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Abstract: As more and more private and confidential data is stored in databases

and in the wake of cloud computing services hosted by third parties, the privacy-

aware and secure handling of such sensitive data is important. The security of such

data needs not only be guaranteed during the actual life, but also at the point where

they should be deleted. However, current common database management systems

to not provide the means for secure deletion. As a consequence, in this paper we

propose several means to tackle this challenge by means of encryption and how to

handle the resulting shortcomings with regards to still allowing queries on

encrypted data. We discuss a general approach on how to combine homomorphic

encryption, order preserving encryption and partial encryption as means of de-

personalization, as well as their use on client-side or server-side as system

extensions.

1 Introduction and state of the art

With the increase of data in general stored in databases especially its outsourcing into

cloud services, privacy-related informations are also becoming more and more prevalent.

Therefore there is an increasing need of maintaining the privacy, confidentiality, and in

general security of such data. Additionally privacy is required by several national laws,

like the Family Educational Rights and Privacy Act and the Health Insurance Portability

and Accountability Act of the United States, the Federal Data Protection Act

(Bundesdatenschutzgesetz) of Germany, or the Data Protection Directive (Directive

95/46/EC) of the European Union. All these legal regulations require the timely and

guaranteed – in the sense that it is impossible to reconstruct – removal of private

information. Such removal is called forensic secure deletion.
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Aside from the regular challenges of this issue, e.g. the behavior of magnetic media to

partially retain the state of their previous magnetization – leaving traces of data later

overwritten with other data – or the wear-levelling techniques of solid-state memory

media [Gu96], RAM or swap memory copies, and remote backups, database systems

have an additional complexity due to their nature to provide an efficient and fast access

to data by the means of introducing several redundancies of data. A certain information

is not only stored within its respective database table, but also in other locations, like

indexes, logs, result caches, temporary relations or materialized views [SML07]. Deleted

rows are often just flagged as deleted, without touching the actually stored data.

Additionally, due to page-based storage mechanisms, changes to records on these pages,

requiring a change to the layout of these pages will, not necessarily update only this very

page but instead create a new copy in the unallocated parts of the file system updating

with the new data, but still leaving the original page behind flagged as unallocated space.

The same applies to any kind of deletion operations. Essentially, old data is being

marked as deleted, however remains present and is not immediately or intentionally

deleted. The later happens only occasionally, when this unallocated space is later

overwritten by a new page.

An extensive study of this issue was done by Stahlberg et al. [SML07] who forensically

investigated five different database storage engines - IBM DB2, InnoDB, MyISAM

(both MySQL), PostgreSQL, and SQLite - with regards to traces left of deleted data

within the table storage, transaction log, indexes. They found that even after applying

25,000 operations and vacuuming, a large amount of deleted records could still be found.

Furthermore they investigated the cost of overwriting or encrypting (albeit using highly

insecure algorithms) log entries for the InnoDB engine. Grebhahn et al. [GSKS13]

especially focused on index structures and what kind and amount of traces of deleted

records can be reconstructed from the structure of indexes. Albeit they didn’t investigate

a real database system but a mockup designed to thoroughly evaluate high-dimensional

indexes, they achieved recovery rates from R trees of up to 60% in single cases.

As shown, although a forensic secure deletion is required in many cases, the actual

realization of removing data once it has been ingested to a database is still a difficult or

even unsolved challenge. Therefore the solution must be sought at an earlier point: the

time the data first enters the database. As the concept of deletion of data basically means

rendering this data unreadable/illegible it shares similarities to the encryption of data

without having knowledge of the proper key, as introduced by [BL96] for backup

systems. Encryption can therefore be seen as a “preventive deletion” scheme in a

forensic secure way.

At the same time the illegibility of encrypted data also hinders the widespread use in

database systems as most operations and therefore queries on them are not possible

compared to their unencrypted state. Therefore, in this paper we discuss a general

approach on how to use several encryption schemes to provide additional security, while

still maintaining some of the advantageous properties of unencrypted data. A similar

concept has been introduced in the context of CryptDB e.g. in [PRZ+11] and more

recently in [GHH
+
14].
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2 Approach

Encryption schemes can generally be classified as symmetric and asymmetric,

depending on if the encryption and decryption processes use the same shared key or

different keys (public key/ and private key). As in asymmetric schemes the sender and

receiver of a message use different keys, there is less trust required between both parties

w.r.t. the key handling and secure storage; thus asymmetric schemes are more secure.

However, this severely affects the performance and conversely symmetric schemes are

several magnitudes faster than asymmetric algorithms.

