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Abstract:
In-car comfort functions decrease driving stress and therefore increase safety. Driv-

ers typically do not use all available comfort functions optimally, if at all, in every situ-
ation they would offer a substantial increase in comfort. Automating such functions as
proactive recommender systems would exploit the full potential for decreasing driver
stress. Because comfort functions are highly dependent on the driver’s habits, learn-
ing the individual user behavior is necessary. We propose a probabilistic method for
modelling and predicting location dependent user behavior of comfort function acti-
vations. The model applies second-order uncertainty to evaluate the certainty about
inferred parameter values and it deals with novelty and decaying observations explic-
itly. The results of this study show that the use of probabilistic models for learning
location based user behavior in car comfort functions is a promising technique and
gives reason to further investigate this area of studies.

1 Introduction

The primary research efforts in the area of vehicular automation is concentrated on context-

aware ADAS. For automotive automation, context-awareness is an important issue, be-

cause many complex use cases become more dynamic and ambigous with a higher level

of automation. Comfort functions also have potential for automation. Automating these

functions eliminates or simplifies the user interaction, decreasing driver stress. As for now,
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most comfort functions’ system parameters are set to fit the average user. The parameters

are determined by user studies and expert knowledge, incorporating little to no online,

user-specific contextual information. The driver’s information, like calendar data, fre-

quent routes, the vehicle’s current location or the individual pattern of handling assistance

and comfort systems, can improve the precision of automation and enable personalized

features, therefore increasing the acceptance of such systems.

For the development of future automated comfort functions, learning the user’s individual

behavior is a vital part and makes personalized, proactive recommendations possible. As

an example, the class of climatic comfort functions is used dependent on climatic condi-

tions, personal preferences and environmental circumstances. For non-climatic functions,

the vehicle’s current geopraphic or road type based location may have a strong effect on

the probability of the activation by the user, e.g., parking assistance systems may only be

used close to free parking spaces. Systems which automate functions, depending on such

locations of interest, are called location based learning systems. We will focus on learn-

ing locations of interest and dependent user function activations. Further on, using this

knowledge for proactive recommendations will be called location based automation and

recommendation and is the target application of the proposed algorithms.

There are several major requirements that any procative vehicular recommentation system

must satisfy. The model must be embedded, soft real-time capable, operating economically

with memory and processing time consumption. Also, a mechanism for self-reflection is

necessary to detect when the certainty about inferred parameters is high enough to make

proactive recommendations. A very important property is the concept of online and life-

long learning, which means that a system can cope with novel situations as well as already

observed ones fast (a precise definition is given in [FH06]). To give the user the possibility

to control the system directly up to a certain degree, implicit and explicit feedback must

be taken into account by the system. Explicit feedback is a user action (e.g., activating

an automated function or counteracting to an automation), while implicit feedback is the

lack of user action at a certain location which can also mean to accept the actions of such

a system. At last, the user must have an understanding about the system’s mispredictions.

In a highly subjective field such as comfort functions, it is barely possible to construct a

never-failing prediction system.

In the following proposal, we will describe a system that will meet all of these goals,

whether implicitly or through explicit modeling.

2 Related work

There has been a lot of research in the area of recommendation systems for increasing

comfort in cars. Such systems include context-aware and proactive recommendations,

such as optimal gas refueling recommendations [WBE09] or models for recognizing driver

fatigue for trip pause suggestions [Yan07].

The systems presented in [GKFC11], [KGT+08] and [APRR07] incorporate contextual

information. Some of the information is retrieved through the internet, while others, e.g.,
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the user’s preferences, must be specified explicitly by the user.

Complex contextual models for calculating recommendations are presented in [BNWP11],

[WY10] and [Yan07]. The incorporated model in [BNWP11] is based on Multi-Criteria

Decision Making and Fuzzy Logic, yielding complex algorithms for a pseudo-probabilistic

system. These systems do not have a self-reflection mechanism like second-order uncer-

tainty.

There are systems that incorporate an explicit user model. [FPFA11] and [FMA12] define

three main information sources for combining these into a recommendation, i.e., input

information, context information and profile information. [WE07] defines a contextual

recommendation system as a function U × I × C → R, where U is the user and his

information, I is a possible recommendation item, C is the contextual information and

R is the rating for the recommendation. The recommendation system then chooses the

best rated items for the recommendation. [WY10] and [Yan07] use Dynamic Bayesian

Networks to model different states of a driver, e.g., the driver fatigue or driver attention.

