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Abstract: Temporal expressions are important structures in natural language. In 
order to understand text, temporal expressions have to be extracted and normalized 
to ISO-based values. For these purposes rule-based and machine learning 
techniques were proposed. In this paper we present and compare two approaches 
for automatic recognition of temporal expressions in free text, based on a 
supervised machine learning approach and trained on an annotated corpus for 
temporal information, namely TimeBank. The first approach performs a token-by-
token classification following B-I-O encoding. The second one does a binary 
constituent-based classification of chunk phrases. Our experiments demonstrate 
that on the TimeBank corpus the constituent-based classification performs better 
than the token-based one. It achieves F1-measure values of 0.852 for the detection 
task and 0.828 when an exact match is required, which is better than the state-of-
the-art results for temporal expression detection on TimeBank. 

1 Introduction  

Temporal information extraction in free text has been a research focus since 1995, when 
temporal expressions, sometimes also referred to as time expressions or TIMEXes, were 
processed as single capitalized tokens within the scope of the Message Understanding 
Conference (MUC) and the Named Entity Recognition task. As the demand for more 
deep semantic analysis tools increased, rule-based systems were proposed to solve this 
problem. The rule-based approach is characterized by providing decent results with a 
high precision level, and yields the rules, which can be easily interpreted by humans. 
With the advent of new annotated linguistic corpora, supervised machine-learning 
approaches have become the enabling technique for many problems in natural language 
processing, among which are named entity recognition, parsing, tagging and semantic 
role labeling. In 2004 the Automated Content Extraction (ACE) launched a competition 
campaign for Temporal Expression Recognition Normalization, TERN. The tasks were 
set to identify temporal expressions in free text and normalize them providing ISO-based 
date-time values.  



While the ACE TERN initiative along with the provided corpus aimed at the recognition 
and normalization problems, more advanced temporal processing on the same dataset 
was not possible. The most recent annotation language for temporal expressions, 
TimeML [PCI03], and the underlying annotated corpus TimeBank [PHS03], opens up 
new horizons for automated temporal information extraction and reasoning.  

A large number of rule-based and machine learning approaches were proposed for 
identification of temporal expressions. Comparative studies became possible with 
standardized annotated corpora, such as the ACE TERN and TimeBank. While the ACE 
TERN corpus is very often used for performance reporting, it restricts the temporal 
analysis to identification and normalization. By contrast, TimeBank provides a basis for 
all-around temporal processing, but lacks experimental results. In this paper we describe 
and compare two supervised machine learning approaches for identifying temporal 
information in free text. Both are trained on TimeBank, but follow two different 
classification techniques: token-by-token following B-I-O encoding and constituent-
based classifications. 

The remainder of the paper is organized as follows. In Section 2 we provide the details 
of relevant work done in this field along with corpora and annotations schemes used. 
Section 3 describes the approaches. Experimental setup, results and error analysis are 
provided in Section 4. Finally, Section 5 gives an outlook for further improvements and 
research. 

2 Related Work 

Since the task of temporal information extraction is not new, there have been a large 
number of implementations primary developed in the scope of the ACE TERN 
evaluations with the underlying corpus. As TimeBank provides annotations for more 
deep semantic analysis of temporal aspects in natural language, there have been also 
attempts of temporal taggers for this corpus, but very few. For better understanding of 
the performance levels provided in the paper we first describe evaluation metrics defined 
for the temporal expression recognition task and then the datasets and methods used in 
previous research. 

2.1 Evaluation Metrics 

With the start of the ACE TERN competition in 2004, two major evaluation conditions 
were proposed: Recognition+Normalization (full task) and Recognition only [TE04]. 



2.1.1 Detection (Recognition) 

Detection is a preliminary task towards the full TERN task, in which temporally relevant 
expressions have to be found. The scoring is very generous and implies a minimal 
overlap in the extent of the reference and the system output tags. As long as there is at 
least one overlapping character, the tags will be aligned. Any alignment of the system 
output tags are scored as a correct detection. 

