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Abstract: Data analytics gets faced with huge and tremendously increasing amounts
of data for which MapReduce provides a very convenient and effective distributed
programming model. Various algorithms already support massive data analysis on
computer clusters but, in particular, distance-based similarity self-joins lack efficient
solutions for large vector data sets though they are fundamental in many data mining
tasks including clustering, near-duplicate detection or outlier analysis.

Our novel distance-based self-join algorithm for MapReduce, MR-DSJ, is based on
grid partitioning and delivers correct, complete, and inherently duplicate-free results in
a single iteration. Additionally we propose several filter techniques which reduce the
runtime and communication of the MR-DSJ algorithm. Analytical and experimental
evaluations demonstrate the superiority over other join algorithms for MapReduce.

1 Introduction

As an ongoing trend, tremendously increasing amounts of data are collected in real-world
applications of life science, engineering, telecommunication, business transactions and
many other domains. For the management and analysis of these data, many different
techniques and algorithms have been developed, ranging from basic database operations to
high-level data mining approaches like clustering, classification or the detection of outliers.
Processing huge data sets with millions or billions of records on a single computer exceeds
the computation capabilities of single computing nodes due to limitations of disk space
and/or main memory. Thus, it is indispensable to develop distributed approaches that run
on clusters of several computers in parallel [RU11].

An important group of database operations are joins. Similarity self-joins, which are a spe-
cial type of joins, play an important role in data analysis: data cleaning [CGK06, RRS00],
near duplicate detection [XWLYO0S8, Mon00], document similarity analysis [BML10] and
data mining tasks like density-based clustering like DBSCAN [EKSX96, BBBKO0O] inher-
ently join the input data based on similarity relationships and, therefore, will draw high
benefit from efficient and scalable implementations of similarity self-joins.

In this paper, we study the distributed computation of distance-based similarity self-joins.
A distance-based join R X, S = {ros|d(r.A,s.A) < e} returns all pairs of objects (r, s)
whose distance in attribute A does not exceed a maximum dissimilarity threshold, €, which
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is called the range or the radius of the similarity join. In our applications, the domain is
a multidimensional data space R%™ and distance measures include the L, norms like the
Euclidean distance Lo, Manhattan distance L or the Maximum distance L.

For the development of distributed query processing algorithms, a variety of structured
programming models exists. Aside classic parallel programming, the MapReduce model
was proposed by Google [DG04], and its open-source implementation Hadoop found
wide-spread attention and usage.

In this paper, we study the computation of distance-based self-joins for vector data using
the MapReduce programming model. Our proposed grid-based approach combines the
advantages of a very simple implementation and at the same time high efficiency, espe-
cially in low- to medium-dimensional domains that often occur in for example density-
based clustering. However, it can also be applied to high-dimensional data by performing
a dimensionality reduction first (dimensionality reduction techniques for MapReduce are
implemented in the Mahout framework'). Overall, the main contributions of this paper are
the following:

e We propose the MR-DSJ algorithm which efficiently computes the distance-based
self-join on vector data using MapReduce avoiding duplicate distance computations.

o We introduce efficient filtering techniques based on mindist approximations for re-
ducing communication and computation costs.

o We show the effectiveness of the developed approach by formal proofs and the effi-
ciency by experiments on synthetic and real-world datasets.

The remainder of this paper is organized as follows: Section 2 describes related work. In
Section 3 our join algorithm MR-DSJ is introduced. Section 4 presents the experimental
evaluation of our technique. Theoretical analyses and ideas for future work are provided
in Section 5, and Section 6 concludes the paper.

2 Related Work

The join operator is a fundamental database operator and is important for a large set of
database queries. A general §-join of two (or more) relations R, S is defined as R Xy S =
o9 (R x S)={ros|0(r,s)}. Depending on the used predicate 6, different kinds of joins
like equi-, spatial-, or distance-join are defined. As an alternative to our distance-based
formalization, similarity functions sim : U x U — R for some object domain U can be
used which indicate a high similarity of objects by high values. Prominent examples are
the set intersection measure or the cosine similarity [VCL10, BML10].

The simplest solution for the computation of a join is a nested loop over both relations,
which, however, has the disadvantage of quadratic complexities for computation and I/O.
These problems have lead to the development of advanced approaches [Dat06] including

Uhttp://mahout.apache.org/
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block nested loop, sort-merge, hash- or partition-based or index-based techniques which
try to alleviate one of these or both problems.

Not every approach can, however, efficiently cope with similarity joins in multidimen-
sional vector spaces. For example there is no natural sorting of points in a multidimen-
sional space, such that sort-merge join techniques are probably not very appropriate solu-
tions. The similarity join of very large data sets also has often to grapple with the problem
of not indexed data. Due to the size, and - in case of distributed data storage - due to the
distributed data location, the building of auxiliary index structures can be too expensive.
The widespread solution for this problem is the usage of partition-based schemes which
often can be performed in on-line fashion [ZJ03]. Appropriate data partitioning can lead
to a significant efficiency gain of the join algorithm, which is achieved by pruning unnec-
essary distance calculation between partitions which are located too far away from each
other. A prominent partitioning scheme is a (equal-sized) grid. While it does not require
any data distribution information, it provides good results for not too skewed data and dif-
ferent approaches make use of it [BBKKOI, PD96]. If additional information about the
data is available, the partitioning can also address the data skewness problem [DNSS92].