In all these systems, important parameters are mostly set through expert knowledge, i.e.,

surveys of experts, and field studies. These systems do not adapt their parameters online to

the user’s habits, though such techniques exist in machine learning. Some of the presented

algorithms use probabilistic, mostly pseudo-probabilistic, methods to overcome the prob-

lem of uncertain or missing knowledge. Also, some algorithms do not use any learning

algorithms at all. Altogether, most of these systems use simple techniques for inference

and data representation, that do not implement a self-reflection mechanism, which is a

major issue in automotive recommender systems. This work introduces probabilistic al-

gorithms with self-reflection capabilities and the ability to adapt parameters for an explicit

user modelling. Also, our proposed algorithm does not need any prior information from

the user and does not require the driver to interact more with the system than activating or

deactivating the automated function.

3 Location based Learning

A location based learning system must implement several key concepts, such as observa-

tion of the user’s actions, user feedback evaluation and the adaption of system parameters

for user specific system behavior. A “learning system” in general can be defined as one

that makes decisions upon previously gathered knowledge inferred from observations of

the user’s interaction.When having made enough observations, the system can start work-

ing autonomously or at least suggest actions to the user based on his past behavior.

In a vehicular environment, messages from a car data bus, e.g., CAN, serve as observa-

tions B. These messages may contain information about sensors, actuators, media data

or other information distributed across different electronic control units. Beside location

information, these observations also include activations A of functions triggered by the

user that we want to automate. We use a probablistic approach to model the likeliness of

activations in the system. The overall probability of an activation at an abstract location

O (which can be translated to a more general definition of locations such as “at a certain
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intersection”, “at home”, etc.) is then built with

p(A|B) =
∑

O

p(A, O|B), (1)

=
∑

O

p(A|B, O) · p(O|B). (2)

Depending on the value p(A|B), the result can be interpreted as the certainty of the system

for an activation A given an observation B. To specify our problem, we make the following

assumptions:

1. The probability of an activation A given observation B and location O corresponds

to the probability of an activation A given a location O, i. e., the information of an

observation does not yield any further information if the location is known.

p(A|B, O) = p(A|O) (3)

2. If an observation B is very likely at location Oj , all other locations are very unlikely.

∀Oi : p(Oi|B) ≈ 0, i 6= j (4)

p(Oj |B) ≈ 1 (5)

Taking into account these assumptions, the overall probability for a location Oj can be

formulated as the joint probability

p(A|B) = p(A|Oj) · p(Oj |B). (6)

The following sections describe the elements of this equation in more detail. The term

p(O|B), the Location Distribution, is described in Section 3.2. The term p(A|O), the

Activation Distribution, is detailed in Section 3.3. The adaption of these distributions is

performed with user feedback (see Section 3.1) and is described first as the two models are

based on some of the feedback assumptions.

3.1 Feedback

In general, a learning system has to combine two fundamentally different goals:

1. Stability: The system has to reliably recognize the user’s wish and increase the

security of the recognition over time with additional knowledge.

2. Plasticity: The system has to be able to react reasonably fast to a change in the user’s

usage pattern.
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Consequently, a mechanism which increases its certainty over time (respectively with more

observations) has to be used. Furthermore, it has to be able to adapt to changes in the users

behavior, even after the system got sure with respect to its stability.

Feedback is the main mechanism to enable learning in our system and it applies to proba-

blistic zones (each modeled with a distribution p(A|B)) at a location O which we will call

Activation Zones (AZ). The different forms of possible feedback depend on the (re-)action

of the user and the current system state. Table 1 gives insight on the possible forms of

interaction.

Case AZ System Driver-
Remarks

Adaption

Nr. exists? Activation (re-)action p(A|O) p(O|B)

1 7 7 ◦ no learning request ◦ 7

2 7 7 + automation request (new AZ) ++ 33

3 3 7 ◦ no automation desired − 7

4 3 7 + automation request ++ 3

5 3 3 − counteraction −− 7

6 3 3 ◦ acceptance + 7

Table 1: Feedback matrix: ◦ represents no action, + represents positive (re)action, − represents
negative (re)action, double symbols represent stronger reactions and represent a feedback strength
hierarchy.

