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Abstract: Structural (manual or automated) testing today often overlooks typical pro-
gramming faults because of inherent flaws in the simple criteria applied (e.g. branch or
all-uses). Dedicated testing strategies that address such faults (e.g. mutation testing)
are not specifically designed for smart automatic test case generation. In this paper
we present a new coverage criterion and its implementation that accomplishes both:
it detects more faults and integrates easily into automated test case generation. The
criterion is targeted towards unveiling faults that originate from shifts in the equiva-
lence classes that are caused by small coding errors (inspired by mutation testing). On
benchmark codes from the Java-API and from an open-source project we improve the
fault detection capability by up to 41% compared to branch and all-use coverage.

1 Introduction

Testing is still important in modern software engineering. Although remarkable progress
has been made in the field of white-box (structural) testing, the average fault detection
capability achieved with traditional coverage criteria (e.g. branch or all-uses) is still too
low [Bis02, MMB03, Ost07], even if test case generators are used to produce test sets with
high coverage ratios. The reason is that although programs often fail at the boundary of
processing domains (e.g. due to primitive typo-like faults such as a < instead of a <= in a
conditional expression), test cases designed for branch or all-uses coverage typically fail
to detect such boundary faults. The test cases are somewhere on both sides of the boundary
but not at the boundary. Even dataflow oriented testing (all-uses coverage) fails because
it just checks the flow of information through the program withoug considering the values
processed.

Mutation analysis (MA) is a better way to tell whether a test set is likely to find many bugs
in the system under test (SUT), even at the borderline mentioned above [Lig02, OMK04].
For each test case MA compares the behavior of the SUT with that of its mutant, i.e. a copy
with an artificially introduced fault. The ratio of mutants that show altered behavior under
a test is called mutation score (MS) and is an objective indicator of the fault detection
capability of this test set. The problem is that MA is not constructive, i.e. so far the idea
of MA cannot be directly used to guide the automatic generation of good test cases.

In this paper we present a new coverage criterion called Structural Equivalence Partition
and Boundary Testing (SEBT) that implements the insights of MA and that can be easily
used in test case generators to produce better test sets than with traditional criteria.

75



T1

T2

T5 T4

T3

x

(a) x++: unary, one dimension

T2 T9

T8 T10

T6 T1

T7 T5

T11T13

T3 T12

T16T14

T15 T4

ECB

EC1

EC2

T20

T19

T17

T18

x

y

(b) x < y: binary, two dimensions

Figure 1: Unary and binary operator examples.

The paper is structured as follows. Section 2 introduces our new criterion SEBT. Section
3 describes the tool support available for SEBT. Section 4 shows the results we achieve
with this approach. Section 5 discusses related approaches before the paper concludes in
section 6 and gives an outlook on our future plans.

2 Structural equivalence partition and boundary criterion

In general, languages like JAVA provide unary (e.g. post-increment a++ or boolean nega-
tion !b), binary (e.g. division a/b or logical “and” a&&b), and ternary (e.g. shortcut for
value-returning if-then-else a ? b : c) operators. We further distinguish four operand
classes according to their data type: enumerable with constant values (e.g. boolean with
true and false); discrete, where neighboring elements always have a constant distance
of 1 (e.g. byte, char, short, int, long); pseudo-real, where the values are discrete
due to limited machine representation but the distances between the elements vary (e.g.
float, double); and finally references to objects or null.

In the following, we will focus on discrete and pseudo-real operands of unary and binary
operators. Since a ? b : c is the only ternary operator in JAVA and has special typing
requirements, we discuss it on its own. In this paper we do not address reference type
operands, as this topic is out of the scope of SEBT yet. Whenever at least one of the
operands of an operator under consideration is enumerable, we require testing the corre-
sponding statement with all possible values of that operand in combination with the classes
of the other operands, as described next.