2.1.2 Sloppy Span  

Spans usually refer to strict match of both boundaries (the extent) of a temporal 
expression (see Exact Match). “Sloppy” admits recognized temporal expressions as long 
as their right-side boundary is the same as in the corresponding TimeBank’s extents 
[BA05]. The motivation was to assess the correctness of temporal expressions 
recognized in TimeBank, which was reported as inconsistent with respect to some left-
side boundary items, such as determiners and pre-determiners. 

2.1.3 Exact Match (Bracketing or Extent Recognition)  

Exact match measures the ability of the system to correctly identify the extent of the 
TIMEX. The extent of the reference and the system output tags must match exactly the 
system output tag to be scored as correct. 

2.2 Datasets 

To date, there are two annotated corpora used for performance evaluations of temporal 
taggers, the ACE TERN corpus and TimeBank [PHS03]. In this section we provide a 
brief description of the temporal corpora and annotation standards.  

2.2.1 ACE TERN Corpus  

Most of the implementations referred to as the state-of-the-art were developed in the 
scope of the ACE TERN 2004. For evaluations, a training corpus of 862 documents with 
about 306 thousand words was provided. Each document represents a news article 
formatted in XML, in which TIMEX2 XML tags denote temporal expressions. The total 
number of temporal expressions for training is 8047 TIMEX2 tags with an average of 
10.5 per document. The test set comprises 192 documents with 1828 TIMEX2 tags 
[Ferro04].  



The annotation of temporal expressions in the ACE corpus was done with respect to the 
TIDES annotation guidelines [Ferro03]. The TIDES standard specifies so-called 
markable expressions, whose syntactic head must be an appropriate lexical trigger, e.g. 
“minute”, “afternoon”, “Monday”, “8:00”, “future” etc. When tagged, the full extent of 
the tag must correspond to one of the grammatical categories: nouns (NN, NNP), noun 
phrases (NP), adjectives (JJ), adjective phrases (ADJP), adverbs (RB) and adverb 
phrases (ADVP). According to this, all pre- and postmodifiers as well as dependent 
clauses are also included to the TIMEX2 extent, e.g. “five days after he came back”, 
“nearly four decades of experience”. Such a broad extent for annotations is of course 
necessary for correct normalization, but on the other hand, introduces difficulties for 
exact match. Another important characteristic of the TIDES standard are the nested 
temporal expressions as for example: 

<TIMEX2>The<TIMEX2 VAL = "1994"> 1994 </TIMEX2> baseball season 
</TIMEX2> 

2.2.2 TimeBank Corpus  

The most recent annotation language for temporal expressions, TimeML [PCI03], with 
an underlying corpus TimeBank [PHS03], opens up new avenues for temporal 
information extraction. Besides the specification for temporal expressions, i.e. TIMEX3, 
which is to a large extent inherited from TIDES, TimeML provides a means to capture 
temporal semantics by annotations with suitably defined attributes for fine-grained 
specification of analytical detail [BP07]. The annotation schema establishes new entity 
and relation marking tags along with numerous attributes for them. This advancement 
influenced the extent for event-based temporal expression, in which dependent clauses 
are no longer included into TIMEX3 tags. The TimeBank corpus includes 186 
documents with 68.5 thousand words and 1423 TIMEX3 tags. 

2.3 Approaches for Temporal Tagging 

As for any recognition problem, there are two major ways to solve it. Historically, rule-
based systems were first implemented. Such systems are characterized by a great human 
effort in data analysis and rule writing. Delivering high precision results such systems 
can be successfully employed for recognition of temporal expressions, whereas the recall 
reflects the effort put into the rule development. By contrast, machine learning methods 
require an annotated training set, and with a decent feature design and a minimal human 
effort can provide comparable or even better results than rule-based implementations. As 
the temporal expression recognition is not only about to detect them but also to provide 
an exact match, machine learning approaches can be divided into token-by-token 
classification following B(egin)-I(nside)-O(utside) encoding and binary constituent-
based classification, in which an entire chunk-phrase is under consideration to be 
classified as a temporal expression or not. In this case, exact segmentation is the 
responsibility of the chunker or the parser used. 



