B. Konig-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2023 943

Workload Prediction for IoT Data Management Systems

David Burrell! Xenofon Chatziliadis? Eleni Tzirita Zacharatou? Steffen Zeuch? Volker
Markl’ ©

Abstract: The Internet of Things (IoT) is an emerging technology that allows numerous devices,
potentially spread over a large geographical area, to collect and collectively process data from
high-speed data streams. To that end, specialized IoT data management systems (IoTDMSs) have
emerged. One challenge in those systems is the collection of different metrics from devices in a central
location for analysis. This analysis allows IoTDMSs to maintain an overview of the workload on
different devices and to optimize their processing. However, as an IoT network comprises of many
heterogeneous devices with low computation resources and limited bandwidth, collecting and sending
workload metrics can cause increased latency in data processing tasks across the network.

In this ongoing work, we present an approach to avoid unnecessary transmission of workload metrics
by predicting CPU, memory, and network usage using machine learning (ML). Specifically, we
demonstrate the performance of two ML models, linear regression and Long Short-Term Memory
(LSTM) neural network, and show the features that we explored to train these models. This work is
part of an ongoing research to develop a monitoring tool for our new IoTDMS named NebulaStream.

Keywords: Internet of Things; stream processing; machine learning; workload prediction

1 Introduction

The Internet of Things (IoT) describes a distributed system in which a large number of
devices with sensing or processing capabilities communicate with each other [PPS16]. The
IoT enables new possibilities for applications that have led to advances in many fields,
including healthcare [Ab19], disaster management [OTM21], and smart cities [Mo21].

I'TU Berlin, Database Systems and Information Management, Einsteinufer 17, 10587 Berlin, Germany d.
burrell736 @ googlemail.com

2TU Berlin, Database Systems and Information Management, Einsteinufer 17, 10587 Berlin, Germany x.
chatziliadis @tu-berlin.de

3 IT University of Copenhagen, Data-intensive Systems and Applications, Rued Langgaards Vej 7, DK-2300
Copenhagen S, Denmark elza@itu.dk

4 German Research Center for Artificial Intelli gence (DFKI), Alt-Moabit 91¢, 10559 Berlin, Germany steffen.
zeuch@dfki.de

5 TU Berlin, Database Systems and Information Management, Einsteinufer 17, 10587 Berlin, Germany volker.
markl @tu-berlin.de

6 German Research Center for Artificial Intelligence (DFKI), Alt-Moabit 91c, 10559 Berlin, Germany Volker.
Markl@dfki.de

©®O® doi:10.18420/BTW2023-64

d.burrell736@googlemail.com
d.burrell736@googlemail.com
x.chatziliadis@tu-berlin.de
x.chatziliadis@tu-berlin.de
elza@itu.dk
steffen.zeuch@dfki.de
steffen.zeuch@dfki.de
volker.markl@tu-berlin.de
volker.markl@tu-berlin.de
Volker.Markl@dfki.de
Volker.Markl@dfki.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-64

944 David Burrell, Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, Volker
Markl

To process data in real time in such a distributed environment, stream processing engines
(SPEs) are often used. SPEs enable the continuous execution of user-defined queries on data
streams to extract useful information. SPEs are designed to execute these queries across
distributed devices optimally, in terms of the placement of the data processing operations
and the management of the information flow. However, SPEs are designed for the cloud,
which has significantly different characteristics compared to the IoT.

For system-internal decision-making processes, such as load balancing and query opti-
mization, existing SPEs often require performance metrics from their topology. In an IoT
topology, the collection and sending of these metrics can be detrimental to the overall data
processing efficiency. Many devices have few computational resources, and the collection of
workload metrics leads to reduced processing performance [Ch21, CFSF20]. Additionally,
the collection process affects the network, since it requires a large amount of bandwidth to
send the collected metrics and therefore introduces additional latency [SJL18]. Finally, the
additional processing and network efforts required for the metric collection process reduce
the operational lifetime of battery-powered devices [Ma05].

To mitigate these issues, it would be beneficial for an SPE to be able to infer workload
metric values and avoid the need to collect these metrics continuously. This would reduce
the load on the workers themselves as well as the volume of data being sent through the
network, thus decreasing the response time for user queries. In this work, we show our
current progress in testing the suitability of machine learning techniques to predict the
workloads of the NebulaStream (NES) [oTDMS [Ze20a, Ze20b]. Using a small-scale lab
topology with five devices, we have trained a linear regression and an LSTM model to
predict the CPU, memory, and network utilization of different query workloads. We show
that for all workloads, our linear regression models significantly outperform the LSTMs
with a PRED 25 score (i.e., percentage of predicted values that are within 25% of the actual
value) between 56% and 86%.