If no information about the location O is present in the system, the corresponding cases

of the feedback matrix are the cases 1 and 2. The default value of the system is case 1
(no activation, no known AZ), whereas case 2 represents a first activation of the observed

activation A, which should lead to the creation of a new AZ to be observed. If the system

enters an already observed AZ, cases 3 − 6 are evaluated. The value of the activation

distribution p(A|O) (see Section 3.3 for details) decides whether the autonomous system

activation is triggered or not (3/ 7). So, if the system is in case 3 (Activation: 7, no driver

action), the resulting activation probability of p(A|B) will be lowered while the position

distribution is not adapted. The same scheme applies to the cases 4 − 6.

3.2 Location Distribution

The location distribution describes the probability of the car to be at a certain location O
when making an observation B, i. e., the probability distribution p(O|B). In the context

of location based learning, locations where an activation A of a function to be automated

is observed, are relevant. In general, the location O does not only have to incorporate

geographic coordinates, but can be extended by other dimensions in order to define the

location more precisely. O therefore can be seen as a state variable of the system. For the

sake of explanation, we will stick to just the geographic coordinates here. Observations

always occur at a singular position, by itself they do not have any spatial size. Still, they

have to tolerate spatial neighborhood in order to be incorporated into a model. To model
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abstract locations O, spatial neighborhood is considered in an Activation Zone (AZ) by

evaluating the distribution p(O|B).

The distribution p(O|B) depends on the distance between the observed point and the AZ.

The further away the observed point from the AZ, the lower is the probability to be inside

this zone. Taking into account the above assumptions Eq. 4 and Eq. 5, it makes sense to

model each AZ independently. An approximation of the location distribution can be made

by using a normal distribution in the form

N (x|µ,Σ) =
1

2π|Σ|1/2
exp

{

−
1

2
(x − µ)TΣ

−1(x − µ)

}

. (7)

In Eq. 7, x is the coordinate value of the current observation B, µ is the center of the

AZ and Σ the covariance matrix describing the spatial form and size of the distribution.

Here, x and µ are assumed to be two-dimensional observations (latitude, longitude), con-

sequently the covariance matrix happens to be a symmetrical 2x2 matrix. For the sake

of parameter reduction we simplify Σ to be an isotropic covariance matrix with only one

degree of freedom in the form

Σiso =

(

a 0
0 a

)

. (8)

The distance between the observation and the center of the AZ can then be determined via

the Mahalanobis distance ∆(x) which is determined by

∆(x) =

√

(x − µ)TΣ
−1(x − µ). (9)

∆(x) can be compared with a threshold ρ in order to determine the belonging of an ob-

servation x to the AZ. An advantage of the normal distribution is that its parameters µ
and Σ can be adapted using update formulas, so we do not have to store each observation

separately.

The parameter ρ can be chosen by evaluating the χ2 distribution as the Mahalanobis dis-

tance ∆(x) of a D-dimensional random variable x (x ∼ N (x|µ,Σ),x ∈ R
D) is χ2

k

distributed. k hereby represents the degrees of freedom for the distribution, so in our case

k = D = 2 when considering 2D coordinates. We can then set ρ to a value which guaran-

tees that a certain percentage of the values for x lies within the AZ. ρ therefore acts as an

upper limit for the Mahalanobis distance.

For our location model we introduce an iterative location refinement which improves its

accuracy with an increasing number of observations. If an activation of an observed vari-

able occures and is not assigned to an already existing AZ, a new zone is created (see

case 2 of Table 1). The first activation of this AZ (belonging to an abstract location O)

does not necessarily have to be at the ideal zone center. Figure 1 (a), (b) visualizes the

zone creation. The size of the zone (parameter Σ) has to be initialized according to the

requirements of the application.

If the system performs an automation request (case 4 of Table 1), the parameters of the

location will be adjusted. As we can see from the table, only in case 4 of the feedback

matrix an adaption of the location is performed. This is done by means of the current
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(a) Initial situation (b) Initialized Activation Zone

(c) Adaption Phase (I) (d) Adaption Phase (II)

Figure 1: Creation of a new AZ by a single activation of the system. The real zone center (abstract
location O) is marked by the black cross, the initialized zone center and size by the red cross and
circle. Note that the new AZ (initialized using observation B) is not located at the location of O.
Over time, the location center ought to increase its accuracy with the true location O in both center
and size of the AZ.

observation x via a formula incorporating the the previous (two-dimensional) center µi to

calculate the new center µi+1. When applying the formula, the center of the AZ is shifted

with each iteration.

