in the lower plot region, the 16 correct estimates are in
the upper region. Both groups separate with an increasing number of measurements. For this plot,
15000 measurements were executed.

the advantage that the script works with any microcontroller, compiler and clock speed, as

long as the differences are measurable.

In order to demonstrate the performance of the estimation methods, a large measurement

with 15,000 decryptions was performed. The methods work well and the result can be

seen in Fig. 4. Each measurement is represented by a dot and the extracted expected

execution time is shown by the dashed lines. According to the simulation in Subsect. 3.2,

they contain more than enough information to extract the key. The number of zeros from

the timing measurement is taken and the likelihood matrix V is computed as described in

Subsect. 3.1 and plotted in two different ways in Fig. 5 and 6. One value per row in V ,

i.e. one for each key byte, is much higher than all other 255 values in this row, as depicted

in Fig. 5. It can be clearly seen that after a high number of measurements, two groups

have formed in Fig. 6. The high-density area around 3.88 · 10−3 contains all incorrect

key byte values. In contrast to that, the 16 correct key bytes have a higher log-likelihood

value of around 3.92 · 10−3. At the start of the estimation, all likelihoods are the same.

As the number of processed measurements increases, the correct key bytes move upwards,

while the incorrect ones move downwards, on average. Finally, after a sufficient number

of measurements, the correct and incorrect bytes are separated from each other and the key

can be extracted.

5 Evaluation and Prospects

5.1 Countermeasures, Attack Variations and Influence on DPA Attacks

In order to defeat the timing attack, the execution time of GF2_8InvMult must be con-

stant. This can be solved by modifying GF2_8InvMult in such a way that it does not

2445

immediately return zero and instead uses random data whose result is discarded. The al-

gorithm might also be replaced by a more sophisticated one, which has constant run time,

but this might diminish the savings in code size.

The attack can also be used on the AES encryption, where the initial and first round are

attacked. The input plaintext has to be used instead of the output. The remaining part of

the attack works the same way as for the decryption.

Another variation would be a chosen plaintext attack on the encryption or decryption.

If such an attack is possible, the attacker can actively guess key bytes. The number of

measurements can be reduced with this method, but it requires a more sophisticated attack

implementation or the manual input of data.

The implementation was also tested with a DPA attack, implemented as described

in [MOP07]. It was expected that the non-constant run time leads to an increased effort for

an attacker, due to trace misalignment. Nevertheless, the method was not believed to be a

very secure protection against such attacks. These statements were verified experimentally

and confirmed the assumptions. For normal and unprotected static S-boxes, the number of

required traces was around 400. With the dynamic S-boxes and no trace alignment, even

more than 1000 traces were not sufficient. After alignment of the traces, the attack was

successful with around 500 traces. This shows that the effort for an DPA is increased, but

the method does not provide sufficient protection.

5.2 Conclusion

We have presented a novel timing attack on our implementation of the AES decryption

algorithm. As demonstrated, an attacker can find out the secret key in a negligible amount

of time with an inexpensive USB oscilloscope and a common PC. Thus, the attack can

be performed with very low costs. It has to be made sure that a data-dependent execution

time like the one in our implementation is not even present in systems with low security

requirements. But security relevant aspects such as a data-dependent execution time are

missed easily. The attack shows that the way of implementing the S-boxes is critical for

a secure AES implementation. But since most implementations use fixed tables, they are

immune to the attack. Nevertheless, the concepts of our timing attack are useful for attacks

on different devices, implementations or algorithms.

Acknowledgement

Thanks to Prof. Sigl and Oscar Guillen Hernandez, who offered and supervised the lab

course, during which we developed the attack, for encouraging us to write the paper and

for their valuable review and feedback.

2446

References

[Ber04] D. J. Bernstein. Cache-timing attacks on AES, 2004. http://cr.yp.to/papers.html#
cachetiming.

[BKR11] A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique Cryptanalysis of the Full
AES. Cryptology ePrint Archive, Report 2011/449, 2011. http://eprint.iacr.org/.

[DR98] J. Daemen and V. Rijmen. AES Proposal: Rijndael, 1998.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor, Advances
in Cryptology — CRYPTO’ 99, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer Berlin Heidelberg, 1999.

[Koc96] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. In N. Koblitz, editor, Advances in Cryptology — CRYPTO ’96, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer Berlin Heidelberg, 1996.

[KS09] E. Käsper and P. Schwabe. Faster and Timing-Attack Resistant AES-GCM. In C. Clavier
and K. Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009, vol-
ume 5747 of Lecture Notes in Computer Science, pages 1–17. Springer Berlin Heidelberg,
2009.