In general, the parallelization of joins leads to a higher efficiency. In this work we investi-
gate a solution for the similarity join in MapReduce. Let us briefly recall its programming
model before we describe existing join approaches based on it. In MapReduce, the data is
given as a list of records that are represented as (key, value) pairs. Basically, a MapReduce
program consists of two phases: In the “Map” phase, the records are arbitrarily distributed
to different computing nodes (called “mappers”) and each record is processed separately,
independent of the other data items. The map phase then outputs intermediate (key,value)
pairs. In the “Reduce” phase, records having the same key are grouped together and pro-
cessed in the same computing node (“reducer”). Thus, the reducers combine information
of different records having the same key and aggregate the intermediate results of the map-
pers. The results are stored back to the distributed file system. A simple example for a
MapReduce program for the word count problem is given in [DG04].

Join processing using the MapReduce framework has already found high attention.
[BPE™10] provides an overview of common join strategies in MapReduce. In [PPR*09],
MapReduce is compared with parallel DBMS. Recent extensions of Hadoop including
HadoopDB [ABPA™09], Hadoop++ [DQRJ™10] or PACT [ABE™10] also have a specific
focus on join processing. However, the vast majority of existing work about parallel joins
refers to equi-joins. Afrati and Ullmann [AU10] present optimization strategies for multi-
way equi-joins, but they do not approach similarity joins. Broadcasting join strategies (e.g.
[BPET10]) rely on the assumption that the join partners significantly differ in their size
(|R| < |S]), which does not apply for self-joins.

The field of similarity joins on MapReduce also gained a high attention in the last few
years. The k-NN joins for Euclidian spaces were addressed in [LSCO12] and in [ZLJ12].
In the latter the author exploits the space-filling curves and transform the kNN joins into
a sequence of one-dimensional range searches. In [LSCO12] a Voronoi based partitioning
allows for an effective join. A technique for similarity joins in metric spaces was presented
in [SRT12]. Both, [SRT12] and [LSCO12] are data partitioning approaches which require
one or multiple runs on the data before the join algorithm can start. In this work we focus
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on similarity joins on vector data and exploit properties of vector spaces using a grid-
based approach to obtain an efficient join. The vector space representation and the choice
of equi-sized grids allows for a simple single-iteration algorithm which is particularly well
suited for low- to medium-dimensional data. Though metric space joins are potentially
able to handle very high-dimensional data, we believe that a simple but fast method as we
propose in this work is an enrichment for MapReduce-based solutions for similarity joins.

Besides the joins for vector and metric spaces, there exist similarity join approaches that
exploit characteristics of certain data types: Baraglia et al. [BML10] propose a two-step
similarity self-join for textual documents based on inverted lists. Afrati et al. [ASMT12]
present an approach for similarity joins on data given as strings or sets. Similarity joins for
set and multisets data on MapReduce is addressed in [VCL10] and [MF12]. Zhang et al.
developed a spatial join algorithm for two-dimensional complex shape objects [ZHL™09].

A general problem for parallelized similarity joins is the avoidance of duplicate results
[ASM™12]. E.g., in [ASM™ 12] lexicographic orderings are used to solve this problem. In
[BML10], the reference tile method, first introduced in [DS00], was used. In our work, we
propose a simple yet very efficient technique for avoiding duplicates.

A very general approach that also avoids duplicates is the #-join algorithm for MapReduce
by Okcan and Riedewald [OR11]. The authors propose an effective randomized balancing
strategy to distribute all possible result tuples (i.e. each pair of objects) across a given
set of reducers. In the reduce phase, an arbitrary join algorithm is run in each reducer
to compute the join of the data points that are assigned to this reducer. Though it shows
an optimal load balancing, the original #-join does not prune any distance computations
during the run. As the general algorithm does not make any assumptions about the type of
join, every pair of objects has to be processed by a reducer. The authors propose strategies
to avoid some computations from the start for special join types, however no strategy for
similarity joins is given. A further property of the f-join algorithm is the dependence of its
data replication factor on the cluster size. A higher number of reducers (i.e., computational
nodes) leads to a higher replication of the data. In contrast to this approach, our technique
makes use of pruning, and the replication of the data is independent from the cluster size.

3 Efficient Distance Self-Join

In this section, we present MR-DSJ, our algorithm for a similarity self-join of vector data
in MapReduce. We first introduce a basic approach showing the idea of the algorithm in
Section 3.1 and prove its correctness in Section 3.2. In Section 3.3 we introduce improved
techniques to reduce the number of distance computations and the communication over-
head and provide an efficient implementation for MapReduce framework in Section 3.4.
We give an analytical analysis of the basic approaches, which extends the experimental
evaluation from Section 4 and analyzes the worst case scenario, possible bottlenecks and
load balancing properties of the approach. We use the following notations for grid cells:

(1) NC(c): Set of neighboring cells of cell ¢
(2) cell(p): Cell containing point p
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Figure 1: Bit Codes for the 2d case Figure 2: Small e-neighborhood

3.1 MR-DS]J algorithm

A naive way for calculating joins is nested loop which computes the distance from each
point to every other point. In the case of similarity joins where a result set can be very
small (e.g. in the case of near-duplicate detection or clustering), this intuitive solution
regularly produces far more distance calculations than necessary. For example, point p in
Fig. 2 has only a small subset of database objects in its e-neighborhood but nested loop
would calculate the distances to all points. In order to reduce the number of distance
computations we use a quite common grid-based partitioning approach with equal-sized
grid cells of width €. In such a grid all join partners of a point p are located either in the
same cell as p or in the direct neighboring cells, and therefore all distance computations
to objects in other cells can be pruned. This grid based discretization of the data space
is depicted in Fig. 3(a) for Euclidean distance. It applies as well to other L, norms, and
weighted L, norms are supported by scaled grid dimensions. For the point p lying in the
dark green cell, each point in its e-neighborhood is lying either in one of the adjacent (light-
green) cells or in the cell of p itself. Using this knowledge, we can avoid the computation
of the distances from p to the points in all other grid cells, because none of them would
result in a valid result tuple.

