
cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Optimizing Query Processing in PostgreSQL Through
Learned Optimizer Hints

Jerome Thiessat1, Lucas Woltmann1, Claudio Hartmann1, Dirk Habich1

Abstract:

Query optimization in database systems is a crucial issue and despite decades of research, it is still
far from being solved. Nowadays, query optimizers usually provide hints to be able to steer the
optimization on a query-by-query basis. However, setting the best-fitting optimizer hints is challenging.
To tackle that, we present a learning-based approach to predict the best-fitting hints for each incoming
query. In particular, our learning approach is based on simple gradient boosting, where we learn
one model per query context for fine-grained predictions rather than a single global context-agnostic
model as proposed in related work. We demonstrate the efficiency as well as effectiveness of our
learning-based approach using the open-source database system PostgreSQL and show that our
approach outperforms related work in that context.

Keywords: Query Optimization; Hint Set Prediction; Gradient Boosting

1 Introduction

Every database system features a query compiler that converts each incoming declarative
SQL query into a query execution plan (QEP). The most important component of such a
query compiler is the query optimizer. The task of this optimizer is to determine the most
efficient QEP. Despite decades of research activities, query optimization is still far from
being solved [Le15]. According to [Ch98], the most challenging issues for the optimization
of complex SQL queries are: (i) finding a good join order and (ii) selecting the best-fitting
physical join implementation for each join within the chosen join order. To solve these
challenges, a traditional query optimizer uses three components: the enumerator which
spans – according to the relational algebra – the search space of all possible QEPs, the
cost model to assess the cost of any given QEP prior to its execution, and the cardinality
estimator which delivers the size of intermediate results and base tables as most crucial
input to the cost model.

Such a traditional query optimizer can be found in open-source database systems, e.g.,
PostgreSQL [Po]. However, a disadvantage of this traditional optimizer approach is that the
determined QEP for a query can vary widely in quality [Le15]. The quality variance possibly
originates from miss-predicted intermediate results from PostgreSQL’s cost estimator and
1 Technische Universität Dresden, Dresden Database Research Group, 01062 Dresden, Germany,
{jerome.thiessat,lucas.woltmann,claudio.hartmann,dirk.habich}@tu-dresden.de

cba doi:10.18420/BTW2023-74

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1075

mailto:{jerome.thiessat,lucas.woltmann,claudio.hartmann,dirk.habich}@tu-dresden.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-74


2 Thiessat et al.

PostgreSQL w/ default hints PostgreSQL w/ our learned hint approach
Stack-Benchmark 5,445.78 sec 2,802.54 sec

Tab. 1: Workload execution times of the real-world Stack benchmark [Ma22] with default and our
learned optimal physical operator hints (PostgreSQL v14.2). More details in Section 4.

PostgreSQL falling back to a genetic optimizer upon surpassing a certain amount of joins in
a query. To overcome this issue, PostgreSQL provides a set of well-defined optimizer hints
to steer the optimizer on a query-by-query basis. For instance, the usage of the physical join
operator hash join can be enabled or disabled using a specific hint. In general, PostgreSQL
features six Boolean hints for physical operators; three for joins and three for scans. In
the default setting, all six physical operator hints are activated to allow the optimizer’s
enumerator to span the largest possible search space.

To show the significance of hinting, Table 1 compares the workload execution times of the
real-world Stack benchmark [Ma22] for PostgreSQL using (i) the default hint setting and
(ii) our learned hint approach for the six physical optimizer hints. As shown, the utilization
of our learned hints dramatically reduces the workload execution time. We achieve this
benefit by learning a simple gradient boosting model per query context for fine-grained
hint predictions. Moreover, our learning component is intentionally designed as a separate
loosely-coupled component for PostgreSQL to guarantee broad applicability for different
PostgreSQL versions. To sum up, our contributions in this paper are:

• In Section 2, we introduce preliminaries and describe the related work in this context.
• Based on these considerations, we describe the key features of our context-aware

learning approach for hint sets in Section 3.
• Then, we present selected evaluation results to show the efficiency and effectiveness

of our approach compared to state-of-the-art and related work in Section 4.

Finally, we conclude our findings with a short summary in Section 5.