Likewise, the values a of the covariance matrix Σ are assumed to be a = σ2
i , the updated

parameter σ2
i+1 is then calculated via an update formula taking into account the previous

variance σ2
i and the deviation of the current observation x from the center µi. Note that

in both update formulas, only the current values of µ and σ2 have to be stored, not every

single observation of x. It should be remarked that a limit for the minimum size of the AZ

can be introduced to avoid overfitting to the data. An example of the iterative adaption of

an AZ is shown in Figure 1 (b), (c), (d).
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3.3 Activation Distribution

Every Activation Zone (AZ) has the associated position distribution p(O|B) (see Section

3.2) and the activation distribution p(A|O), which is described here. The type of activation

distribution chosen is the Bernoulli distribution, which describes a random experiment

that only has the outcomes success or no success. These outcomes can be translated to

activation or no activation of the observed function when passing through an AZ. The

probability distribution should not only return a probability p in the range [0, 1] for the

activation probability, but also be aware of the certainty the distribution has regarding the

estimation of p. To additionally take these requirements into account, we use a distribution

which is conjugated to the Bernoulli Distribution, the Beta Distribution [Bis06].

The Beta Distribution has two input parameters a and b, which again represent activation

respectively no activation. The idea of this second-order technique is to treat the proba-

bilistic parameter p of the Bernoulli distribution as a random variable itself and determine

its mean E[p] with

E[p] =
a

a + b
. (10)

Furthermore, the variance of the Beta Distribution is defined by

Var[p] =
ab

(a + b + 1)(a + b)2
. (11)

Var[p] can be used as a measure for the certainty of the expected mean E[p].

To recall, learning algorithms should take into account the goals stability and plasticity

(Section 3.1). By just summing up (multiples of) a and b depending on the users action

when passing through an AZ, we can guarantee stability, but the algorithm falls short on

plasticity, i.e., the algorithm cannot react fast on sudden changes in the user’s behavior.

To also incorporate plasticity, we introduce an adapted form of feedback handling which

weights each observation P (l) (where l = 1 is the most current observation) according to

their order of occurrence (e.g., using an exponentially decreasing weighting function) with

the weighting term G(l) and sums them up to get the respective a and b. Hence, old values

will get obsolete, consequently only a fixed number of N observations has to be stored in

memory.

4 Case study

In a case study, the implemented algorithms were evaluated for a comfort function that is

typically activated at specific geographic locations. The automated comfort function is a

high-class optional equipment mostly sold in packages. For the feature selection, parame-

ter determination and algorithm evaluation, test data had to be recorded in real-world trips.

About ten BMW owners, regularly using the selected comfort function, participated in the

data recordings, over a hundred trips from every participant were recorded on average.

The car owners were instructed about the general goal of the recommendation system and
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to use the automated comfort function as naturally as possible. Some subjects not having

any technical background, ensured results close to a real-world application of the system.

For reasons of data privacy, only the necessary data was filtered on the vehicle bus and

then recorded with the designated logging hardware. The data recorded contained the acti-

vations and deactivations of the comfort function, filtered and mapped GPS data, date and

time information and possibly function related environmental data.

Step E[p] Var [p]
Case of Table 1 in buffer P (l), l = 1, ..., N

1 · · · · N

1 0.5 0.0227 2 2
2 0.75 0.0089 4 2 2
3 0.83 0.0045 4 4 2 2
4 0.90 0.0018 4 4 4 2 2
5 0.91 0.0015 6 4 4 4 2 2
6 0.92 0.0013 6 6 4 4 4 2 2
7 0.79 0.0024 5 6 6 4 4 4 2 2
8 0.71 0.0026 3 5 6 6 4 4 4 2 2
9 0.65 0.0027 3 3 5 6 6 4 4 4 2 2

10 0.64 0.0026 3 3 3 5 6 6 4 4 4 2
11 0.57 0.0028 3 3 3 3 5 6 6 4 4 4
12 0.47 0.0029 3 3 3 3 3 5 6 6 4 4

Table 2: The contents of an observations buffer of an AZ with 10 elements and 12 updates. The
buffer is a FIFO buffer with new observations added on the left side.