Fig. 1 shows two examples of the distribution of the equivalence classes and their bound-
aries for an unary and a binary operator. Since the expression x++ depends on only one
variable, its input domain in terms of testing is the whole domain of x’s data type. Its
input domain is regarded as one equivalence class. If tested on its own, the expression
should be evaluated with different values of x, covering both the equivalence class and
its boundaries, as shown in Fig. 1(a). Test cases T1 and T4 represent the limits of the
data type of x, similar to the on-points in [WC80]. For double in JAVA, T4 means
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2 STRUCTURAL EQUIVALENCE PARTITION AND BOUNDARY CRITERION 3

Double.MAX VALUE ≈ 21024. Respectively, T2 and T3 are seen as the near-boundaries
of the class, similar to the off-points in [WC80], and should be tested as well. The values to
be chosen here for x should be those immediately next to T1 resp. T4 in terms of machine
arithmetics. For practical applicability, the tester may provide a distance δ such that any
value T2 ∈]T1, T1 + δ] and T3 ∈ [T4 − δ, T4[ would be acceptable. Finally, an arbitrary
representant T5 ∈]T1 + δ, T4 − δ[ within the equivalence class should be tested as well.

Two equivalence classes and twenty test cases are reasonable for checking the expression
x < y, as shown in Fig. 1(b). The dotted diagonal line represents the boundary of the two
equivalence classes for the given expression: equivalence class EC1 comprises all pairs
(x, y) such that the condition x < y holds, while EC2 represents the opposite. Test cases
T1, T2, . . . , T16 represent the boundary or near-boundary values of the data types of both
variables. Additionally, arbitrary inner representants (here: T17 and T18) from within each
class are required, that are not a (near-)boundary input at the same time. The statement
x < y must be tested with near-boundary values on “both sides” of each equivalence
class as well. In Fig. 1(b), the latter is achieved by the test cases T19 and T20 – where
T20 represents pairs (x, y) satisfying the condition x = y and thus the boundary of EC2

towards EC1 (a generic formal definition of both is given in section 2.1). In contrast to
[WC80], we do not distinguish on-points and off-points for the boundary between classes,
since we expect boundary and near-boundary test cases for all classes, thus implicitly
always requiring both kinds of “points”.

In the case of binary operators, we will distinguish between relational (i.e. <, <=, =, !=,
>=, >) and arithmetic (i.e. +, -, *, /, %, ˆ, . . . ) expressions. For relational operators
we require adequate test cases such that the operands are evaluated to values identical
to or immediately at the limits imposed by their data type, e.g. T1 − T16 in Fig. 1(b).
Arithmetic operators put additional restrictions on the operands, that might be of higher
interest for testing: the boundaries of the result. As an example, consider a simple addition
like x + y. In the visualization of this (binary) operator according to Fig. 1(b), test cases
T1 and T5 − T7 (respectively T3 and T11 − T13) will trigger overflows (resp. underflows).
Thus, new boundaries for reasonable equivalence classes are imposed by the conditions
x + y < tx,ymin or x + y > tx,ymax, where tx,ymin and tx,ymax are the boundaries of the resulting
data type after implicit conversion [GJSB05].

2.1 Generic SEBT criterion

Based on the examples above we can now formally define the SEBT criterion.

Unary operators: Let op be an unary operator applied to an expression (e.g. variable)
v of type tv and op 3= op a type-compatible operator, which can syntactically replace
op. Further let δv > 0 be the minimum distance between the lowest possible value tvmin
of v according to tv and the smallest value tvmin + δv , such that ]tvmin, t

v
min + δv[= ∅;

respectively let εv > 0 be the minimum distance between the highest possible value tvmax
of v according to tv and the greatest value tvmax − εv , such that ]tvmax − εv, tvmax[= ∅. For
practical feasibility, δv and εv may be relaxed to arbitrary but adequate distances chosen
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2 STRUCTURAL EQUIVALENCE PARTITION AND BOUNDARY CRITERION 4

by the tester in accordance with the SUT.

SEBT requires that for a given statement v op or op v, the expression must be executed
at least once with each of the following test cases: v1 = tvmin, v2 ∈]tvmin, tvmin + δv],
v3 ∈ [tvmax − εv, tvmax[, v4 = tvmax, and for each compatible op with at least one test case
v5 ∈]tvmin + δv, tvmax − ε[ such that the expression behaves differently (e.g. for arithmetic
expressions: op v5 3= op v5). Example: -1 3= +1 (but -0 vs. +0 is not enough).