This approach can be easily translated into a MapReduce program. Each reducer R; is
responsible for one cell ¢; and its neighboring cells and computes - via nested loop - all
the result tuples between all points located in ¢; and NC'(¢;). We refer to ¢; as the “home
cell” of R;. In the map phase, all points lying in a cell ¢; are sent to the reducer R; that is
responsible for ¢; and to the reducers of all adjacent cells, i.e. to all R; for ¢; € NC(c;).
In the reduce phase, each reducer R; gets as input all points from ¢; and NC(¢;) and
calculates the distances between all points in ¢; and the distances of all points from ¢; to all
points from the neighboring cells via a nested loop. Since for each data point the distances
to all objects in its neighbor cells are computed in some reducer, this method is a correct
similarity self-join implementation. If € is small compared to the distribution of values in
the dataset, this simple approach can reduce the number of computations significantly.

However, this approach suffers from high communication overhead which stems from
the 3¢ times replicated data, since each point has to be sent to each reducer responsible
for a cell neighboring to cell(p). This high replication can be significantly decreased by
reducing the number of neighbor cells that are taken into account by a single reducer.
Namely, it is enough if each reducer R; only considers the neighbor cells of ¢; that have a
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Figure 3: Example grids (dark green cell: home cell, arrows indicate point replication between cells)

smaller or equal ID in every dimension, as shown in Fig. 3(b). Then the reducer performs
a join on all the points from these cells. This approach still computes all valid result pairs
because the same is done for each of the cells. For example, consider the cell ¢, which
is the direct right neighbor of cell(p) = ¢11. Although the reducer R;; of cell ¢;; does
not compute the distance from p to the points from cy1, there exists another reducer Ro;
that has ¢y as its home cell. Following the aforementioned rule, this reducer will also
receive the points from c;; and then compute the distances between these two cells. Since
the number of neighboring cells with smaller or equal ID in each dimension is equal to 29,
this method replicates the data 2¢ times, which is significantly smaller than 3¢

Both, the 3¢ and 2¢ approaches though still suffer from the problem that lot of result pairs
are duplicated, which occurs when two objects p and ¢ from neighboring cells are pro-
cessed in two separate reducers. This is e.g. the case when reducers of cells ¢11 and co;
both calculate the distances between cells ¢11 and ¢yg.

To avoid the unnecessary computation of duplicate result pairs, a reducer has to differenti-
ate between the points from the different cells that were sent to it. Therefore we introduce
a “bit code” that is sent with each data point to the reducers and identifies the relative
position of the point’s cell to the home cell of the reducer. The bit codes consist of d bits
(for a d-dimensional grid), where each bit corresponds to one dimension. The points of
the home cell itself are assigned the bit code ‘0= 00...0 (d times). For the other cells,
each bit indicates if the position of this cell deviates from that of the home cell in the cor-
responding dimension. An example is shown in Fig. 3(c), where the bit codes for the cells
that are sent to the reducer R;; are presented. For example, the lower left cell is assigned
the bit code ‘11’ because it differs from the home cell in both dimensions. Using these
bit codes we can now decide, considering any particular reducer, which distances we have
to compute in this reducer and which ones can be skipped as they are computed in other
reducers. In Fig. 1 we exemplary show the decision matrices for the 2-dimensional case.
For each pair of cells (represented by their bit codes) an “x’ indicates that the distances
between the points from this cells have to be computed in the considered reducer, while a
‘> indicates that the computations can be skipped as they are done in another reducer. The
lower half of the matrix can be skipped due to symmetry. As a first rule, we only have to
compute the distances between points from the same cell if it is the home cell of the con-
sidered reducer, because each of the other cells is the home cell of another reducer, thus
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the distances between its points will be computed there. As another rule, we compute all
the distances from the points in the home cell to the points in other cells. As a next step we
determine all the distance computations between cells that will already be done in another
reducer. Intuitively, we skip all distance computations between cells that both differ from
the home cell in the same dimension, i.e. both of their bit codes contain a ‘1’ at the same
position (we refer to this rule as to /s-rule further in the text). In this case we know that
in some other reducer, the same two cells will be processed together again and will then
both contain a ‘0’ at this position, thus the distances will be computed there. Thus, for the
2-dimensional case in Fig. 3(c), we just have to compute the distances between the cells
with the bit codes ‘01" and ‘10’ besides the distances including points from the home cell.
A formal proof for the correctness of this step will be given in Section 3.2.

Using this approach, our join algorithm is guaranteed not to produce any duplicate result
pairs. This does not only save unnecessary distance computations, but also the need to
eliminate duplicates after the join.

Analysis

Now we give an analysis for uniformly distributed data in a d-dimensional space in terms
of (1) number of computations per reduce-job (comp;eq), (2) input size/communication
per reduce-job (input,.q), (3) memory footprint per reduce-job (memyeq), (4) overall
number of computations (compyperqi;) and (5) overall communication of the algorithm
(commpperarr)- We assume that the attribute domains are [0; 1] that means that the number
of the set of all cells in the grid is equal to e~ (¢ = width of a grid cell) and each cell in
the grid contains C' = £ - | D B| objects. Due to the 1s-rule and the resulting dependencies
each reducer of MR-DSJ has to store all objects from the assigned home cell ¢p e and
all neighboring cells NC(chome)- Since each cell contains C' objects, the input of a single
reducer (which is also the communication of a single reducer) input,.q and the memory
footprint of a single reducer mem,..q are equal to 2¢ - C. Please consider that for small
¢ values, the value of 2¢ - C' decreases very fast with growing dimensionality d. Using
the bit code information the memory consumption can be halved to 241 - C. A detailed
description of this reduction technique is presented in Section 3.4.