In “traditional” (strong) cryptography, the goal is that the ciphertext does not reveal

anything about the plaintext, e.g. any two given similar yet different plaintexts m1 and m2
the resulting ciphertexts are dissimilar and appear random. As such any operation which

makes use of any property of the plaintext is not applicable to ciphertext. This is

expressed by the cryptographic property is ciphertext indistinguishability introduced by

[GM84] as polynomial security, i.e. given n plaintexts and their n ciphertexts,

determining which ciphertexts refer to which plaintexts has the same probability as

random guessing. Similar is the property non-malleability introduced by [DDN00] which

states that given a ciphertext an attacker may not be able to modify this ciphertext in a

way which would yield a related plaintext, i.e. a malleable scheme would fulfil:

E (m⊕ x) = E(m) ⊗ x’, with E being the encryption operation, m the plaintext, x a value

to change the plaintext using the operation ⊕ and x’/⊗ their counterparts in encrypted

domain. However, there exist encryption schemes which intentionally give up on these

security properties in exchange to provide for additional benefits, i.e. computational

properties for mathematical operations in the encrypted domain.

The first one of these schemes is Homomorphic Encryption (HE), with its basic

concept introduced by Rivest et al. [RAD78], as an encryption scheme allowing certain

binary operations on the encrypted plaintexts in the ciphertext domain by a related

homomorphic operation without any knowledge of the actual plaintext, i.e.:

E(m1∘ m2) = E(m1) ⊚ E(m2). However, most of the early homomorphic encryption

schemes only allowed one operation (multiplication or addition) until Gentry [Ge09]

introduced the first Fully Homomorphic Encryption (FHE) scheme, which allow additive

as well as multiplicative arithmetic operations at the same time. As can easily be seen,

homomorphic encryption does not fulfil the non-malleability criterion, since every

adversary can combine two ciphertexts to create a valid new encrypted plaintext. The

main drawback of this encryption scheme is that, although Gentry’s approach opened up

lots of interest in the scientific community, the scheme it is very intensive with regards

to computational time and space requirements, with a plaintext to ciphertext expansion

factor of thousands to millions [LH14], and the computation of complex/chained

operations may take several seconds.

The second encryption scheme is Order-Preserving Encryption (OPE) introduced by

Agrawal et al. [AKSX04] and cryptographically proofed by Boldyreva et al. [BCLO09],

who also provided a cryptographic model based on hypergeometric distribution. The

idea of order-preservation encryption is to provide an encryption scheme which
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maintains the property of order of plaintext within their encrypted counterparts, i.e.

∀m1 ≥ m2 : E(m1) ≥ E(m2). It can be seen that this scheme does not fulfil the ciphertext

indistinguishability criterion as by ordering the plaintexts and ciphertexts there is high

probability of knowing which ciphertext can be mapped to which plaintext, except for

equal plaintexts.

A third encryption scheme is Partial Encryption, differing from the aforementioned as

it is not a specific new approach of encrypting, but a different application of existing

common encryption schemes. The basic idea, as already discussed, e.g., in [MKD
+
11]

and [SSM
+
11], is that in many complex data items only some parts are confidential.

However, encrypting the complete data item may hinder the use of the data as even

persons or processes who only want to access these non-confidential parts would need to

get the data item decrypted in some way, e.g. by providing them with a higher security

clearance, even though they should not need it. Using partial encryption, only the

confidential parts of the data item are encrypted and associated with metadata specifying

which parts. As the data is complex, and thus HE and OPE schemes would not be usable,

partial encryption would use strong cryptography.

Combining these, our concept consists of two steps: The first step is to classify each data

type with regards to its security level in the sense of maximum possible harm if the data

gets misused or disclosed. This segmentation basically defines the amount of data to be

protected as well as the type of security means needed to protect this data. Since the

actual evaluation depends on the regulations of each organization, legislation, use-cases

and so on, this is not the focus of this paper and thus will not be described in detail. The

second step is to evaluate what kind of operations are commonly done to the data, in the

sense of if the queries mostly consist of arithmetic operations, comparison operations, or

other kinds of operations. If data is mainly used for arithmetic reasons, HE can be used

to enable these kinds of operations on encrypted data. The same applies to data mainly

used for comparison queries and OPE. If complex data types are present where only

parts are sensitive and other parts contain useful information too, partial encryption can

be used. It has to be stated here that this two-step concept is an extension of the basic

approach discussed in [MKD
+
11].However, as stated before, the HE and OPE schemes

are weaker than strong encryption schemes. Therefore, based on the evaluated security

level of step 1, highly confidential data which satisfy the criteria for either HE or OPE

should still be encrypted using strong cryptography.

