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Abstract: A frequency analysis assigns to each program value an upper bound on its
change frequency. We define such an analysis and prove its correctness with respect to
a denotational semantics of a tiny web programming language. We sketch its use for
specializing web pages.

1 Introduction

A web site with dynamic content must strike a balance between the update frequency of the
underlying data, the timeliness of the displayed material, and the load sustainable by the
underlying database server. Typically, this balance is maintained either manually or with a
dedicated content management system [Ok02]. In both approaches, the current state of the
data is sampled at regular intervals and translated into static web pages which are stored on
a standard web server. Sampling reduces the load of the application server and increases
the effectiveness of web caching mechanisms since the latter are much better suited for
static pages than for dynamic ones [BO00]. Care has to be taken during the sampling
process that intrinsically dynamic content, which depends on user input, is still delivered
through some dynamic execution machinery.

The frequency analysis proposed in this work aims at formalizing and automating the sam-
pling process. Given the change frequency of all data items and an up-to-dateness factor
for the displayed material, a sampling frequency can be determined such that all displayed
material is sufficiently timely. However, high sampling frequencies are not sensible be-
cause each sampling run produces extra load. In addition, the utility of document caching
is reduced because the sampled documents expire too quickly.

Hence, we take a different approach and compute from a reasonable sampling frequency,
an up-to-dateness factor, and the results of the frequency analysis a traditional binding-
time division [JGS93]. Such a binding-time division annotates each program value with a
binding time: either the value is statically known or it is unknown (dynamic). The anno-
tation drives a program specializer that computes all static values (which are sufficiently
timely) and generates code for all dynamic values. The sampling procedure only adds a
backend that turns the specialized web programs into a network of static and dynamic web
pages.

Due to space constraints, the present paper only covers the frequency analysis, proves its
correctness, and sketches the translation to binding times. The specialization algorithm
and the backend are not covered.
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Related Work. There is no direct precedent to the analysis reported in this work. How-
ever, a few papers have topics which come close and this section attempts to distinguish
our work from those.

Ramalingam [Ra96] suggests that data flow analysis should be augmented with frequency
information. His frequency information refines the typical Maybe/No answer of a program
analysis by instead computing a probability for the answer. In contrast, our frequencies
are not probabilities but approximations of the actual rate of change.

Ball [Ba99] introduces a frequency spectrum analysis for exploring the structure of pro-
grams. His analysis is dynamic and based on actual runtime counts, whereas ours is a
static analysis.

Wu and Larus [WL94] have a framework for estimating the execution frequency of por-
tions of a program by statically predicting both branch frequencies and a program profile.
A similar framework is put forward by Wagner et al [WMGH94]. In contrast, our analysis
approximates the frequency of change of data.

Overview. Sec. 2 gives an example of the intended working of the sampling scheme.
Sec. 3 defines an abstract core language for web programming and Sec. 4 defines its de-
notational semantics. Sec. 5 defines precisely what we mean with timeliness and change
frequency of a value. Sec. 6 presents the frequency analysis phrased as an annotated type
system and Sec. 7 proves its soundness. Sec. 8 concludes.

2 Specialization of a Web Application

This section presents a small example application that benefits from sampling. The lan-
guage we use in this section is an instantiation of the λWEB calculus which is formally in-
troduced in Sec. 3. The syntax is inspired by PHP [PHP03], JSP[PLC99] and
bigwig[BMS02].

The example application in Fig. 1 consists of three pages corresponding to the functions
main, daytime, and greeting. Each function computes a number of values with Let
declarations and ends in a Show expression that terminates execution by displaying a page
constructed from XHTML fragments and computed values. The values are inserted into
the generated XHTML using JSP’s scriptlet notation.

All pages are partially dynamic because they contain computed content. A closer look
reveals that the page generated by the main function only changes once a day and the
page corresponding to the daytime function changes perhaps four times per day. The
only truly dynamic page is greet because it depends on user input to the previous page.