The overall communication commovem” of the job is equal to g~ INPULreq = 2d. |DB.
Further, each reducer performs 8¢ $H.c?
34 +1

computations, such that the overall computations

4. |DBJ?. Intuitively, the points of a single cell ¢; are

compared to a half of all nelghboring cells (there are 3(1771 of them) and with ¢; itself, that

COMPoverall 18 €qual to

is, c; is compared to 352 + 1 = 3¢ +1 cells.

The presented analys1s only holds for uniformly distributed data. Now we consider the
worst case for the algorithm which occurs when all objects of the dataset are concentrated
in a single cell only. In this case each reducer around the cell cell(p) and the reducer of this
cell itself receives all objects of the database, i.e., the overall communication comm yeraii
is 2¢.| D B|. Additionally each of these reducers has to store the complete database locally,
such that input,.q and mem,.q grow to |DB|. The overall number of computations

COMPoverall 18 then equal to ——.
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3.2 Effectiveness of the MR-DSJ algorithm

In this section we show the correctness, completeness and minimality of the MR-DSJ
algorithm. Therefore we prove the following lemmata that prepare Theorem 1, which
states the desired properties.

Let R X. R = {(idp,id,) € R x R|d(data,,data,) < €} be the desired similarity
self-join result, and outpgsy; C R x R denote the set of tuples reported by the MR-DSJ
algorithm. id, denotes the ID of a point p and data, represents the object coordinates.
For (p,q) € Rx R, let s}, s}, +1, 5%, s 41 be the slices in dimension 7 to which DSJ_map
assigns data, and data,, respectively. Furthermore, let b;,, bfl denote the bit codes of p, ¢
in a slice of dimension ¢ where p, g are present.

Lemma 1 (Completeness of DSJ_map) For each pair (p,q) € R X. R, there is a re-
ducer which receives both partners p, q by the partitioning of DSJ_map.

Proof 1 Assume that the proposition is false, i.e., there is a pair (p,q) € R X. R which
does not meet in any reducer. This only may happen if s;, + 1 < s, or s, > s, + 1 for
at least one dimension i. As the slices have width ¢, it follows that data; +e< datafl
or data;7 > datafl + ¢, respectively. This eventually implies d(data,, datay) > € which
contradicts the assumption. [0

Lemma 2 (COMPLETENESS AND MINIMALITY OF DSJ_REDUCE) For each (p,q) €
R X, R, exactly one of the reducers performing DSJ_reduce emits (id,,, idy).

Proof 2 For each dimension i, two objects (p,q) € R X. R are processed in exactly one
slice of i since exactly the following cases may occur for their bit codes by, b,:
(i) (b, %) = (1,1): The pair is not processed in this slice s}, + 1 = si, + 1 but will be
emitted by a reducer of the neighboring slice s, = s, where b;, = b, = 0 and case
(iv) applies.

(ii) (b}, 0,) = (1,0): The pair (p,q) is emitted by one of the reducers for this slice
s, + 1 = s since q was not present in the preceding slice s, and p is not present
in the subsequent slice s + 1.

(iii) (b;,bg) = (0,1): Symmetric case to (ii), the pair (p,q) is emitted in this slice

i ol
sp—sq—f—l.

(iv) (b;,, bfz) = (0,0): The pair (p, q) is emitted by a reducer for this slice 3; = s; it is
not emitted in the neighboring slice s;—i—l = sf]—i—l where the bits for dimension i are
both set and case (i) applies. Neither in preceding slices s < 5; nor in subsequent
slices s > s;, + 1, the objects p or q are present.

At all, the pair (p, q) is emitted by reducers of a single slice per dimension only. The inter-
section of these slices over all dimensions determines a single partition. As this partition
is not empty, it is processed by exactly one reducer, and the proposition holds. O
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Figure 4: Pruning distance computations

by MindistCell (for the L norm) Figure 5: Example for MindistPair.

Lemma 3 (Correctness of DSJ _reduce) MR-DSJ does not emit false positive pairs:
outpsy € R X, R.

Proof 3 For each emitted reflexive pair (id,,, idy,), the inequality d(data,, data,) =0 <
e trivially holds. Aside these, only pairs (idy,,idy) and (idy,id,,) are emitted for which
d(data,, data,) < e was explicitly tested, and it holds that outps; € RX. R. O

Theorem 1 (Effectiveness of MR-DSJ) The algorithm MR-DSJ produces complete and
correct results without duplicates: outpsy = R M. R.

Proof 4 The completeness of MR-DSJ, outpsy 2 R M. R, follows from Lemmata 1 and
2, and the correctness of MR-DSJ, outpsy C R X. R, holds due to Lemma 3. The
freedom of duplicates is equivalent to the minimality that any resulting pair is emitted by
no more than a single reducer which was proven by Lemma 2. O

3.3 Pruning distance computations

The basic solution provides a very efficient solution for grid-based similarity self-join on
MapReduce, which decides whether a distance computation between two points is neces-
sary by considering in which cells the points are contained. In this section we introduce
two techniques to save even more distance computations and reduce replication by consid-
ering the position of points within a cell as will be shown in Sections 3.3.1 and 3.3.2.