Binary operators: Let op be a binary operator applied to two expressions (e.g. variables)
a of type ta respectively b of type tb returning a result of type ta,b and op 3= op a type-
compatible operator, which can syntactically replace op. Further let δa, δb, δa,b, tamin,
tbmin, ta,bmin, εa, εb, εa,b, tamax, tbmax, ta,bmax have the same meaning for a, b, and the result
as in the definition above for v in unary expressions. Additionally, let ξa(a) (ξb(b)) be the
smallest distance between the current value of variable a (b) and the values immediately
next to it according to the machine precision with respect to the data type ta (tb) – please
note that in JAVA, ξ is not necessarily constant, e.g. ξdouble(x) ∈ [5 · 10−324, 10292].

SEBT requires that for a given statement a op b and each compatible op, the expression
must be executed with at least one test case from each of the generic test classes determined
by the conditions in Table 1 (upper and middle part), which is based on abbreviations
defined in Table 2, distinguishing between relational and arithmetic operators. For the
example x < y, twenty test cases satisfying SEBT are depicted graphically in Fig. 1(b).

Ternary operators: The conditional operator a ? b : c in JAVA requires a to be of
type boolean. A coding error may only result from interchanging the three operands, if
all three are of the same type – or at least the second and third operand, which must be of
compatible type anyway. In order to detect such programming faults, we take advantage
of the idea of modified condition/decision coverage (MC/DC) [Lig02], as described in the
following. Let t be an arbitrary test case and vt(a) (respectively vt(b) and vt(c)) be the
(hypothetical) evaluation result of operand a (resp. b and c) when executing the statement
under test with test case t. Please note that due to short-cut evaluation in JAVA, at least one
of the operands is not evaluated each time the expression is executed.

SEBT requires that for a given statement a ? b : c, the test set must contain at least
one pair (t1, t2) of test cases for each of the generic test classes in Table 1 (lower part).

2.2 Special consideration: Feasibility

When executing program logics, feasibility may prevent certain structural entities (e.g.
def/use-pairs) from being covered, although required by the chosen criterion. Often the
reason is that no input (no test case) can be found, that reaches certain nodes or edges
of the control flow graph. Depending on the SUT, the generic SEBT criterion defined
above may also be affected by such infeasibility for certain test classes. For example,
consider the pair op := “<” and op := “>=” of arithmetic operators. No input exists that
covers the generic test classes T17, T19, and T20, because the equivalence class EC1 is
empty, i.e. $x, y : x<y ∧ x>=y. Any tool implementation of SEBT must account for such
combinations to compute a reasonable coverage measure.
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Table 1: Generic test classes (See Table 2 for the legend).
Class Description Conditions on operands

fo
r

bi
na

ry
re

la
tio

na
lo

pe
ra

to
rs

T1 limit (I) a = tamax ∧ b = tbmax

T2 limit (II) a = tamin ∧ b = tbmax

T3 limit (III) a = tamin ∧ b = tbmin

T4 limit (IV) a = tamax ∧ b = tbmin

T5 near-limit (I) a = tamax ∧ b ∈]tbmax, t
b
max − εb]

T6 near-limit (I) a ∈]tamax, t
a
max − εa] ∧ b = tbmax

T7 near-limit (I) a ∈]tamax, t
a
max − εa] ∧ b ∈]tbmax, t

b
max − εb]

T8 near-limit (II) a = tamin ∧ b ∈]tbmax, t
b
max − εb]

T9 near-limit (II) a ∈]tamin, t
a
min + δa] ∧ b = tbmax

T10 near-limit (II) a ∈]tamin, t
a
min + δa] ∧ b ∈]tbmax, t

b
max − εb]

T11 near-limit (III) a = tamin ∧ b ∈]tbmin, t
b
min + δb]

T12 near-limit (III) a ∈]tamin, t
a
min + δa] ∧ b = tbmin

T13 near-limit (III) a ∈]tamin, t
a
min + δa] ∧ b ∈]tbmin, t

b
min + δb]

T14 near-limit (IV) a = tamax ∧ b ∈]tbmin, t
b
min + δb]

T15 near-limit (IV) a ∈]tamax, t
a
max − εa] ∧ b = tbmin

T16 near-limit (IV) a ∈]tamax, t
a
max − εa] ∧ b ∈]tbmin, t

b
min + δb]