3 Realization in database systems

In this section we describe the implications of using our approach on the database

management system by discussing if the encryption or parts thereof should be provided

server-side or client-side, as well as necessary changes to queries. For two of the

introduced schemes (HE and OPE) the integration into a query language is discussed

only conceptually on query level, while for the third scheme (PE) a realization of the

query language extension required is presented.
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Our test MySQL database consists of actual forensic data acquired during the Digi-Dak
1

project consisting of fiber scans, synthetic fingerprints and metadata in the form of

statistical, spectral and gradient features for fingerprints [MHF
+
12] in 3.4 million tuples

and diameter, length, perimeter, area, height and color as fiber features [AKV12].

3.1 Server-side vs client-side

An important notion is if the encryption E and decryption D functions should be

provided client-side or server-side. On client-side, each client software would be

required to implement both functions if it wants to create proper queries and interpret the

results. However, this may be unfeasible for heterogeneous environments with many

different types of client software, especially if future updates to the employed encryption

are considered. The advantage of this approach is that the keys never leave the client.

If the crypto functions are centrally server-based, every client can make use of the

encrypted data with only minor changes to the queries as described in the following

sections. An important issue here is the acquisition of the keys. The keys may either be

provided by the client or by the server. For client-based key provision, they would be

part of the query and thus transmitted over the server-client connection. In this case this

connection must be secured, e.g. by using SSL/TLS. For server-based key provision they

may either be part of encryption or decryption functions themselves or are provided as

part of a view as described in Section 3.4. The disadvantage server-based key provision

using views approach is that the password needs to be stated in the view definition, and

as such this encryption approach has at most the security level of the database access

controls. As such it can protect confidential data against malicious clients or clients

vulnerable to SQL injections and similar attacks, but not against attackers who have low-

level (OS) access to the database. Therefore, client-based key provision has a higher

security level, but as stated in Section 2 server-based key provision may also be feasible.

Approaches like [GSK13] propose an extension of the SQL syntax to permit special

forensic tables that automatically handle secure deletion, and [SML07] proposes the use

of an internal stream cipher to automatically encrypt every data. Both approaches need

the extension/update of database systems on source code level which is in most cases not

applicable to actual database systems in a productive environment. Therefore our

approach consists of realizing secure deletion/encryption by making use of means

provided by the database system, in our case external User-Defined Functions (UDF) –

also called call specification in Oracle or CLR Function in MSSQL – from external

libraries as complex cryptographic implementations are infeasible with stored

procedures in SQL/PSM or related languages.

3.2 Order Preserving Encryption

Like for the other encryption schemes the data needs to be encrypted before it is stored

in the database. This would be done by the client who transforms an input item m to

1 http://omen.cs.uni-magdeburg.de/digi-dak/
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m’ = EOPE(m, keyE) which is then INSERTed. On a SELECT, the returned m’ needs to be

transformed back as m = DOPE(m’, keyD). As described in the previous section, EOPE()

and DOPE() may either be server- or client-side provided and the keys may either be

explicitly provided or implicitly.

Assuming the columns of a tuple where c2 contains confidential values mainly used for

relational queries (for example with a fixed value v1) a query in the form:

Query 1a: SELECT c1, c2 FROM t1WHERE c2<v1;

would be transformed into the following for OPE data:

Query 1b: SELECT c1, DOPE(c2, keyD) FROM t1WHERE c2<EOPE(v1, keyE);

In case the query result does not contain OPE data, the only overhead to non-encrypted

data would be the encryption of the WHERE statement. Therefore the time complexity

depends on the number and complexity of OPE statements in the SELECT statement

multiplied by the result count and the number and complexity of OPE statements in the

WHERE statement.

3.3 Homomorphic Encryption

For homomorphic encryption basically the same applies. Assuming the columns of a

tuple where c1 and c2 contain confidential values mainly used for arithmetic operations

queries to retrieve a value for a client or generate a value within the database:

Query 2a: SELECT c1 + c2 FROM t1WHERE…;

Query 3a: INSERT INTO t2 (c3) SELECT c1 * c2 FROM t1WHERE…;

would be transformed into the following for HE data:

Query 2b: SELECT DHE(ADDHE(c1, c2), keyD) FROM t1WHERE…;

Query 3b: INSERT INTO t2 (c3) SELECT MULHE(c1, c2) FROM t1WHERE…;

However depending on the homomorphic operations and if the query result is stored in

the database or returned to the client the call to an additional function may not be

needed. For example in the Paillier cryptosystem [Pa99] the addition of two plaintexts is

expressed by a multiplication of the ciphertexts: m1 + m2 mod n = m1’ * m2’ mod n
2
.