3.3.1 Reducer side pruning by MindistCell

We start with an example in Fig. 4. The cell with bit code ‘11’ contains some points that
can in no case belong to a valid result pair including a point from the home cell, because
their distance to any point in the home cell is greater than . For such points we do not
have to compute the distances to all points from the home cell. A similar case occurs in
the cell *10°. There exist some points such that none of them lies in the e-neighborhood of
any point from the cell ‘01°, so we do also not have to compute the distances from those
points to the points of the cell ‘01°. To exploit this facts for pruning distance computations,
we first introduce the minimum L,, norm-based distance from a point to any point from a
given cell, which is equal to the definition of the M IN DIST from [RKV95].
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Definition 1 (MindistCell) The distance of a point q to a cell c is defined as

d ‘lbc[l] - Q[i]‘p Q[l] < lbc[l]
MindistCell(g,c) = * Z 0 Ib.]i] < q[i] < ubc[i], where
=1 gld] — ubc[d]|P qli] > ubcld]

Ib.[i] denotes the lower bound and ub.[i] the upper bound of the cell c in dimension i.

In the reduce phase, we compute the MindistCell of points ¢ from each cell ¢; to each
cell ¢ # h. such that the bit codes ¢; and cy differ in at least two dimensions. If
MindistCell(q,c2) > e, the reducer does not compute the distance of ¢ to any of the
points in cs.

Note that the MindistCell pruning does not remove any relevant tuples such that the join
result remains correct. For the reducer side pruning the proof is obvious, since for each
object o and for each possible cell we test whether to prune o or not.

3.3.2 Mapper side pruning by MindistCell

The MindistCell pruning is also applicable in the mapper which results in significant
benefits. First, if a point is pruned in the mapper w.r.t. a certain cell ¢;, it is not com-
municated to the reducer R; such that the communication between mapper and reducer
is reduced. This, secondly, induces that the replication factor of the overall approach de-
creases, which, in turn, additionally leads to a decreased runtime.

Technically, in the map phase, we detect for each home cell ¢;, the points ¢ such that
MindistCell(q,cp) > . Please note that this is only possible for points from cells that
differ from the home cell in at least two dimensions, thus we only have to compute the
MindistCell values for the points from those cells. For the mapper side pruning we show
in theorem 2 that none of the pruned points occurs as a join partner in the reducer R;. For
that we briefly show which dimensions contribute to the MindistCell(q, c) for a point ¢
and a cell ¢ in the Lemma 4.

Lemma 4 (Contribution of dimensions) For a point q from cell c,, and a cell c, only di-
mensions which are different in the bit codes for ¢, and ¢ contribute to MindistCell(q, c).

Proof 5 According to definition of the bit code, if the values of the bit code are equal in a
dimension i, then the range of the cells in i is equal. Therefore the middle rule of definition
1 applies and such a dimension does not contribute to MindistCell(q,c). O

Theorem 2 Completeness of map side MindistCell pruning. Let q be a map side pruned
point, i.e., a point with MindistCell(q, chome) > € then there is no other cell ¢; €
NC(chome) with MindistCell(q,c;) < e.

Proof 6 Let b? = b, b be the bit code of cell(q) and b = by’ ,--- b the bit code
of the cell ¢;. Additionally let I be the set {i|1 < i < d} withb! = 1. Then|I| corresponds
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to the number of positions in which b9 differs from the bit code 0% of the home cell and
represents the dimensions which contribute to the MindistCell according to Lemma 4.
Lets now consider the cell c;: due to the 1s-rule for every by’ i € I must hold b;’ = 0,
since otherwise it will be pruned by the MR-DSJ algorithm. This in turn means that b
has at least (|I| + 1)-many bits differing from b? and therefore MindistCell(q,c;) >
MindistCell(q, chome). O

3.3.3 Reducer side pruning by MindistPair

In the previous sections we described pruning techniques between a point and a cell. In
this section we introduce MindistPair pruning between pairs of objects, which is defined
in Definition 2.

Definition 2 Let g, 0 be d-dimensional points in cells cy, c,, respectively, such that

bitcode(cy)&bitcode(c,) = 0, i.e., g and o are located in cells which are not pruned by the
bit code pruning. Let cpome be the home cell, md, = MindistCell(q, chome) and md, =
MindistCell(o, chome). Then MindistPair(q, o) is defined as: MindistPair(q,0) :=

{/mdl +mdp, forp € N.

Definition 2 states that given the MindistCell to home cell for points ¢ and o, the lower
bound for the real distance between these points is L, norm of their MindistCells dis-
tances to the home cell.

Theorem 3 (Correctness of MindistPair pruning) Let q,0,cq, Co, Chome, Mdy, md, be
defined as in Definition 2. Then it holds Mindist Pair(q,0) < dist(q, o), where dist(q, 0)
is a L, or weighted L,, norm induced distance.

At first we provide an intuitive explanation for this statement and then give a formal proof.
Let points ¢ and o in Fig. 5 be the two objects under consideration, the upper-right dark-
green cell is the home cell and the arrows from ¢, o to the home cell represent the shortest
distance to the home cell, i.e., the MindistCells. The dashed lines represent the position
of the point ¢ on the x-axis and of the point o on the y-axis. Intuitively, the Mindist Pair
calculates the distance from the intersection of the dashed lines in point f to the home cell,
which is always less or equal than the real distance between ¢ and o. To be more precise,
Mindist Pair calculates the same distance for all points lying on the dashed lines in the
cells ¢, and c,.