T17 representant (EC1) C0 ∧ C1 ∧ C2

T18 representant (EC2) C0 ∧ C3 ∧ C4

T19 boundary (EC1) C0 ∧ C1 ∧ ¬C2

T20 boundary (EC2) C0 ∧ C3 ∧ ¬C4

fo
r

bi
na

ry
ar

ith
m

et
ic

op
er

at
or

s T1 underflow (I) a op b < ta,b
min − δa,b

T2 overflow (II) a op b > ta,b
max + εa,b

T3 near-limit (Ia) a op b ∈ [ta,b
min − δa,b, ta,b

min[

T4 near-limit (IIa) a op b ∈]ta,b
max, t

a,b
max + εa,b]

T5 limit (I) a op b = ta,b
min

T6 limit (II) a op b = ta,b
max

T7 near-limit (Ib) a op b ∈]ta,b
min, t

a,b
min + δa,b]

T8 near-limit (IIb) a op b ∈ [ta,b
max − εa,b, ta,b

max[
T9 representant (EC1) C0 ∧ C1 ∧ C2 ∧ C5

T10 representant (EC2) C0 ∧ C3 ∧ C4 ∧ C5

T11 boundary (EC1) C0 ∧ C1 ∧ ¬C2 ∧ C5

T12 boundary (EC2) C0 ∧ C3 ∧ ¬C4 ∧ C5

te
rn

ar
y T1 a true, vary b only a = true ∧ vt1 (b) '= vt2 (b) ∧ vt1 (c) = vt2 (c)

T2 a false, vary c only a = false ∧ vt1 (b) = vt2 (b) ∧ vt1 (c) '= vt2 (c)

T3
vary a, keep b and c vt1 (a) '= vt2 (a) ∧ vt1 (b) '= vt1 (c) ∧
with b '= c vt1 (b) = vt2 (b) ∧ vt1 (c) = vt2 (c)

Table 2: Abbreviations of conditions used in Table 1.
Abbrev. Description Condition on operands

C0 non-limit a ∈]tamin + δa, tamax − εa[ ∧ b ∈]tbmin + δb, tbmax − εb]
C1 same behavior a op b = a op b

C2 same behavior ∀ψa ∈ {−ξa(a), 0, ξ
a
(a)}, ∀ψb ∈ {−ξb(b), 0, ξb(b)}:

(at neighborhood) (a+ ψa) op (b+ ψb) = (a+ ψa) op (b+ ψb)
C3 different behavior a op b '= a op b

C4 different behavior ∀ψa ∈ {−ξa(a), 0, ξ
a
(a)}, ∀ψb ∈ {−ξb(b), 0, ξb(b)}:

(at neighborhood) (a+ ψa) op (b+ ψb) '= (a+ ψa) op (b+ ψb)

C5 non-under/overflow a op b ∈]ta,b
min + δa,b, ta,b

max − εa,b[ ∧
(non-limit) a op b ∈]ta,b

min + δa,b, ta,b
max − εa,b[

3 Tool support

Regardless of the testing strategy, software testing today is hardly possible without ade-
quate tool support. There is a broad variety of approaches to automatic test case generation.
Random test data generators produce myriads of redundant test cases, covering the same
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3 TOOL SUPPORT 6

entities of the control or data flow several times [MMS98, BHJT00]. Other techniques try
to remove redundant test cases after their random generation, thus giving smaller test sets
[OW91, Ton04, McM04]. But the general problem remains NP-complete.

Heuristic test case generators [WBP02, OS06, PBSO08, FZ10] are usually driven by one
or more objective functions. Those objectives compute quantifiable characteristics such as
the structural coverage achieved (e.g. according to the branch criterion) or the “distance”
[Bar00] of an individual test case from covering a certain test goal (e.g. a statement not yet
executed). In general, such a generator first instruments the SUT once. It then randomly
generates a set of test cases. Each test case is executed and evaluated according to each
objective. The results of the evaluation are then used to guide the heuristics towards gener-
ating new and better test cases (or test sets) based on the old ones. The cycle of generation,
execution, and evaluation is repeated until the test set is considered good enough.

An important characteristic of SEBT is that this coverage criterion can be implemented as
such an objective function plug-in for arbitrary heuristic test case generators. Hence SEBT
makes it possible to generate test cases that achieve better mutation scores than traditional
coverage criteria and that hence help build more trust in the test. We have implemented
the SEBT criterion for JAVA as such a plug-in. It provides hooks for instrumentation,
execution, and evaluation. The three hooks of the SEBT plug-in work as follows.

