
cbe

Steffen Becker et al. (Hrsg.): Software Engineering und Software Management,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Understanding Parameters of Deductive Verification: An
Empirical Investigation of KeY

Alexander Knüppel1, Thomas Thüm1, Carsten Immanuel Pardylla1, Ina Schaefer1

Abstract: As formal verification of software systems is a complex task comprising many algorithms
and heuristics, modern theorem provers offer numerous parameters that are to be selected by a user
to control how a piece of software is verified. Evidently, the number of parameters even increases
with each new release. One challenge is that default parameters are often insufficient to close proofs
automatically and are not optimal in terms of verification effort. The verification phase becomes hardly
accessible for non-experts, who typically must follow a time-consuming trial-and-error strategy to
choose the right parameters even for trivial pieces of software. To aid users of deductive verification,
we apply machine learning techniques to empirically investigate which parameters and combinations
thereof impair or improve provability and verification effort. We exemplify our procedure on the
deductive verification system KeY 2.6.1 and specified extracts of OpenJDK, and formulate 53
hypotheses of which only three have been rejected. We identified parameters that represent a trade-off
between high provability and low verification effort, enabling the possibility to prioritize the selection
of a parameter for either direction. Our insights give tool builders a better understanding of their
control parameters and constitute a stepping stone towards automated deductive verification and better
applicability of verification tools for non-experts.

Keywords: Deductive Verification, Design by Contract, Formal Methods, Theorem Proving, KeY,
Control Parameters, Automated Reasoning

Overview

Software verification is vital for safety-critical and security-critical applications applied
in industry. Although deductive verification is a promising static analysis technique that
targets program verification directly on source code level, it has not yet found its way
into industry due to issues with the scalability in specification and verification. Indeed,
specifying large-scale software systems for efficient verification still demands high effort
and expertise, which constitutes a problem for typical software developers who are not
trained in proof theory.

Our long-term goal is to make deductive verification accessible for mainstream software
developers. In this regard, one often overlooked hurdle that inexperienced users face is
parameterization. While parameterization of formal method tools comes with the promise
to ease the process of automatic verification, we exhibited that setting the right values for
1 TU Braunschweig, Germany

cba doi:10.18420/se2019-51

S. Becker, I. Bogicevic, G. Herzwurm, S. Wagner (Hrsg.): SE/SWM 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 165

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/se2019-51


2 Alexander Knüppel, Thomas Thüm, Carsten Immanuel Pardylla, Ina Schaefer

the ever growing amount of parameters is challenging. Moreover, default parameters are
often insufficient to close proofs automatically and are typically not optimal in terms of
verification effort. Hence, in a recent publication, we empirically investigated the influence
of parameters of KeY 2.6.1 [Ah16], a deductive verification system for Java source code.

The main results of our empirical study have been presented at the 9th International
Conference on Interactive Theorem Proving (ITP’18) in Oxford, United Kingdom [Kn18b].
Based on our experience and observations combined with studying the online documentation
of KeY, numerous publications, all tool tips in the KeY front-end, and the KeY book [Ah16],
we formulated a total of 38 assumptions on how options in KeY improve or impair provability
and verification effort. We derived a total of 53 statistical hypotheses and empirically
measured the effect of different parameter configurations by employing significance tests
and machine-learning techniques.

For our verification targets, we formally specified parts of OpenJDK’s Collection API
with JML [Kn18a]. By not only testing our hypotheses, but also by employing SPL
Conqueror [Si12] for learning parameter-influence models, we were able to identify options
of parameters that should be prioritized regarding their impact on verification effort.
Moreover, we even identified parameters whose options represent a trade-off between
provability and verification effort. Our insights provide valuable recommendations to users
on which parameters to prioritize given a verification requirement. Moreover, tool builders
can utilize our insights to improve on the user experience. For instance, implementing a
recommendation system for parameters based on our investigation would help users to
verify software more easily. Furthermore, KeY may hide insignificant parameters in specific
verification scenarios or fine-tune parameters automatically during proofs. Although we
focused on KeY, the problem of choosing sufficient parameters is not limited to deductive
verification tools alone. Thus, our proposed approach for empirically studying the influence
of parameters is applicable to arbitrary verification tools.

References
[Ah16] Ahrendt, Wolfgang; Beckert, Bernhard; Bubel, Richard; Hähnle, Reiner; Schmitt, Peter H;

Ulbrich, Mattias: Deductive Software Verification–The KeY Book: From Theory to Practice.
Springer, 2016.

[Kn18a] Knüppel, Alexander; I. Pardylla, Carsten; Thüm, Thomas; Schaefer, Ina: Experience Report
on Formally Verifying Parts of OpenJDK’s API with KeY. In: Proceedings of the Fourth
Workshop on Formal Integrated Development Environment. Springer, 2018.

[Kn18b] Knüppel, Alexander; Thüm, Thomas; Pardylla, Carsten I.; Schaefer, Ina: Understanding
Parameters of Deductive Verification: An Empirical Investigation of KeY. In: Proc. Int’l.
Conf. Interactive Theorem Proving (ITP). Springer, 2018.

[Si12] Siegmund, Norbert; Rosenmüller, Marko; Kuhlemann, Martin; Kästner, Christian; Apel,
Sven; Saake, Gunter: SPL Conqueror: Toward optimization of non-functional properties in
software product lines. Software Quality Journal, 20(3-4):487–517, 2012.

166 Alexander Knüppel et al.