If pages are sampled once per day (preferably shortly after midnight), then the main page
may be static while the others remain dynamic. If the sampling frequency is higher than
four times per day, then the daytime page becomes static, too. The greet page will
never become static regardless of the regeneration frequency.

Hence, a web site sampling tool should take a description of a web site in the form of a pro-
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main () =
Let today = getDate () in
Show <html><head><title>Greeting</title></head>

<body><p>Today is <%= today %>
<submit action=<% daytime (today) %> /></p>

<p>Enter your name <input name="who" />
<submit action=<% greet () %> parm="who" /></p>

</body>
</html>

daytime (date) () =
Let currentTime = getTime () in
Let what = greetingPhrase (currentTime) in
Show <html><head><title>Daytime</title></head>

<body>It’s <%= what %> of <%= date %>!
</body>

</html>

greet () (who) =
Show <html><head><title>Greeting</title></head>

<body>Hello, <%= who %>!
</body>

</html>

Figure 1: Example application

gram such as the above, for each data item an update frequency, for each page a sampling
frequency, and an up-to-dateness factor. The last factor is the probability that a delivered
page contains up-to-date information. The tool proceeds by determining from this infor-
mation which pages may become static in the sample. Finally, it creates a correctly linked
sample by specializing the script starting from the main function.

Figure 2 shows a sample which has been specialized as outlined above. In the final step,
a backend translates the sample into a collection of interlinked static web pages and, say,
CGI scripts. The result of this tedious but straightforward step is omitted.

3 The λWEB Calculus

Many languages are deemed suitable for programming web applications. Some offer spe-
cial support for creating and manipulating HTML or XML documents as well as APIs for
connecting to external information sources, synchronizing processes, and session manage-
ment. Since the present paper is not advocating one language over another, it presents the
essential techniques in terms of an abstract formal calculus that models common properties
of all web programming languages. The calculus abstracts over the mentioned APIs and
the generation of documents so that most web programming languages can be translated
to an instance of the calculus.
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Specialization with respect to

today = "May 3, 2004"; currentTime = "12:00"; what = "afternoon"

main () =
Show <html><head><title>Greeting</title></head>

<body><p>Today is May 3, 2004
<submit action=<% daytime_May_3_2004 () %> /></p>

<p>Enter your name <input name="who" />
<submit action=<% greet () %> parm="who" /></p>

</body>
</html>

daytime_May_3_2004 () () =
Show <html><head><title>Daytime</title></head>

<body>It’s afternoon of May 3, 2004!
</body>

</html>

greet () (who) =
Show <html><head><title>Greeting</title></head>

<body>Hello, <%= who %>!
</body>

</html>

Figure 2: Example application, sampled at noon on May 3, 2004

e ::= Let d in e
| Show x
| If x then e else e
| x(x . . .)

d ::= x = c
| x = p(x . . .)
| rec x(x . . .) = e

Figure 3: Syntax of λWEB

The calculus λWEB defined in Fig. 3 is an intermediate language which is the image of a
source language under a transformation that linearizes the control flow and maps XHTML
fragments to document constructor functions. λWEB has two syntactic categories, expres-
sions e and declarations d. Essentially, an expression is a list of let declarations that ends
either with Show x, a conditional, or a function invocation. The expression Show x stops
execution and yields the final result x. The result must be a document suitable for display
on a web browser. All functions are tail recursive so that invocations do not return.

Each kind of declaration defines a new variable and its value. The value may be a constant,
c, the result of running a primitive operation, p, or a recursively defined function. Primitive
operations may have side effects, e.g., they may perform database operations. A recursive
function is defined by a formal parameter list and a body expression.