2 Preliminaries and Related Work

Fundamental for our contribution is the procedure of hinting the PostgreSQL query compiler.
PostgreSQL offers various hints as planner method options2. In the following, we use the
terminology hint as PostgreSQL’s planner methods options, hint set as a combination of
hints, and hinting as the procedure of setting the planner method options in PostgreSQL
accordingly. Hinting in PostgreSQL is syntactically a trivial task and can be realized by e.g.,
set enable_hashjoin = false; to disable hash joins as a prefix annotation to an SQL
query. As already stated in Section 1, we focus on the six Boolean hints that are considered
by PostgreSQL’s planner3 for physical operators. These hints consider three joins, i.e., hash,

2 https://www.postgresql.org/docs/current/runtime-config-query
3 https://www.postgresql.org/docs/14/planner-optimizer.html

1076 Jerome Thiessat, Lucas Woltmann, Claudio Hartmann, Dirk Habich



Compiler Hint Optimization 3

nested-loop, and merge join as well as three scan operations, i.e., index, sequential, and
index-only scan. These hints only allow to enable or disable the corresponding physical
operators which however influence the whole optimization procedure.

As clearly demonstrated in [Ma22], these six physical operator hints can be efficiently used
to steer the query optimization to produce more efficient QEPs, but hinting is a challenging
task in general. To tackle that challenge, [Ma22] proposed a learning-based approach called
BAO – the bandit optimizer, which is the most relevant related work for our approach.
From a high-level perspective, BAO learns a mapping between an incoming query and the
optimizer hints the query optimizer should use for that query using reinforcement learning.
For that, BAO treats each hint set as an arm in a contextual multi-armed bandit problem
and learns a single model that predicts which hints will provide the best run-time for an
incoming query. In general, BAO works as follows: For every SQL query, the underlying
PostgreSQL query optimizer produces 𝑛 QEPs; one for each hint set. Afterwards, each
QEP is transformed into a vector tree and the resulting vector trees are fed into a tree
convolutional neural network (BAO’s single model) predicting the execution time of each
QEP. The QEP with the least predicted execution time is finally selected for execution.
Once the QEP is executed, the selected QEP and the real execution time is added to BAO’s
experience. These experiences are used to periodically retrain the single model.

To the best of our knowledge, BAO is the only work that relates closely to our challenge of
predicting hint sets for incoming queries. However, BAO has the following shortcomings.
Firstly, BAO uses a single global model across all incoming queries to predict hint sets. This
does not allow for fine-grained nuanced predictions for queries that differ only marginally, for
example in predicates. Secondly, BAO predicts hint sets indirectly by predicting execution
times and then inferring on the best hint set afterward. This indirection step is not necessarily
beneficial, as multiple hint combinations need to be evaluated during query optimization
time to determine the best-performing QEP. Lastly, BAO only investigates a reduced amount
of hint sets to keep the necessary additional effort during query optimization time as low as
possible. That means, for the six physical operator hints, there are 26 = 64 possible hint
sets, but only 25 are considered in BAO. In these 25 hint sets, the globally optimal solution
might not even be included.

3 Context-Aware Hinting

To overcome the above presented shortcomings of BAO, we introduce a novel learning-based
approach called POSGB to predict the best-fitting hints for each incoming query in this
section. The key features of POSGB are: Firstly, we deploy context-sensitive models, where
we build a learned model for each set of joined tables of a workload. The idea behind
this is that each set of joined tables represents a self-contained context, since the queries
per context are thus reasonably homogeneous with respect to the joins and differ only in
the filter predicates. Using this divide-and-conquer approach allows us to predict on a
fine-grained basis, where BAO uses a context-agnostic approach. Secondly, within each

Optimizing Query Processing in PostgreSQL Through Learned Optimizer Hints 1077



4 Thiessat et al.

context, our models follow supervised classification. This means that we directly predict a
hint set from a query, rather than inferring indirectly on multiple QEPs with estimated costs.
By relying on a classification task, we are also able to consider the whole search space of the
26 possible hint sets rather than a reduced subset. Lastly, to reduce the additional effort of
using these models during query optimization time, we utilize a classical gradient boosting
model within each context, rather than one single global neural network. Gradient boosting
models are a learning method using a sequential ensemble of smaller models (i.e., weak base
learners) typtically trained using momentum based optimization (e.g., gradient descent).
Based on that, for each query during query optimization time, a context classification and
a prediction with one small simple model has to be conducted. Naturally, these learned
context models traverse a training phase before being able to predict an incoming query.