Instrumentation: We parse the source code and construct an abstract syntax tree. In
a transformation we then insert so-called probes into the given source code that do not
modify the semantics of the original program. The probes are calls to a logging sub-
system. The instrumentation tool logs each transformation in a so-called Static Logging
Data (SLD) file that contains information on the instrumented statements: a unique iden-
tifier and the kind of the occurring operator. As an example, consider an excerpt from the
Dijkstra benchmark (section 4):
whi le ( n o d e s T oP r o c e s s . s i z e ( ) > 0) {

Node nex tNodeToProcess = g e t N o d e W i t h S m a l l e s t D i s t a n c e ( ) ;
n o d e s To P r o c e s s . remove ( nex tNodeToProcess ) ;
V e c to r n e i g h b o u r s = nex tNodeToProcess . g e t N e i g h b o u r s ( ) ;
f o r ( i n t i = 0 ; i < n e i g h b o u r s . s i z e ( ) ; i ++) {

Node n e i g h b o u r = ( Node ) n e i g h b o u r s . g e t ( i ) ;
i f ( n e i g h b o u r . ge tCos tFromRoot ( ) >

nex tNodeToProcess . ge tCos tFromRoot ( )
+ nex tNodeToProcess . ge tCos tToNe ighbour ( n e i g h b o u r ) ) {

n e i g h b o u r . s e t P r e d e c e s s o r ( nex tNodeToProcess ) ;

The automatic instrumentation gives the following (pretty-printed) code:
whi le ( l o g g e r . m y g t f u n c t i o n ( ” 12 1 4 ” , n o d e s T o P r o c e s s . s i z e ( ) , 0 ) ) {

Node nex tNodeToProcess = g e t N o d e W i t h S m a l l e s t D i s t a n c e ( ) ;
n o d e s To P r o c e s s . remove ( nex tNodeToProcess ) ;
V e c to r n e i g h b o u r s = nex tNodeToProcess . g e t N e i g h b o u r s ( ) ;
f o r ( i n t i =0 ; l o g g e r . m y l t f u n c t i o n ( ” 12 1 5 ” , i , n e i g h b o u r s . s i z e ( ) ) ;

i = l o g g e r . m y p o s t i n c f u n c t i o n ( ” 12 1 6 ” , i ) ) {
Node n e i g h b o u r = ( Node ) n e i g h b o u r s . g e t ( i ) ;
i f ( l o g g e r . m y g t f u n c t i o n ( ” 12 1 8 ” , n e i g h b o u r . ge tCos tFromRoot ( ) ,

l o g g e r . m y p l u s f u n c t i o n ( ” 12 1 7 ” ,
nex tNodeToProcess . ge tCos tFromRoot ( ) ,
nex tNodeToProcess . ge tCos tToNe ighbour ( n e i g h b o u r ) ) ) ) {

n e i g h b o u r . s e t P r e d e c e s s o r ( nex tNodeToProcess ) ;

Furthermore, it adds corresponding entries to the SLD file, shown in Fig. 2(left).
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12 1 4;GT
12 1 5;LT
12 1 6;POST INC
12 1 7;PLUS
12 1 8;GT

12 1 8;GT;double;double;1.797...157E308;1.797...157E308
12 1 8;GT;double;double;1.797...157E308;2.0
12 1 8;GT;double;double;2.0;2.0
12 1 8;GT;double;double;5.0;1.797...157E308
12 1 8;GT;double;double;5.0;10.0
12 1 8;GT;double;double;0.0;4.9E-324

Figure 2: Excerpts from the SLD (left) and DLD files of the Dijkstra example.

Although we did not execute any test case yet, the plug-in derives from statically analyz-
ing those lines of the SLD, that the code excerpt contains two occurrences of the operator
“>” (GT). Since we must cover 20 test case classes (see Table 1) for each feasible pair of
op := “>” and any compatible op, this leads to well-defined 74 different operand combina-
tions, in order to fully satisfy SEBT for the two probes with the IDs 12 1 4 and 12 1 8.
Of course, the other 41 IDs in the SLD of the entire code must be considered accordingly.