Proof 7 (MindistPair) According to Definition 2, c, and c, differ in at most d dimensions
and there is no dimension which contributes to md, as well as to md, at the same time.
W.l.o.g. we assume that dimension i contributes to md, with a value t;, i.e., there is a
hyperplane S of chome to which the distance of o is t;. If in the example in Fig. 5 i is the
y-axis, then the hyperplane S would be the middle vertical line and t; is the distance of o
to this middle line. The distance |q; — 0;| is, however, equal to t; + x, where x > 0 is the
distance of q to the hyperplane S (in the example, x would the distance from the middle line

to point q). Le., t; < |q; — 0| for every dimension i. Therefore it holds that {/ 2?21 th <
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{ Zf:(] |¢i — 0i|P. If ¢q and ¢, differ in less than d dimensions, then according to Lemma
4, the dimensions which do not differ do not contribute to the MindistCell and, therefore,
the proof also holds for this case.

3.4 Implementation of MR-DSJ algorithm

In the preceding sections, we have introduced the concepts of our MR-DSJ algorithm. Now
we present its implementation, which consists of the Listings 1 and 2 for the mapper and
the reducer, respectively. Both rely on a few global input parameters, namely the radius
¢ of the similarity join, the dimensionality of the data and the range of the data space,
in terms of bits_per_dimension. Let us walk through our pseudocode. The recursion
in the mapper (Listing 1) is started by the method DSJ_map which for each point first
calculates the home slice and the distance to the upper slice boundary in each dimension.
The value of the similarity radius ¢ is used to define the width of the slices. The recursion
in map_recursive over the dimensions is initialized by a zero partition ID and a zero bit
code. The parameter mdp aggregates the p-th power of the mindist from the point to the
respective adjacent cells it is assigned to by summing up dist[dim]P over dimensions dim
where the bit code is set to 1. That means that no contributions to mindist are added in
dimensions of home slices, i.e., where the respective bit equals 0. The recursive calls
for adjacent slices are conditional to the test if the mindist does not exceed ¢ (tested by
mdP < eP). This way, the mapper-side mindistCell test is implemented with almost no
additional effort compared to the basic variant. The value of mdp is handed over to the
reducer for further mindist-based pruning.

The MR-DS]J reducer (Listing 2) cascades for and if statements to realize the respective
loops and pruning strategies introduced in Section 3.3. Within the loop over the value
records from the reducer’s input, the second loop iterates over individual buffers for each
neighboring cell. This separate buffer organization allows for efficient bit code pruning and
mindistCell filtering of cells as a whole and, this way, prevent from unnecessary iterations
over the contents in a pruned cell. Only for the remaining adjacent cells, all objects are
tested by the last mindistPair filter before the final exact distance check from the join
condition, and the resulting pairs are emitted.

As an additional optimization, we use the bit codes c,, not only to prevent from duplicate
distance computations and duplicate results but also for minimizing the main memory
footprint in the reducers. The tuple (c¢,,id,, data,) is buffered only if ¢, < mazcode
holds since the bitwise AND test includes the most significant bits (MSB), and all pairs
with set MSBs disqualify in particular. Reading the input in increasing bit code order,
thus, enables to safely exclude all tuples with set MSB from the buffer; all their potential
join partners got inserted into the buffer in earlier steps but no one will arrive later. The
MSB threshold for the bit codes is precomputed in advance by maxcode = 2%mension—1,
which may be implemented by mazcode = 1 << (dimension — 1).

The ¢, < mazcode test saves up to half the main memory consumption on average over
all the reducers as the mapper assigns every object to up to two partitions per dimension.
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Listing 1: The MR-DSJ mapper recursively assigns objects (id, coord) to neighboring partitions
pid. The bit codes c reflect the local neighborhood relationship for each dimension dim, and mdp
aggregates the p-th power of the minimum distance to objects in the respective partition.

void DSJ_map(int id, float [] coord)
for dim = 1..dimension do
home_slice[dim] = int(coord[dim] / €);
dist [dim] = (home_slice[dim]+1) x ¢ — coord[dim];
map_recursive (1, 0, 0, 0.0, id, coord);

void map_recursive (int dim, long pid, int ¢, float mdp, int id, float[] coord)
if (dim < dimension)
pid = (pid << bits_per_dimension) + home_slice[dim];
map_recursive (dim+1, pid, c<<1, mdp, id, coord);

mdp = mdp + dist[dim]P;
if (mdp < eP)
map_recursive (dim+1, pid+1, (c<<1)|1, mdp, id, coord);
else
emit(pid, (c, mdp,id,data));

Technically, the required sorting of the values in ascending bitcode order for each reducer
is accomplished by the ‘secondary sort’ functionality of MapReduce. The key for the
shuffle phase does not just comprise the partition ID, but includes the bit code in order to
sort the input with respect to (partition_id, bitcode) in lexicographic order.

4 Experiments

In this section we present an experimental evaluation of our new MR-DSJ approach. In
Section 4.1 we evaluate the scalability of our approach on synthetic data and compare it to
the 0-join approach from [OR11]. In [OR11] the author propose the usage of specialized
join algorithms inside the reducer tasks. Therefore we implemented RSJ join [BKS93]
which is very well suited for low-/medium-dimensional vector data.

In Section 4.2 we evaluate the efficiency gain of the optimizations presented in Section
3.3 compared to the basic MR-DSJ algorithm. In Section 4.3 we evaluate our approach on
real-world data sets.