The remainder of this paper is structured as follows: In Section 2, we analyze the different
workloads and features for our ML models. In Section 3, we evaluate the suitability of linear
regression and LSTM to predict CPU, memory, and network utilization. We conclude our
work in Section 4 and discuss future work directions.

2 Methodology

Data collection and data engineering steps are of essential importance to produce adequate
training data sets for accurate ML models. To this end, we create an emulated NES topology
where we execute specific queries on predefined data to generate workload information.
During the execution of these queries, we collect metrics on CPU, memory, and network
utilization. We collect these metrics along with additional features about the topology that
can be used to train our ML models. In the remainder of this section, we describe in detail

Workload Prediction for IoT Data Management Systems 945

how we generate different workloads in NES and the features we investigate to train our ML

models.
ﬁ Worker

ﬁ Switch
(=] —_—
@ = =L — =
HiveMQ ﬁ Coordinator Python InfluxDB
Application

Fig. 1: Overview of the emulated topology in NebulaStream.

2.1 Workload Generation

For generating training load data we create a controlled NebulaStream lab topology with
Docker containers [Mel4]. Communication between containers is established using the
Containernet network emulation [PKvR16]. In total, the topology consists of one coordinator,
four workers, and an MQTT broker (cf. Fig. 1). The MQTT broker (HiveMQ) has four
topics, one for each worker to subscribe to and where data is pushed in regular intervals.
The data that is pushed to the workers is generated using the humidity and temperature
sensors data set of the UCI Machine Learning Repository [Hul6]. The workers are used to
process and send the data to the coordinator. In order to represent the heterogeneity of the
IoT environment in our lab topology, we assign each worker different resources in terms
of available memory, memory swap limit, and CPU shares. Regarding the distribution of
resources, worker number zero had the fewest available resources with a memory limit
of 10Mb, a memory swap limit of 30Mb, and a CPU share of 20%. For each worker,
we incrementally increased then the resources, such that worker number three has 40Mb
memory limit, 120Mb memory swap limit, and 80% CPU shares.

The coordinator is the central component of NebulaStream, which is responsible for
processing user requests, scheduling queries, and managing the life cycle of running queries.
We used the coordinator as a sink for our streaming queries and an endpoint for our queries.
To generate different load types, we deployed four queries to NES, 1) a select-all query, 2)
a projection, 3) a filter with a selectivity of 0.77, and 4) a user-defined function with the
map operation. These queries were deployed from our Python application via the REST
interface of NES. Workload metrics were collected through the NES monitoring API and
the docker metrics API while running the queries. For analysis and feature exploration, we
stored all workload metrics in the InfluxDB key-value store.

946 David Burrell, Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, Volker
Markl

2.2 Feature Selection

For training accurate ML models, we require feature variables that have some relationship
with the target variables, i.e., the workload metrics. In general, the stronger the relationship
between the features and the target, the higher the model’s prediction accuracy. We have
analyzed two different types of features.

The first type are static features, where the value does not change over time. The static
features collected from the emulated topology are: the worker resource limits, the tuples per
second received at the workers, the executed queries, and their operators. The second type
of features are time-series features that we divide into two classes. The first class belongs
to the independent variables that are recorded separately to the workload metric streams.
These variables are the number of nanoseconds since the query began, the data received
at the coordinator from each worker, and the coordinator’s CPU usage. The second set of
time-series features are the metric streams of the workloads.

1.00 5.8
Memory 0.1 0.003 0.75
Limit 56
- 0.50
$ 54
Memory -0.1 0.003 -0.25 <
Swap Limit 2 52
-0.00 S
5 50
CPU Share -0.1 0.003 --0.25 =
a —— Worker 0
O 438
~ —0.50 ~—— Worker 1
Generated — Worker2
o - 4.6
Tuples/s 0.54 0.088 n [0.75 —— Worker 3
-1.00 1000 2000 3000 4000 5000
CPU Usage Memory Usage Network Usage Time (ms)

Fig. 2: (left) Heatmap of the SRCC between the static variables and the workload metrics.
(right) The moving average of the CPU usage during the execution of the Belect all"query.