Execution: The transformed code is executed for each test case. This results in a Dynamic
Logging Data (DLD) file for each test run. Whenever a probe is executed, the unique ID,
the type of the operator, the runtime types, and the actual values of each evaluated operand
are logged. An excerpt from a DLD, containing some of the essential entries for the
operator ID 12 1 8 is shown in Fig. 2(right).

Evaluation: Finally, all current SLDs and DLDs are considered in order to determine
the coverage ratio achieved. Even if some relevant statements remain totally uncovered
by the test set (and thus do not show up in the DLD), the SLD provides the necessary
information to account for them as well. From the runtime types of the operands in the
DLD the tool can determine the limits tmin and tmax of the data-types of each individual
operand (see section 2.1, Table 1). Merging the knowledge from the above SLD and DLD
excerpts for ID 12 1 8, we notice that tamax = tbmax = tdoublemax = 1.797 . . . 157E308 and
ξdouble(0) = 4.9E − 324. Among others, we covered the test classes T1 (1st line of DLD);
T20 (3rd line of DLD), T17 (5th line), and T19 (6th line) for op := “>” vs. op := “>=”; as
well as many other test classes for further compatible op at the same time.

From this evaluation, the plug-in reports to the driving heuristic test case generator which
SEBT classes Tui have not been covered yet. Moreover, for each pair of test case tj and test
class Tui , the plug-in also provides a means to compute the “distance” of tj from covering
Tui , based on a distance metrics from graph theory applied to the control flow graph plus
a set of distance functions for conditional expressions applied to branch predicates (see
[Bar00] for details). The test case generator can than choose the test class Tus with the
smallest distance as the new test target and can iteratively evolve an adequate subset of the
current population of test cases tj towards covering Tus . In case of a test generator that is
based on a genetic algorithm, the distance objective can serve as the fitness value for the
selection operator. If Tus can be covered by a test case tsj within a predefined number of
steps, then tsj is added to the set of resulting test cases. This is done for all test targets
separately.

In the above example, the DLD does not contain an entry covering T2, but the nearest
test case achieves operand values of 5.0;1.797...157E308. The heuristics is now
guided to evolve the current value of the first operand (5.0) towards the smallest possible
value for the datatype double, thus covering T2.
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Table 3: Benchmark results
Project # of lines source # of number of killed mutants improvement

Java of size mutants and mutation scores in %
classes code (bytes) branch (B) all-uses (A) SEBT (S) B→S A→S

Hanoi 1 38 1279 227 170 75% 174 77% 197 87% 27 23
JDKsort 1 82 2639 852 524 62% 557 65% 577 68% 53 20
Dijkstra 2 141 4080 220 155 70% 158 72% 206 94% 51 48
Huffman 2 298 8931 623 390 63% 390 63% 391 63% 1 1
BigFloat 3 540 17526 1528 1057 69% 1159 76% 1494 98% 437 335

provided JUnit tests (PJT) PJT+SEBT by SEBT
JTopas 44 16112 583546 3219 1518 47.2% 1854 57.6% 336

improvement : Number of faults detected with SEBT but missed with branch/all-uses/provided JUnit test cases

Targeting each test class on its own results in intractably large test sets, since such ap-
proaches strive for maximized coverage without considering the validation effort in terms
of the resulting total number of test cases. SEBT can also be used to guide test case gen-
erators that do take the size of the test set into account, e.g. by adding another global
optimization phase to the generation cycle described above. For instance, in its global
optimization phase, our tool •gEAr [Ost07] works on a set of test sets, i.e. not just on a
single test set. Each of these test sets is evaluated with respect to its size and the coverage
ratio computed by the SEBT plug-in. On these weighted test sets •gEAr applies a genetic
algorithm (with cross-over between test sets and mutation within test sets) to construct
smaller test sets with similar (or better) SEBT-coverage. Only if this global optimization
of the test sets cannot rationally improve the SEBT-coverage or the test set size anymore,
i.e., if for example a certain test class Tus remains uncovered within an upper number of
iterations, •gEAr uses the mechanism described above to evolve those existing test cases
that are close with respect to SEBT towards covering Tus . The SEBT-plug-in is hence used
in both phases that •gEAr repeats iteratively until a test set is found that not just has a good
coverage with respect to SEBT but that is also small.