3.4 Partial Encryption

In our implementation the actual library and user-defined functions were written in C#,

as its runtime library provides a large amount of conveniently usable image processing

and cryptography functions. As C# libraries use different export signatures the

Unmanaged Exports tool (MIT license) by Robert Giesecke
2
to automatically create

proper C style exports and unmarshalling.

The pseudo-code of the decrypt UDF called DPE is as follows:

INPUT: blob, password

OUTPUT: image

2 https://sites.google.com/site/robertgiesecke/Home/uploads/unmanagedexports

42



(image, regions, cryptalg, cryptparams, blocksize) ← unpack(blob)

if password = ∅ then return image endif

buffer ← ARRAY BYTE[1..blocksize], coord ← ARRAY POINT[1..blocksize]

b ← 0, h ← height(image), w ← width(image)

for y = 1 to h do

for x = 1 to w do

if (x, y) in regions then

buffer[b] ← image[x, y], coord[b] ← (x, y)

b ← b+1

endif

if b = blocksize OR (y=h AND x=w)) then

buffer’ ← decrypt(buffer, cryptalg, cryptparams, password)

for i = 1 to blocksize do image[coord[i]] = buffer’[i] endfor

b ← 0

endif endfor endfor

return image

In our scenario partial encryption is used for fingerprint scans. At a crime scene there are

cases where latent fingerprints – sensitive data – may be superimposed with other non-

sensitive evidence like fiber traces. Depending on the investigation goal (fingerprint of

fiber analysis) it may thus become necessary to make areas containing sensitive data

inaccessible. Therefore in our approach, only the fingerprint parts of the scans are

encrypted by using AES, packed in ZIP container along the encryption metadata

(algorithm, bit size, initialization vectors, password salt) and the outline of partially

encrypted regions as shown in Figure 1.

Figure 1: (Synthetic) original3 and partially encrypted fingerprint

3 Example from the Public Printed Fingerprint Data Set – Chromatic White Light Sensor - Basic Set V1.0. The

image was acquired using sensory from the Digi-Dak research project (http://http://omen.cs.uni-
magdeburg.de/digi-dak/, 2013) sponsored by the German Federal Ministry of Education and Research, see

publication: Hildebrandt, M, Sturm, J., Dittmann, J., and Vielhauer, C.: Creation of a Public Corpus of

Contact-Less Acquired Latent Fingerprints without Privacy Implications. Proc. CMS 2013, Springer, LNCS
8099, 2013, pp. 204–206; it uses privacy implication free fingerprint patterns generated with SFinGe,

published in Cappelli, R.: Synthetic fingerprint generation, Maltoni, D., Maio, D., Jain, A.K., and Prabhakar, S.

(Eds.): Handbook of Fingerprint Recognition, 2nd edn., Springer London, 2009.

43



The database itself only stores the container. Additionally for server-based key provision

using views there would be two views to provide standardized means of access on the

database query language level: a) an “anonymized view” for general users who do not

have the proper security clearance to access unencrypted fingerprints, returning the

encrypted fingerprint scan from the container (Figure 1 right side):

Query 4: CREATE VIEW fingerprints_anon AS SELECT id, filename,

DPE(scan) AS scan FROM fingerprints;

And b) a “deanonymized view” for privileged users like forensic fingerprint experts who

do have the access rights to the actual fingerprints not only unpack the image but also try

to decrypt it with the provided key (Figure 1 left side):

Query 5: CREATE VIEW fingerprints_deanon AS SELECT id, filename,

DPE(scan, key) AS scan FROM fingerprints;

Regarding the performance on our test system (Intel Core i7-4610QM @ 2.3GHz, 8 GB

RAM), we observe in first experiments that querying 1000 tuples of containers takes

0.607s, unpacking the encrypted scans (Query 4) 29.110s, and returning the

deanonymized scans (Query 5) 99.016s. However, it should be noted that for the Query

5 task, computation power for image parsing is included in the given figure and makes

up for the main part of execution time for this query.

4 Conclusion and future work

In this paper we showed a general concept on how to use different encryption schemes

for the sake of secure deletion and de-personalization, also taking into account that the

data still at least partially remains usable for queries. The concept includes of the

classification of data by its security level and later main usage which decides the

appropriate encryption scheme. We also showed how these encryption schemes can be

used in common database systems without the need to directly modify the system, but

using its existing capabilities of a selected database system.

In future work a more thorough research on key management for server-based key

provision needs to be done, as well the applicability to other database systems.

Furthermore, the actual performance impact of this general concept to practical systems

has to be evaluated with large-scale evaluations for relevant application scenarios, like

e.g. larger forensic databases and/or biometric authentication systems where such a

scheme could prevent information leakage as well as inter-system traceability.
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