To identify important candidates, we use Pearson and Spearman Rank Correlation Coefficient
(SRCC) to determine if a relationship exists between potential features and our target variables
CPU, memory, and network usage. Due to space limitations, we highlight here the most
influential features, which can be seen based on SRCC between the resource limits (i.e.,
memory, memory swap, and CPU share) and memory usage, with a particularly strong
negative correlation (cf. Fig. 2 (left)). The reason is that workers with the fewest resources
available to process the arriving data are required to store the data for a longer period before
the data can be sent to the coordinator.

By looking at the moving average of the values over time, it is possible to see the effect of
having different percentages of CPU for each worker (cf. Fig. 2 (right)). For the moving
average, we use a window size of 300ms and a sampling period of 20ms. It can be seen that
worker number zero has the most CPU usage due to having the smallest share of CPU and
requiring more time to complete tasks, while the other workers (which were closer together
in value) followed in order of increasing percentage of CPU share.

Workload Prediction for IoT Data Management Systems 947

In summary, the patterns we observe via SRCC and the moving average plot confirm that
available resources on the workers have a huge effect on the workload and are thus important
features that should be taken into account when training an ML model.

3 Evaluation

For each load metric, i.e., CPU, memory, and network, we train a linear regression and
LSTM model, which results in six models in total. We evaluate the models using the PRED
25 score, which measures the percentage of predicted values that are within 25 percent
of the actual value (cf. Table 1). The models are trained on 80 multivariant time series
with 246.883 different samples, and for validation on 246.883 samples. Overall, the linear
regression model (LR) is more accurate at predicting the three workload metrics than the
LSTM model, which is similar to the results reported by [AB16]. In the remainder of this
section, we will give a more detailed discussion of our results and findings.

Query Type | CPU Model Memory Model | Network Model
LR LSTM | LR LSTM LR LSTM
Select all 98.53 8798 | 0.15 57.11 89.15 16.68
Projection 29.00 20.65 | 69.13 42.59 83.23 15.39
Filter 9494 39.83 | 76.59 4323 89.26 28.17
Map 49.20 3945 | 89.85 36.94 91.97 22.80

Total Mean | 73.07 5032 | 58.87 46.13 86.34 28.55

Tab. 1: PRED 25 score for each of the machine learning models.

3.1 CPU Model

The linear regression CPU model achieves, on average, for all query types a PRED 25 score
of 73.07%, which significantly outperforms the LSTM model that reaches only 50.32%.
Looking at the scores of individual query types, we can see that the linear regression
performs extremely well for the select all and filter query type with a score over 90%. On
the contrary, for the projection and map query, our models achieve a score below 50%.
For the latter our models had captured in general the trends of the curves. However, they
predicted incorrectly the starting values which consequently lead to wrong forecasts of the
subsequent values.

948 David Burrell, Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, Volker
Markl

3.2 Memory Model

For the memory model we reach with the linear regression in total a mean score of around
59% and the LSTM around 46%. Looking at the different query types individually we can
see, on the one hand, that the performance of the select all query is the biggest detractor for
the linear regression model with a score below 1%. During the execution of the projection,
filter and map query, we could observe often spikes in the curves regarding memory
consumption. However, for the select all query a spiking of memory consumption does not
happen, as the internal memory management of NES is keeping for that particular case
always the same amount of data tuples in memory. We believe that the performance of the
linear regression can be improved here by adding more information about the query type
to the ML model. For the projection, filter and map query, on the other hand, the linear
regression achieved a performance of ca. 70% up to 90%. The LSTM model performed for
the prediction of memory utilization again worse for all query types with a score between
37% and 57%.

3.3 Network Model

The linear regression model is performing consistently well for all different query types
with a PRED 25 score between 83% and 92% and an average score of 86.34%. The LSTM
on the contrary reaches only scores between ca. 15% and 28%. During training, we had
observed that the LSTM model was having problems with over fitting, as the prediction
performance on the training data set was always larger than 90%. In future work, we will
further investigate the reasons why the LSTM was over fitting that extremely for predicting
network utilization.

4 Conclusion and Future Work

This paper explores the applicability of ML approaches to predict workload characteristics
in streaming IoT environments. Our early results show that for a particular small-scale lab
topology, workloads can be estimated with a PRED 25 score of up to 86% by using a linear
regression model. However, to completely avoid direct value collection from the devices in
the topology, further work is needed to increase the prediction accuracy. In future work,
we plan to incorporate topological traits and create workload data on the basis of more
complex queries. In our current work, we tested our models only against a single data set
that was generated on a static lab topology. Additionally, we plan to integrate our approach
of workload prediction to NebulaStream, in order to evaluate the general benefits.