4 Experimental results

To evaluate the power of SEBT, we conducted several experiments in two different se-
tups. The characteristics of the SUTs used and the results achieved are shown in Table
3. Mutation analysis is more adequate to assess the quality of a test set in terms of its
fault detection capability, than the mere coverage measure. Killing a mutant means that
the corresponding test case is sensitive to and thus able to detect a certain (potential) fault.
Additionally, MA is independent of the coverage criterion actually applied to derive the
test set. For each SUT, we automatically generated mutants with MuJava [OMK04], ap-
plying all mutation operators provided by the tool (including class mutation). These sets
of mutants may contain functionally equivalent programs.

Setup A (upper part of Table 3): The SUTs used in this setup are textbook examples, such
as Dijkstras shortest path algorithm. JDKsort is taken from the JAVA-API. BigFloat
is a simplified variant of java.math.BigDecimal. We generated three test sets for each SUT,
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5 RELATED WORK 9

one achieving 100% branch coverage, the second satisfying the all-uses criterion. The third
test set has covered the feasible test classes of SEBT for relational and arithmetic operators.
For all three groups of test sets, we determined the number of mutants killed. Although
the all-uses criterion is quite demanding, the average fault detection (represented by the
mutation score) achieved in setup A is about 70.7%; test sets satisfying branch coverage
were even weaker and reach approx. 66.6%. The test sets for SEBT performed best and
detected an average of 83.0% of the potential faults.

In our benchmarks, we apply SEBT for arithmetic and relational statements. Thus the cri-
terion performs best on SUTs whose behavior mainly relies on such operators and the pure
test values, i.e., control and data flow strongly depend on the actual input, rather than on
the internal state with weak or no input dependence. Because the Huffman algorithm rep-
resents straightforward encoding, the input values themselves are not directly processed by
arithmetic or relational operations. Instead of the input values, the number of occurrences
of different symbols in the input is computed and used to guide the control flow. Since the
establishing of almost all SEBT-relevant data is infeasible (e.g. the total input length must
always be a small but positive integer due to memory limitations and the JAVA-API spec-
ification), SEBT killed only one additional mutant – branch and all-uses perform equally
bad. For BigFloat however, SEBT has killed 437 (+29%) mutants, that were missed
by branch coverage. This is due to the intense number crunching of BigFloat, that ap-
plies arithmetic and relational operators immediately to the input values. Since SEBT can
execute the relevant statements with almost all operand configurations, the resulting fault
detection of 98% is impressive.

Setup B (lower part of Table 3): The SUT in this setup is the entire “Java tokenizer and
parser tools” package JTopas (http://jtopas.sourceforge.net/jtopas),
comprising 44 JAVA classes with currently 16112 lines of open source code. The JTopas
distribution comprises a set of 552 JUnit test cases. We supplemented this given set with
584 additional JUnit test cases, that cover the test classes of SEBT.

The JUnit test cases provided with JTopas killed 1518 (47.2%) out of 3219 mutants,
while the improved test set achieved a mutation score of 1854 (57.6%) – i.e. a total of 336
(+10.4%) mutants, that were not detected by the original JUnit tests, are now killed by the
SEBT test cases. Hence, SEBT significantly improves the chance of fault detection in an
open source project with existing JUnit test cases.

5 Related work

Many different testing strategies and test automation tools exist, but there are very few
approaches to automatic test data generation for more demanding testing criteria, and al-
most all are academic. Test data for structural coverage is typically derived by applying
so-called program slicing [FB97].