Training Phase: POSGB’s training phase follows the same principle for every context.
Within each context, a set of input queries is first featurized query compiler independently
(i.e., not relying on QEPs) in the fashion of [Ki19; Wo19] by encoding filter predicates.
Moreover, since we deploy supervised learning, we also label each training query with the
optimal hint set by exhaustively evaluating each query-hint-set combination. Notably, we
also investigated the use of PostgreSQL’s EXPLAIN functionality to reduce our labeling
effort to a minimum. However, evaluating the Pearson correlation coefficient between
guessed and real cost of an appropriate sample did not result in any notable correlation.
Since we could not even observe any relation in the order of best-to-worst hint set, we
deemed EXPLAIN not suitable for our task. This requires the execution of all training queries
with all hint sets. Then, the hint set that produces the least execution time is determined and
used as a label for each query.

Query
Query 

Execution
Query Optimizer

Hint Set

Retraining

POSGB

PostgreSQL
GB Model
POSGB

Fig. 1: Workflow of POSGB

Model Inference: POSGB’s query inference follows Figure 1. Firstly, the optimal hint set
of an incoming query is predicted by POSGB. There, the query is assigned to a context
and featurized analogously to the training phase. POSGB then predicts the label – a hint
set – from the featurized input query. Secondly, the query with the predicted hint set is
propagated to PostgreSQL for query optimization and execution.

1078 Jerome Thiessat, Lucas Woltmann, Claudio Hartmann, Dirk Habich



Compiler Hint Optimization 5

10 20 30 40 50 60 70 80 90 100
Training Data in Percent

1.0

1.5

2.0

2.5

3.0

Ti
m

e 
Fa

ct
or

 re
ga

rd
in

g 
OP

T
Workload Evaluation

PG
BAO
POSGB INIT
POSGB FINAL
OPT

Fig. 2: Workload Evaluation of Multiple Data Splits

An important challenge in hint set prediction and generally learned query optimization, is
handling unseen, badly performing queries. Generally, our model does not support detection
of unusually long executing queries. For this reason, we provide a model adaptation by
detecting such queries. Each query is executed with a timeout (i.e., statement timeout in
PostgreSQL), where the timeout is context-sensitive and based on already executed queries
within the specific context. The longest running seen query per context defines the timeout.
By doing so, any query that exceeds the specified context-sensitive timeout threshold is
considered as critical. On the one hand, such critical queries are canceled and re-executed
with the PostgreSQL default hints. On the other hand, the critical queries are exhaustively
evaluated in an asynchronous manner to determine the optimal hint set. Based on this new
experience, an updated model for the specific context is trained. Upon having the newly
trained model ready, the old model is exchanged by the new one.

4 Evaluation

To show the efficiency as well as effectiveness of POSGB, we conducted a comprehensive
evaluation on a machine with an Intel Xeon Gold 6126 CPU, an ASPEED Graphics
Family GPU, and 95 GiB memory. Our whole evaluation is based on the Stack benchmark,
consisting of 100 GB data as well as 6191 queries from real-world examples [Ma22]. We
evaluated four different scenarios: (i) PostgreSQL native with default hint setting (PG), (ii)
BAO [Ma22], (iii) the initial evaluating of POSGB (INIT), and (iv) after retraining has been
deployed (FINAL). Figure 2 shows the most important result. Depicted are training splits
on the x-axis and the relative workload time factor regarding the global optimal solution
on the y-axis. We determined the global optimal solution by an exhaustive search over all

Optimizing Query Processing in PostgreSQL Through Learned Optimizer Hints 1079



6 Thiessat et al.

queries and all hint sets. Important to note is that the Stack queries are classified into eleven
contexts and that the training splits are fully random. Additionally, the 100% split marks
representative learning, which uses all data for training and testing. Notably, every but the
100% split are vaulted (i.e., test queries are not seen by the model).

The most important results can be summarized as follows. Firstly, we observe that POSGB dra-
matically reduces the workload execution times for all training splits compared to PostgreSQL
native as well as to the most related approach BAO [Ma22]. In particular, the workload
times using POSGB are much closer to the global optimal solution. Secondly, with more
training data, the workload times are continuously reduced, which is not the case with BAO
as already shown in [He22] due to catastrophic forgetting. Moreover, POSGB performs
well even for the small splits like 10%. Notably, this performance comes with a caveat as
each query has to be labeled. This sums up to roughly 12h for the 10% split. However,
we deem this time still feasible as it is not impractical and does not interfere with the
model’s on-line behavior. Furthermore, representative learning shows our model is capable
of learning all data that it has been confronted with, which is not the case for BAO. Lastly,
our refinement of detecting critical queries shows that the model improves. Deploying this
model refinement naturally implies labeling and retraining phases. However, these phases
can be handled asynchronously.