The following case study illustrates how the proposed system updates the activation dis-

tribution p(A|O). For the sake of simplicity, we assume our weighting term G(l) to be

equally weighted, i.e., G = [1, ..., 1], for the values of our feedback matrix cases we as-

sume values following the feedback strength hierarchy (see Table 1). The example given in

Table 2 and Figure 2 both showing the same experiment describes how the system updates

the parameters a and b. At initialization, both parameters are set equally, i.e., E[p] = 0.5,

which is realized by adding two different forms of equally strong feedback to the buffer

P (l) (see Table 2 (1), Figure 2 (a)). If an activation request (case 4 of Table 1) is observed,

the value of a rises while b stays constant (Table 2 (2)-(4), Figures 2 (b), (c)). At the same

time, the position distribution p(O|B) is also refined (see Figures 2 (b), (c)). It is worth

noting, that the variance, which is given to express parameter uncertainty, decreases the

more observations are made by the system. In our case study, we request the activation

threshold for E[p] to be greater or equal a threshold τ = 0.9, which is achieved in Table 2

(4). The system now automatically activates the comfort function when the driver passes

the AZ. If the user accepts the systems behavior, i.e., he does not counteract to it (case 6 of

Table 1), the system continues to improve its mean E[p] (Table 2 (5), (6), Figure 2 (d)). In

our case study, the user now changes his usage pattern, counteracting the automatic system

activation (case 5 of Table 1). This leads to a decrease of the estimated mean E[p] below

the threshold τ . (Table 2 (7), Figure 2 (e)). When the behavior of the driver changes,

Var [p] increases slightly, expressing increased uncertainty about the estimated mean E[p].
The system will now stop to activate the automated function, if the user continues to not

activate the system at the specified location (Table 2 (8) - (12)), E[p] will continue decreas-

ing (case 3 of Table 1). Over time, the estimated mean E[p] may get as low as a predefined

obsolescence threshold so that the AZ will get deleted if not relevant (Figure 2 (f)).
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(a) AZ initialization, E[p] = 0,5 (b) after two automation

requests, E[p] ≈ 0,83, E[p] < τ

(c) AZ after three automation

requests (system now active),

E[p] = 0,90, E[p] ≥ τ

(d) AZ after two acceptances,

E[p] ≈ 0,92
(e) AZ after counter action,

E[p] = 0,79, E[p] < τ

(f) AZ deleted (under

obsolescence threshold)

Figure 2: Example of activation updates of an activation zone (AZ). In the histogram of (c), the
activation threshold τ is exceeded. In figures (a) – (c) the adaption of the location density distribution
is shown.

The processing time is reasonably small, as most of the time only the position distribution

p(O|B) has to be calculated (which mainly consists of the computation of the Mahalanobis

distance ∆(x)). The computing time scales linearly with the number of AZ. The memory

footprint is small enough for embedded use, as only the buffer of activations P (l), the

spatial coordinates µ, the AZ size σ and the number of position refinements i have to be

stored.

5 Conclusion

The introduced probabilistic system predicts a user activation request for a specified com-

fort function depending on previously observed activations at points of interest. The prob-

ability distribution of the activation and the locations of interest are modelled explicitly.

With the use of second-order uncertainty, it implements the necessary self-reflecting mech-

anism useful for automotive needs. Also, there is no need for the user to explicitly give

any information for initialization to the fully automated system. Therefore, this system is

appropriate for decision making in a proactive recommender system and can be adapted to

any kind of comfort function.

The given evaluations show that the system works efficiently, is numerically stable and has
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enough plasticity to work as an embedded, online and life-long learning algorithm. It is

also possible to change the model’s plasticity and stability further through adjustments to

the employed system parameters. Before field operation, the appropriate system parame-

ters have to be discovered through a long-term study with a high number of subjects.

6 Outlook

In future work we will enhance the presented model’s targeted set of functions. A focus

of this enhancement will be the correlation and dependency of function activations, e.g.,

the usage of certain heating functions may correlate to a certain temperature or the usage

of other comfort functions. As a consequence, the proposed approach for mobile, context

based systems in [SBG98] will be applied.

Until now, the model distinguishes only between binary activation states. In future versions

of the presented model, specific levels of activation, that in a sense have an ordering, will

be handled to automate even more comfort functions. We also aim to extend our model to

gradual output levels.

Also, we will enhance the model’s observation B with more features. Part of the features

incorporated will be the day time and the drive purpose of frequent trips, e.g., the daily

trip to work. This should give the model information about the user’s control behavior,

e.g., the purpose of a trip or even environmental conditions. In future work, more general

location models will be examined.

As for now, for complex recommendation models, some system parameters, e.g., decision

thresholds, must be set by experts or through knowledge gained from field studies. This

sometimes is a vague and expensive process. So the process of choosing the right pa-

rameters must be simplified or partially transferred into the field. In general, a wide field

of research possibilities are models that change the system parameters online to better

accommodate to individual users behavior. One example would be a collaborative filter-

ing approach for online parameter refinement in proactive, automotive recommendation

systems.
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