Finally, we also plan to investigate different query optimization and operator placement
strategies. By examining the operators that are deployed on each worker we hope to be able
to identify a pattern in which cases the static and time-series characteristics can replace the
continuous collection of performance measures and why in other cases this does not work.

Workload Prediction for IoT Data Management Systems 949

Acknowledgments

This work has received funding by the German Ministry for Education and Research as
BIFOLD - Berlin Institute for the Foundations of Learning and Data (ref. 01IS18025A,
01IS18037A) and from the European Union’s H2020 research and innovation programme
under grant agreement No. 957286.

References

[AB16]

[Ab19]

[CESF20]

[Ch21]

[Hul6]

[Ma05]

[Mel4]

[Mo21]

[OTM21]

[PKVR16]

Ajila, Samuel; Bankole, Akindele: Using Machine Learning Algorithms for Cloud Client
Prediction Models in a Web VM Resource Provisioning Environment. Transactions on
Machine Learning and Artificial Intelligence, 2016.

Abdellatif, Alaa; Mohamed, Amr; Chiasserini, Carla-Fabiana; Tlili, Mounira; Erbad,
Aiman: Edge Computing For Smart Health: Context-aware Approaches, Opportunities,
and Challenges. IEEE Network, 2019.

Cid-Fuentes, Javier Alvarez; Szabo, Claudia; Falkner, Katrina E.: Adaptive Performance
Anomaly Detection in Distributed Systems Using Online SVMs. IEEE Transactions on
Dependable and Secure Computing, 2020.

Chatziliadis, Xenofon; Tzirita Zacharatou, Eleni; Zeuch, Steffen; Markl, Volker: Monitor-
ing of stream processing engines beyond the cloud: an overview. Open Journal of Internet
Of Things (OJIOT), 2021.

Huerta, Ramon; Mosqueiro, Thiago; Fonollosa, Jordi; Rulkov, Nikolai F; Rodriguez-Lujan,
Irene: Online decorrelation of humidity and temperature in chemical sensors for continuous
monitoring. Chemometrics and Intelligent Laboratory Systems, 2016.

Madden, Samuel R.; Franklin, Michael J.; Hellerstein, Joseph M.; Hong, Wei: TinyDB:
An acquisitional query processing system for sensor networks. ACM Transactions on
database systems (TODS), 2005.

Merkel, Dirk: Docker: lightweight linux containers for consistent development and
deployment. Linux journal, 2014.

Moreno-Bernal, Pedro; Cervantes-Salazar, Carlos Alan; Nesmachnow, Sergio; Hurtado-
Ramirez, Juan Manuel; Herndndez-Aguilar, José Alberto: Open-Source Big Data Platform
for Real-Time Geolocation in Smart Cities. Ibero-American Congress of Smart Cities,
2021.

Ouro Paz, Elena Beatriz; Tzirita Zacharatou, Eleni; Markl, Volker: Towards Resilient
Data Management for the Internet of Moving Things. In: Datenbanksysteme fiir Business,
Technologie und Web (BTW). volume P-311 of LNI, pp. 279-301, 2021.

Peuster, M.; Karl, H.; van Rossem, S.: MeDICINE: Rapid prototyping of production-ready
network services in multi-PoP environments. 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), 2016.

950 David Burrell, Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, Volker

Markl

[PPS16]

[SJL18]

[Ze20a]

[Ze20b]

Patel, Keyur K; Patel, Sunil M; Scholar, P: Internet of things-IOT: definition, characteristics,
architecture, enabling technologies, application & future challenges. International journal
of engineering science and computing, 2016.

Son, Yunsik; Jeong, Junho; Lee, YangSun: An Adaptive Offloading Method for an
IoT-Cloud Converged Virtual Machine System Using a Hybrid Deep Neural Network.
Sustainability, 2018.

Zeuch, Steffen; Chaudhary, Ankit; Monte, Bonaventura Del; Gavriilidis, Haralampos;
Giouroukis, Dimitrios; Grulich, Philipp M.; Bress, Sebastian; Traub, Jonas; Markl, Volker:
The NebulaStream Platform: Data and Application Management for the Internet of Things.
CIDR, 2020.

Zeuch, Steffen; Tzirita Zacharatou, Eleni; Zhang, Shuhao; Chatziliadis, Xenofon; Chaud-
hary, Ankit; Del Monte, Bonaventura; Giouroukis, Dimitrios; Grulich, Philipp M; Ziehn,
Ariane; Mark, Volker: NebulaStream: Complex analytics beyond the cloud. The Interna-
tional Workshop on Very Large Internet of Things (VLIoT), 2020.