Besides basic types like integers and strings, λWEB has an abstract document type DOC
which may be instantiated with an arbitrary format: HTML, PDF, plain text, etc. The
operations on DOC are free of side effects. Fig. 4 defines the API for DOC. The interface
abstracts from all layout considerations but allows to keep track of the dependencies of the
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empty : DOC the empty document
+ : (DOC, DOC) → DOC concatenation of documents

link( ) : CONT → DOC create a link
value( ) : B → DOC convert a base-type value to a document

Figure 4: API for DOC

Val = Const + DOC + Fun
Comp = Time ↪→ Val

Fun = Val∗ ↪→ Comp
Env = Var ↪→ Val

D�x = c�σt = σ[x �→ �c�]
D�x = p(x1 . . .)�σt = σ[x �→ �p�(σ(x1) . . .)t]
D�rec x(x1 . . .) = e�σt = σ[x �→ fixλf.λ(y1 . . .).E�e�σ[x �→ f, xi �→ yi]]
E�Let d in e�σt = E�e�(D�d�σt)t
E�Show x�σt = σ(x)
E�If x then e1 else e2�σt = if σ(x) then E�e1�σt else E�e2�σt
E�x(x1 . . .)�σt = σ(x)(σ(x1) . . .)t

Figure 5: Semantic domains and equations

documents from computed values (VAL ranges over basic type values) and of the links to
other documents. A link is given by a value of type CONT where CONT is the function
type B → DOC. The intended semantics is that traversing the link calls the function with
the user’s inputs as parameter.

The concrete example in Fig. 1 uses the scriptlet notation action=<%. . .%> for the func-
tion link( ) and the notation <%=. . .%> for embedding a value in the document by value( ).
Concatenation is implicit in the XHTML notation.

4 Denotational Semantics of λWEB

The semantics of λWEB in this paper is special because its results are time dependent.
Hence, the denotation of an expression is drawn from Comp, a function from the current
time to a value.1 Fig. 5 defines the semantic domains where Const is the set of interpreta-
tions of constants, c, DOC is the set of interpretations of documents, and Time is the set of
real numbers. The operator + stands for disjoint union, ↪→ for the partial function space,
and X∗ for 1 + X + X × X + . . .. Hence, Comp is a pointed CPO. The metalanguage
operations are standard: if-then-else is the conditional and σ[x �→ y] denotes function
update.

The semantic equations in Fig. 5 define two functions

D : Decl → Env → Time ↪→ Env
1That is, we are describing a monadic semantics for the reader monad M(x) = Time → x.
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E : Exp → Env → Comp

where D transforms an environment according to a declaration and the current time and E
computes the final value of an expression. The straightforward definition relies on prede-
fined maps �c� and �p� that map a constant to its denotation and the name of a primitive
operation to a function that takes a tuple of base type arguments and returns a time depen-
dent value ∈ Comp.

5 Timeliness

Since timeliness is a soft concept, we first need to define formally what it means for a
document or more generally for a value to be timely.

Definition 1 Let v = v(t) be a total time dependent value.2

The update frequency is the average number of changes of v per unit of time.

fv = lim
t→∞

|{t0 | 0 < t0 < t, (∃δ > 0) (∀ε > 0)ε < δ ⇒ v(t0 − ε) �= v(t0 + ε)}|
t

If v changes continually, then fv = ∞.

The sampling frequency g is the reciprocal of the time span between two snapshots of the
value. The up-to-dateness factor uv = fv/g measures the average number of samples
taken per update.

The up-to-dateness factor must be understood with a grain of salt. Even uv = 1 may mean
that the sampled value vs(t) is almost always different from the value v(t). In the worst
case, the probability that vs(t) = v(t) is p = 1 − 1/uv , provided that uv ≥ 1.

In the typical setup, the update frequency fv is available through estimate, measurement,
or analysis and the desired freshness is given as the probability p as defined above. From
these numbers, the sampling frequency may be computed as

g = fv/uv = fv/(1/(1 − p)) = fv(1 − p). (1)

The sampling frequency computed according to that formula will usually be too high to
be practical. However, we never intended to take an entirely static sample of the system.
Instead, the goal is to produce a mixture of static and dynamic documents. Hence, we pick
an acceptable sampling frequency g0 and solve the formula (1) for f0 = g0/(1 − p). The
resulting threshold frequency f0 is the maximum update frequency for a value that can be
considered static in the sampling run.