Static slicing [WC80, KLPU04] explicitly enumerates all control or data flow paths re-
quired (e.g. directly for path coverage or indirectly for statement coverage), i.e. all con-
straints imposed by the conditions at the branching nodes are collected for each path in
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part. The resulting constraint system in terms of the input variables represents the domain
partitioning of the program with respect to individual control flow paths. Compared to
the correct version of the code, faults in the program are expected to either shift some
“domain boundary” of the solved constraint system (follow wrong branch for a certain
input) or modify some “domain computation” (give wrong output despite following the
correct path). Since statically setting up the corresponding constraint system is very ex-
pensive or even infeasible (for loops the number of paths is infinite), those approaches
have many restrictions. White and Cohen [WC80] introduce their technique for a simpli-
fied Algol-like programming language that lacks many features of modern object-oriented
languages. Moreover, they make restrictive assumptions with respect to the types of con-
straints and the input space (only linear borders between domains are allowed). Kosmatov,
Legeard et al. [KLPU04] apply the concept to formal models of the SUT. In case of state
machines, the predicate conditions (i.e. guards in state transitions) are collected to define
the input domains for each modeled behavior. Their approach applies to discrete domains
for (simple) formal model languages only, and must also fail for systems with unknown
numbers of loop iterations. They do not address source code testing at all. In contrast
to the techniques presented above our SEBT criterion is intended for arbitrary imperative
or object-oriented languages, and the prototypical implementation for JAVA does not ex-
clude any language feature. In order to cope with the limits of static analysis and to ease
the automatic generation of corresponding test cases, SEBT allows generators to consider
individual code statements only instead of reckoning complete program paths. Inspired
by the concept of weak mutation testing [OMK04], SEBT is satisfied with test cases that
execute individual statements with manifold data contexts, able to trigger possibly faulty
behavior at each program location (e.g. < vs. <=) in part.

In general, dynamic program slicing [Bar00, WBP02, FZ10] executes the SUT with a
random test case first. If the desired path has been traversed, the corresponding input is
directly available. Otherwise, some heuristics are applied to push the currently covered
path towards the desired one, usually by repeatedly applying gentle modifications to the
best input known so far. Many approaches of this kind start with a static control flow
analysis in order to identify the target entities to be covered according to the coverage
criterion. Such techniques suffer from the same drawbacks as static slicing (e.g. infinite
number of paths) and are therefore only applicable to simple criteria based on control flow
such as branch coverage. Our new criterion SEBT can serve as a driving plug-in for the
approach by Wegener et al. [WBP02], but as mentioned above targeting each entity in part
will likely result in intractably huge test sets for average programs.

Other techniques collect the test targets “on the fly” during the heuristic optimization and
explicitly target missed entities without prior analysis of the entire control flow. Fraser
and Zeller [FZ10] reduce the testing effort by minimizing the length of each test case, i.e.
roughly the number of statements in the test sequence. In contrast, with SEBT in •gEAr
the tester can select between short but rather many test cases similar to [FZ10] and a
minimized number of test cases, i.e. a small test set. In the latter case, each test run covers
several combinations of SEBT classes at once. Moreover, [FZ10] uses a sophisticated
impact analysis of each mutant execution, in order to assess to which extent a mutant has
been covered: The more statements are covered in the original code but not in the mutant
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and vice versa and the more methods behave differently (i.e. return different values or
throw unexpected exceptions) in the mutant compared to the original code, the higher
is the impact of this mutant under an assessed test case. If a test case does not cause
enough impact of the mutant under assessment (e.g. due to failure masking in the early
testing stages) the test case is quite likely dismissed during the generation of the final
test set. Nevertheless, such a test case may become important during regression testing.
In contrast, SEBT requires to initially cover all operand-value-combinations expected to
cause failures (sooner or later).

6 Conclusion and outlook

In this paper, we presented a new testing technique named structural equivalence partition
and boundary testing (SEBT) based on the notion of mutation testing. The goal of SEBT is
to help the tester to systematically choose test cases sensitive to typical coding errors, such
as unintentionally using the wrong operator (e.g. “<” instead of “≤”) or not accounting
for limits (over-/underflow) and limitations (machine precision) of the data-types used.
The tool computes the coverage achieved by a given test set for the code portion under test
according to SEBT. Experimental results are very promising: SEBT outperforms branch
coverage by 41% and all-uses coverage by 30% (w.r.t. the mutation score achieved).

The SEBT criterion is primarily meant for classical operators like arithmetical (+,−, ∗, /)
and logical (&&, ||, !) ones. Nevertheless, the key idea can easily be extended to more so-
phisticated language features. We already examined its applicability to coding errors con-
cerning arrays, general computation failures due to rounding, inheritance, polymorphism,
method overloading, and to data flow aspects [Fri09]. Applying SEBT to multi-threading
faults is still an open and challenging task.

References

[Bar00] A. Baresel. Automatisierung von Strukturtests mit evolutionären Algorithmen. Diploma
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