5 Summary and Outlook

In this paper, we showed that proper hinting of SQL queries in PostgreSQL can have a positive
impact on the overall query execution time. For that, we started by describing PostgreSQL
and BAO [Ma22], the state-of-the-art approaches of predicting hint sets, and elaborated
on its shortcomings, which we tackled in our novel approach called POSGB. POSGB is a
learning-based approach based on simple gradient boosting, where we learn one model per
query context for fine-grained predictions rather than a single global context-agnostic model
as done in BAO. In our evaluation, we demonstrated that hinting with POSGB produces better
QEPs than BAO using the Stack benchmark [Ma22]. In particular, POSGB is consistently
better than BAO resulting in much lower workload execution times over all training splits
– closer to the optimal solution found throughout labeling. Nevertheless, we have not yet
reached the optimal solution and rely on hintable, sub-optimally performing query compilers,
which offers enough potential for further work in this area.

References

[Ch98] Chaudhuri, S.: An Overview of Query Optimization in Relational Systems. In
(Mendelzon, A. O.; Paredaens, J., eds.): Proceedings of the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
June 1-3, 1998, Seattle, Washington, USA. ACM Press, pp. 34–43, 1998, url:
https://doi.org/10.1145/275487.275492.

1080 Jerome Thiessat, Lucas Woltmann, Claudio Hartmann, Dirk Habich

https://doi.org/10.1145/275487.275492


Compiler Hint Optimization 7

[He22] Hertzschuch, A.; Hartmann, C.; Habich, D.; Lehner, W.: Turbo-Charging SPJ
Query Plans with Learned Physical Join Operator Selections. Proc. VLDB Endow.
15/11, pp. 2706–2718, 2022, url: https://www.vldb.org/pvldb/vol15/p2706-
hertzschuch.pdf.

[Ki19] Kipf, A.; Kipf, T.; Radke, B.; Leis, V.; Boncz, P. A.; Kemper, A.: Learned
Cardinalities: Estimating Correlated Joins with Deep Learning. In: 9th Biennial
Conference on Innovative Data Systems Research, CIDR 2019, Asilomar, CA,
USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org, 2019, url:
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf.

[Le15] Leis, V.; Gubichev, A.; Mirchev, A.; Boncz, P. A.; Kemper, A.; Neumann, T.: How
Good Are Query Optimizers, Really? Proc. VLDB Endow. 9/3, pp. 204–215,
2015, url: http://www.vldb.org/pvldb/vol9/p204-leis.pdf.

[Ma22] Marcus, R.; Negi, P.; Mao, H.; Tatbul, N.; Alizadeh, M.; Kraska, T.: Bao: Making
Learned Query Optimization Practical. SIGMOD Rec. 51/1, pp. 6–13, 2022, url:
https://doi.org/10.1145/3542700.3542703.

[Po] PostgreSQL: The World’s Most Advanced Open Source Relational Database,
url: https://www.postgresql.org.

[Wo19] Woltmann, L.; Hartmann, C.; Thiele, M.; Habich, D.; Lehner, W.: Cardinality
estimation with local deep learning models. In (Bordawekar, R.; Shmueli, O.,
eds.): Proceedings of the Second International Workshop on Exploiting Arti-
ficial Intelligence Techniques for Data Management, aiDM@SIGMOD 2019,
Amsterdam, The Netherlands, July 5, 2019. ACM, 5:1–5:8, 2019, url: https:
//doi.org/10.1145/3329859.3329875.

Optimizing Query Processing in PostgreSQL Through Learned Optimizer Hints 1081

https://www.vldb.org/pvldb/vol15/p2706-hertzschuch.pdf
https://www.vldb.org/pvldb/vol15/p2706-hertzschuch.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://www.vldb.org/pvldb/vol9/p204-leis.pdf
https://doi.org/10.1145/3542700.3542703
https://www.postgresql.org
https://doi.org/10.1145/3329859.3329875
https://doi.org/10.1145/3329859.3329875