[LN94] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications. Cam-
bridge University Press, 1994.

[MOP07] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks - Revealing the Secrets of
Smart Cards. Springer US, 2007.

[Nat01] National Institute of Standards and Technology. FIPS 197 - Advanced Encryption Standard,
2001.

[OST05] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and Countermeasures: the Case of
AES. Cryptology ePrint Archive, Report 2005/271, 2005. http://eprint.iacr.org/.

A Implementation of GF2_8InvMult

GF2_8InvMult, shown in Listing 1, computes the multiplicative inverse v′ of v over

GF(28), i.e. the solution to vv′ = 1. It has been implemented using 8-bit operations only,

as an 8-bit controller has been used. uint8_t denotes an 8-bit unsigned integer type.

If v = 0x00, 0x00 is returned according to [Nat01], c.f. lines 10 and 11. The idea of the

algorithm is to find a solution by expressing vv′ = 1 as a sum, as follows:

1 = vv′ = glogg(vv′) = gp+p′

, where p = logg v, p′ = logg v′ and g is a base.

The rather simple and space-saving algorithm is composed of three steps. The first is to

calculate p = logg(v). There exist bases g on GF(28), for which a p can be found for

every v 6= 0, i.e. its powers result in every element of the field, except 0. Such a g is

called primitive element [LN94]. The brute-force search starts with p = 0, calculates gp

and increases p until gp = v, c.f. the loop in lines 12 to 16. In each iteration of the loop gp

is multiplied by g. As the primitive element is of the order 255, the search will terminate

after at most 255 iterations.

2447

1 inline uint8_t Mult3GF2_8(uint8_t gP) /* multiply by 0x03 (x + 1) */

2 {

3 uint8_t prod = gP << 1; /* multiply by 0x02 (x) */

4 if (gP & 0x80) /* reduce modulo (x^8 + x^4 + x^3 + x + 1) */

5 prod ^= 0x1b;

6 return gP ^ prod; /* calc. result (x) + (1) */

7 }

8 uint8_t GF2_8InvMult(uint8_t v)

9 {

10 if (v == 0) /* multiplicative inverse of 0 is defined as 0 */

11 return 0;

12 uint8_t p = 0, gP = 1;

13 while (gP != v) { /* calculate 0x03^p = v, solve for p */

14 gP = Mult3GF2_8(gP);

15 p++;

16 } /* calculate the multiplicative inverse gP = 0x03^(255-p) */

17 for (gP = 1; p < 255; p++)

18 gP = Mult3GF2_8(gP);

19 return gP;

20 }

Listing 1: Source Code of GF2_8InvMult for the calculation of the multiplicative inverse

The second step is to calculate p′. g0 has to equal gp+p′

in GF(28). As there are only 255
different elements in the powers of g, any sum of p and p′ which is a multiple of 0xFF

results in the same value as 0x00. In order to find p′, 0x00 = (p + p′) mod 0xFF should

be solved by p′ = 0xFF − p. In the code, this step has been combined with the third step,

the calculation of the power v′ = gp′

, c.f. lines 16 to 18. Calculating p′ is omitted, instead

the correct number of successive multiplications by g to compute v′, 255− p are executed

anyway by the careful design of the loop. The result v′, the inverse of v, is then returned.

Please note that the elements of GF(28) are polynomials which have an equivalent notation

as an 8-bit hexadecimal number, e.g. x + 1 = 0x03. Choosing the primitive element

g = x + 1 = 0x03 is beneficial, because the multiplication by it can be implemented

efficiently. In Mult3GF2_8 (lines 1 to 7), it is split into multiplying by 1, which is

redundant, and by x. For this multiplication, gP is shifted left by one bit. If the MSB of

gP is set, the result of the multiplication cannot be represented in GF(28) and the result

still needs to be reduced modulo the polynomial x8 + x4 + x3 + x + 1, which in this case

can be simplified to subtracting this polynomial, which is equivalent to xoring the result

with 0x1b [Nat01]. In the last step, gP and the product are added.

Regarding the security of GF2_8InvMult, it has to be analyzed whether the search and

its intentionally simple implementation leaks any critical information. The number of

iterations of the first loop depends on the input data, but together with the second loop, the

total number of iterations is 255. Nevertheless, there is some minor run time difference

due to the if statement, and the compiler may also implement the second loop differently

than the first one. The source of the largest timing variation can easily be seen in lines

10 and 11. If the input value is zero, the function returns zero immediately and does not

execute the loops, which makes the implementation vulnerable to a timing attack, as shown

in Sect. 3.

2448