All the experiments were performed on a cluster running Hadoop 0.20.2 and consisting of
14 nodes with 8 cores each that are connected via a 1 Gbit network. Each of the nodes has
16 Gb RAM. For each experiment the number of the performed distance computations as
well as the runtime is measured. Runs of the algorithms were aborted if they did not finish
within 8 hours.
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Listing 2: The MR-DSJ reducer computes the join results. The bit codes prevent from both, dupli-
cate distance calculations and duplicate results from concurrent reducers while reducing the local
main memory footprint as well. The minimum distances of objects to cells avoid several distance
calculations.

void DSJ reduce(long partition_id , Iterator values)
cellBuffer . clear () ;
forall ((c.,mdpn,idn,datar) in values)
for (cp=0; cp < maxcode; cy + + )
if (cn & cp==0) // bitcode filter
if (mindist(data,, c») < €) // mindistCell filter
forall ((mdpy,ids, datay) in cellBuffer[cp])
if (mdp, + mdpy < P) // mindistPair filter
if (d(datan,datay) < €)// join condition
emit(id,, idp);
emit(idy, idy,); // symmetric pair, if desired
if (¢, < maxcode) // relies on secondary sort
cellBuffer [ ¢, ].insert((mdpy, idy, datay,));
if (¢, ==0)
emit(id,,id,); // reflexive pair, if desired

4.1 Scalability on synthetic data

In this section we evaluate our join approach on synthetic datasets of different sizes and
dimensionalities. In all our synthetic datasets, the attribute values are uniform distributed
between 0 and 1.

In our first experiment, the database sizes of our synthetic datasets are varied from 1 mil-
lion points to approximately 10 million points. All used datasets are 2-dimensional and
are processed with the parameter ¢ = 0.05. The results are shown in Fig. 6 (number of
calculations) and Fig. 7 (runtime). Please note the logarithmic scale on the y-axes. As ex-
pected, the runtimes and the number of performed distance calculations of both algorithms
increase for increasing database sizes. For these 2-dimensional datasets, the number of dis-
tance calculations performed by MR-DSJ is by a factor 2 to 3 higher than that of 6-join
(denoted by “TJ” in the figures), as the RSJ-join in the reduce phase of TJ saves many cal-
culations. However, for all datasets, the runtimes of MR-DSJ are significantly lower (by a
factor 3 to 5) than those of TJ. This difference can be explained by the fact that in TJ each
pair of data points is processed by a common reducer. Even if the distance computations
for many pairs can be pruned by the RSJ join in the corresponding reducers, the distribu-
tion of the data and the building of the internal indexes for RSJ leads to high runtimes. In
MR-DSJ, however, only pairs of points that have a certain proximity are processed by a
common reducer.

In the next experiment, we vary the dimensionality of our datasets from 2 to 4 dimen-
sions. All datasets consist of ca. 1 million points and are processed with the parameter
€ = 0.05. The results presented in Fig. 9 show that the runtimes for both algorithms in-
crease with higher dimensionality, while the runtimes of the MR-DSJ approach are always
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significantly lower than those of TJ. For the 6-join, the number of distance computations
shown in Fig. 8 is hardly influenced by the dimensionality, as the partitioning strategy
of this algorithm does not depend on the data dimensionality. In contrast, the number of
distance computations for MR-DSJ strongly decreases for higher dimensionalities. This
is caused by the fact that the data points are distributed among a larger number of grid
cells for higher dimensionalities and thus for each point, the number of points in the same
cell and the neighboring cells decreases, such that fewer distance computations have to
be performed. The increasing runtime for higher dimensionalities results from the higher
communication overhead between mappers and reducers which is caused by the higher
replication factor.

51



4.2 Efficiency gain by the M IN DIST filters

In this section we evaluate the efficiency gain by the optimizations from Section 3.3.
Therefore we use two synthetic datasets, with 2 and 4 dimensions. The experiment is
repeated for different values of €. For both datasets we measure the influence of each
single filter and their combination in terms of saved distance calculations. The results are
depicted in Fig. 10 (for the 2-dimensional dataset) and 11 (for the 4-dimensional dataset).

First, we evaluate the efficiency gain by using the mapper side pruning by computing the
MindistCell (cf. Section 3.3.2) (denoted by “md-Mapper”). Depending on the ¢ value,
we save up to 7% of the distance calculations that would be performed by the basic MR-
DSJ algorithm on the 2-dimensional dataset and even up to 50% on the 4-dimensional
dataset. The pruning power of this optimization, as well as the other optimizations, is the
best for small ¢ values, which would be reasonable values for e.g. clustering or outlier
detection. For ¢ values approaching 1 (please note that the synthetic data points lie in
[0,1] in each dimension), naturally only a small amount of distance calculations can be
pruned as the join selectivity approaches 77% (2-dimensional) and 53% (4-dimensional)
and thus most distances have to be calculated. Additionally using the reducer side pruning
by MindistCell (cf. 3.3.1) (denoted by “md-Cells”), leads to the pruning of up to 10% of
the distance calculations for the 2-dimensional dataset and up to 58 % for the 4-dimensional
dataset. Using the reducer side pruning by MindistPair from Section 3.3.3 (together with
the mapper side pruning), denoted by “md-Pairs”, we can prune up to 12% of the distance
calculations for the 2-dimensional dataset and up to 65% for the 4-dimensional dataset.
Finally, the advanced MR-DSJ algorithm using all optimizations needs to perform up to
14% less distance calculations than the basic MR-DSJ algorithm for the 2-dimensional
dataset and up to 70% less for the 4-dimensional dataset.

Overall, we observe that for the 4-dimensional dataset, the pruning power of the optimiza-
tions is much higher than for the 2-dimensional dataset. (This effect can also be observed
in Fig. 8.) This can be explained by the fact that in higher-dimensional spaces, a larger
percentage of the data points lie near the borders of their respective cell. As the optimiza-
tions mostly prune distance calculations for points near the borders, they are much more
effective in a 4-dimensional space than in a 2-dimensional space.