2Total values are assumed to avoid cluttering the presentation. There is no conceptual problem in generalizing
to partial values.
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The above consideration paves the way for computing a classical binding time from the
update frequency of a value and the threshold frequency. A classical binding time distin-
guishes between static and dynamic values, indicated by S and D.

BT (fv, f0) =
{
S if fv ≤ f0
D otherwise.

(2)

Classical binding time information can be used to drive specialization algorithms in a well-
understood way [JGS93]. One successful approach is to annotate each operation with
its binding time and then specialize a program by using an interpreter that executes all
operations annotated as static and generates specialized code for all operations annotated
as dynamic.

6 Frequency Analysis

The classical way of analyzing binding times is not appropriate for our task because it only
distinguishes the two discrete binding times S and D, which correspond to frequencies 0
and ∞. Instead, we first perform a frequency analysis (the continuous cousin of binding-
time analysis) and map the results to binding times using the function BT later on.

The first question for the frequency analysis is: Where do frequencies other than 0 and ∞
come from? In λWEB, those frequencies come from primitive operations that observe a
changing global state. These operations may depend on the current time and date, they may
be queries against databases, or they may be other operations that depend on the current
state of the machine or the network. We assume that each such operation is annotated with
an update frequency, which indicates the desired granularity of the observation of changes
of the underlying state. Side-effecting operations that change the underlying state must
have an update frequency of ∞ to ensure that they are always executed.

Figure 6 contains the definition of a suitable frequency analysis in terms of an annotated
type system. For simplicity, the type system is based on simple types. An extension with
polymorphism would be useful and would follow the path outlined elsewhere [HT04].

The type language of the system is given by the grammar

ρ ::= (τ, φ) τ ::= B | (ρ, . . . , ρ) → φ B ::= Bool | DOC | . . . (3)

where ρ ranges over annotated types, which are pairs of a raw type and an update frequency
φ, B ranges over base types, and τ is either a base type B or a function that takes as
arguments a tuple of values of annotated type and terminates with a value of frequency
φ. A separate type assignment Σ maps each name p of a primitive operation to a pair
(B1, . . . Bn) → B where the list B1, . . . , Bn determines the argument base types and B
is the result base type. Type assignments are formed according to the grammar Γ ::= · |
Γ(x : ρ) and are considered as finite functions.

The typing rules define two judgements, Γ � d⇒ Γ′, where declaration d transforms type
assignment Γ to Γ′, and Γ � e : φ, where expression e delivers a final result of frequency
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(const) Γ � x = c ⇒ Γ(x : (Bc, 0))

(prim)
Γ(xi) = (Bi, φi) φ = φ0 + φ1 + . . . + φn Σ(p) = (B1, . . . , Bn) → B

Γ � x = pφ0 (x1, . . . , xn) ⇒ Γ(x : (B, φ))

(rec)
Γ(x : ((ρ1, . . . , ρn) → φ, 0))(x1 : ρ1) . . . (xn : ρn) � e : φ

Γ � rec x(x1, . . . , xn) = e ⇒ Γ(x : ((ρ1, . . . , ρn) → φ, 0))

(let)
Γ � d ⇒ Γ′ Γ′ � e : φ

Γ � Let d in e : φ
(show)

Γ(x) = (DOC, φ)

Γ � Showφ x : φ

(if)
Γ(x) = (Bool, φ) Γ � e1 : φ′ Γ � e2 : φ′

Γ � Ifφ x then e1 else e2 : φ + φ′

(call)
Γ(x) = ((ρ1, . . . , ρn) → φ, 0) Γ(xi) = ρi

Γ � x(x1, . . . , xn) : φ

(sub)
Γ � e : φ φ ≤ φ′

Γ � e : φ′

Figure 6: Frequency Analysis

φ under type assignment Γ.

The rule (const) determines the base type of a constant using function TypeOf( ). Since
constants do not change over time, their frequency annotation is 0.