4.3 Scalability on real world data

We evaluate our approach on two real-world datasets. The first dataset is a sample of 5
million records from a dataset of cloud observations from land stations and ships [HW99]
that is available online?. We use a 2-dimensional dataset for which the attributes “latitude”
and “longitude” are used. The second dataset “minutiae” contains extracted minutiae data
from the fingerprint datasets “NIST Special Database 14” and “NIST Special Database
2937 It contains ca. 11 million three-dimensional entries, distributed in the ranges [0;832],

2http://cdiac.ornl.gov/ftp/ndp026c/
3http://www.nist.gov/srd/nistsd{14,29}.cfm
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[0;768] and [0;100], respectively. As the efficiency of the MR-DSJ approach depends on
the parameter ¢ which determines the size of the grid cells, we evaluated its scalability
(and that of TJ) to different e-values on both datasets. The results are shown in Fig. 12 and
Fig. 13, respectively. Both experiments show the expected behavior for both algorithms -
increasing ¢ values result in higher runtimes and number of performed calculations, which
makes sense as for higher € values we also get a larger result set.

The number of distance calculations as well as the runtime for different £ values vary
significantly for the MR-DSJ approach. For ¢ = 0.1, MR-DSIJ finishes on the cloud
dataset (Fig. 12) in 119 seconds and performs ca. 1.3 - 10° distance calculations. For
higher values for € the number of needed calculations increases. For € = 10 the runtime is
approx. 2000 seconds and approx. 6 - 101! distance calculations are performed. Whereas
the number of distance calculations of TJ behaves similar to that of MR-DSJ, the runtimes
for MR-DSJ are significantly lower than those of TJ, except for the value ¢ = 10, which
leads to very large grid cells in the MR-DSJ approach.

For the minutiae dataset (Fig. 13) our observations are similar the those for the cloud
dataset. The runtimes and numbers of calculations increase for increasing ¢ values; for
values larger than 20, the TJ approach did not finish within 8 hours and is thus not included
in the figure. The numbers of performed distance calculations are again similar for both
algorithms. However, MR-DSJ outperforms TJ in terms of runtime by a factor of 10 to 80.

In a further experiment (Fig. 14) we analyze the scalability of our approach on the minutiae
w.r.t. a varying cluster size. Therefore we vary the number of used reducers from 1 to 40.
In Fig. 14 we depict the runtimes of MR-DSJ as well as the acceleration factor compared
to the runtime using only 1 reducer. For up to 6 reducers, the acceleration factor is nearly
linear. For larger numbers of reducers, the acceleration is sub-linear which is mainly
caused by data skew: As some grid cells contain more data points that other ones, the
reduce tasks processing these cells have longer runtimes than those of the other reducers.
However, MR-DSJ reaches a significant acceleration for increasing cluster sizes, i.e. using
40 reducers the runtime is lower than the runtime for 1 reducer by a factor of 17.

5 Further Analysis

In the previous sections we analyzed the basic MR-DSJ algorithm in terms of number of
calculations. In this section we investigate its general behavior and present scenarios and
use cases which benefit the most from its usage. We also identify problematic scenarios
for MR-DSJ and present ideas how to tackle this problems in future work.

5.1 Data replication and data dimensionality

The effect of data replication is very common in the MapReduce framework. The only (de-
sired) way to share information is its duplication on different computational nodes. Since
each reducer in MR-DSJ relies on information from neighboring cells, the replication of
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data points is unavoidable. As shown earlier, our approach produces 2¢ replicas of every
data point, i.e. the replication factor grows very fast with every additional dimension of
the data that is used for partitioning the data space. Thus, our approach is most suitable
for data with a low or medium dimensionality d. Please note that d does not necessarily
equal the dimensionality of the original data, since we can apply dimensionality reduction
techniques (e.g. the techniques from the Mahout framework) to obtain a reasonably low
dimensionality.

5.2 Influence of the parameter ¢

In the analysis parts of Section 3 we already mentioned the worst case scenario for our
approach: all points are located in a single grid cell and thus are processed by a single
reducer. This case occurs for very skewed data or when the value of ¢ is very large in
comparison to the largest distances between data objects. On the other hand, small € values
result in a high number of grid cells with few elements. In this case the computation of the
self-join becomes very efficient since most of the distance computations can be pruned.
Due to these facts our algorithm is best suited for join tasks with small € values which
among other things arise in near-duplicate detection, data cleaning and clustering tasks.

One possible way to solve the problem with large € values would be a connection of our
approach with an adjusted version of the f-join [OR11]. The join inside cells containing
too many objects would then be calculated by #-join. This connection could also be helpful
in the case of highly skewed data. We will examine such a connection in our future work.

The threshold € also directly influences the number of created reduce tasks and therefore
the possible parallelization of our approach. A small number of cells, which corresponds
to a small number of created reduce-jobs, can significantly deteriorate the performance
of the complete task. This case will for example occur if the chosen threshold ¢ is very
large. A possible solution for this problem, which will be investigated in our future work,
is adjusting the cell width to larger or smaller values than ¢.

6 Conclusion

In this work we proposed the novel distance-based similarity self-join algorithm MR-DSJ
for the MapReduce framework. We presented different optimization solutions for the used
grid-based approach which minimize the communication and the number of needed dis-
tance computations. We provided a theoretical analysis of the used basic techniques as
well as an experimental evaluation of the efficiency of our approach. The evaluation shows
that our solution often significantly outperforms the existing #-join algorithm in terms of
number of calculations and execution runtime.
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