The rule (prim) ensures that the argument types and the result type of primitive operation
p correspond to p’s declaration in Σ. It approximates the frequency of the result by taking
the sum of the frequencies of the argument values and φ0, the frequency assigned by the
user to this occurrence of p. The addition yields an upper bound of the actual frequency
because a value vi at frequency φi has a number of changes proportional to φi during a
sufficiently large time interval T . In the absence of further information about the values
and assuming that the value of an operation p depends on all arguments and on the implicit
state v0, the number of changes of v = p(v1, . . . , vn) during T is proportional to a number
smaller than φ0 +φ1 + . . .+φn. The actual frequency of v can be much smaller (even 0),
for example, if the values vi change in lockstep and the frequencies are multiples of each
other. Since dependencies between values are not part of the model, the typing rule must
assume the worst case.

The rule (rec) types the declaration of recursive functions. All functions are statically
present in the program, hence the frequency of a function value is 0. Since functions do
not return, the system need not deal with return types.

The rule (let) just augments the type assignment according to the declaration and types the
body. The rule (show) attaches the frequency of the displayed document to the occurrence
of Show in the program. The rule (if) is standard: the frequency of the result depends on
the frequency of the condition and the maximum frequency of the branches’ results. The
rules (call) and (sub) are standard rules for function call and subsumption of frequencies:
if a value changes at frequency φ it is may also be viewed as changing at any higher
frequency φ′.
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7 Soundness of the Analysis

This section shows that the analysis is sound with respect to the semantics given in Sec. 4.
This requires to define a semantics of annotated types, to define relations between value
environments and type environments, and finally to prove that the semantic equations pre-
serve those relations.

The semantics of an annotated type is a set of time dependent values. The semantics is
approximative in the sense that all frequencies are considered as upper bounds. We argued
in the justification for rule (prim) that this approximation is unavoidable. The semantics
of unannotated types is defined in the usual way. For functions, the interesting part is
that whenever the frequency of the arguments conforms to their type, then so does the
frequency of the result.

�(τ, φ)� = {v ∈ Comp | fv ≤ φ, (∀t ∈ Time) v(t) ∈ �τ�}
�B� = Const + DOC + . . .
�(ρ1, . . . , ρn) → φ� = {g ∈ Fun | (∀vi ∈ �ρi�) fλt.g(v1(t),...,vn(t))t ≤ φ}

Type environments relate variable names to annotated types whereas value environments
map variable names to values. These two concepts cannot be related directly because value
environments are constants. Hence, we relate type environments to value environments
abstracted over time.

Definition 2 Let S ∈ Time → Env be a time dependent environment and Γ a type
environment. S |= Γ if ∀(x : ρ) ∈ Γ the function λt.R(t)(x) ∈ �ρ�.

Thus armed, we can state and prove the soundness of the declaration transformation D
and of the evaluation semantics E . The proof of these two statements is by simultaneous
induction because D is defined in terms of E and vice versa.

Theorem 1 Let S |= Γ.

1. Suppose that Γ � d⇒ Γ′ and let S′(t) = D�d�(S(t))t. Then S′ |= Γ′.

2. Suppose that Γ � e : φ. Then λt.E�e�(S(t))t ∈ �(DOC , φ)�.

The main point of the proof is the justification of the addition of frequencies in the case of
a primitive operation as outlined in the explanation of the typing rule (prim).

8 Conclusion

The present paper introduces frequency analysis as a generalization of binding-time anal-
ysis. The results of the analysis enable the generation of a collection of partially static
web pages from a completely dynamic web site. This partial specialization is desirable be-
cause it reduces the load of the application server and enhances the usefulness of caching
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on proxy servers and in web browsers. It thus opens a new application area for program
specialization.

Further work includes the efficient implementation of the frequency analysis as well as the
formalization and correctness proof of the timely specialization driven by its results. We
are also exploring implementation strategies for the backend and different points of view
on the frequency of change of primitive operations. Once an implementation is available,
we will consider applicability and scalability in real applications.
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