2.3.1 Rule-based Systems  

One of the first well-known implementations of temporal taggers was presented in 
[Mani00]. The approach relies on a set of hand-crafted and machine-discovered rules, 
which based upon shallow lexical features. On average the system achieved a value of 
0.832 for F1-measure against hand-annotated data. The dataset used comprised a set of 
22 New York Times articles and 199 transcripts of Voice of America taken from the 
TDT2 collection [Graff99]. It should be noted that the reported performance was 
provided in terms of an exact match. Another example of rule-based temporal taggers is 
Chronos, described in [NM04], which achieved the highest F1-scores in the ACE TERN 
2004 of 0.926 and 0.878 for recognition and exact match respectively.  

Recognition of temporal expressions using TimeBank as an annotated corpus, is reported 
in [BA05] and based on a cascaded finite-state grammar (500 stages and 16000 
transitions). A complex approach achieved an F1-measure value of 0.817 for exact 
match and 0.896 for detecting “sloppy” spans.  Another known implementation for 
TimeBank is GUTime1 – an adaptation of [Mani00] from TIMEX2 to TIMEX3 with no 
reported performance level. 

2.3.2 Machine Learning Recognition Systems 

Successful machine learning TIMEX2 recognition systems are described in [Ahn05; 
HCD05; PST07]. Proposed approaches made use of a token-by-token classification for 
temporal expressions represented by B-I-O encoding with a set of lexical and syntactic 
features, e.g., token itself, part-of-speech tag, label in the chunk phrase and the same 
features for each token in the context window. The performance levels are presented in 
Table 1. All the results were obtained on the ACE TERN dataset. 

Approach F1 (detection) 
F1 

(exact match) 
Ahn et al. [Ahn05] 0.914 0.798 
Hacioglu et al. [HCD05] 0.935 0.878 
Poveda et al. [PST07] 0.986 0.757 

Table 1: Performance of machine learning approaches with B-I-O encoding 

Constituent-based, also known as chunk-based, classification approach for temporal 
expression recognition was presented in [Ahn07]. By comparing to the previous work of 
the same authors [Ahn05] and on the same ACE TERN dataset, the method demonstrates 
a slight decrease in detection with F1-measure of 0.844 and a nearly equivalent F1-
measure value for exact match of 0.787.   

The major characteristic of machine learning approaches was a simple system design 
with a minimal human effort. Machine-learning based recognition systems have proven 
to have a comparable recognition performance level to state-of-the-art rule-based 
detectors. 

                                                           
1 http://www.timeml.org/site/tarsqi/modules/gutime/index.html 



3 Our Approaches 

The approaches presented in this section employ a supervised machine learning 
algorithm following a similar feature design but different classification strategies. Both 
classifiers implement a Maximum Entropy Model2. 

3.1 Token-based Classification Approach 

Multi-class classifications, such as the one with B-I-O encoding, are a traditional way for 
detection tasks in natural language processing, for example Named Entity Recognition 
and chunking. This method does not require deep and time-consuming pre-processing 
and merely relies on shallow lexical and syntactical features generated for each token 
under consideration and in the context window. For this approach we employ the 
OpenNLP toolkit3 when pre-processing the data. The toolkit makes use of the same 
Maximum Entropy model for detecting sentence boundaries, part-of-speech (POS) 
tagging and parsing tasks [Ratn96; Ratn99]. The tokenized output along with detected 
POS tags is used for generating feature vectors with one of the labels from the B-I-O 
encoding. The feature-vector design comprises the initial token in lowercase, POS 
tagger, character type and character type pattern4. Character type and character type 
pattern features are implemented following Ahn et al. [Ahn05]. The patterns are defined 
by using the symbols X, x and 9. X and x are used for character type as well as for 
character type patterns for representing capital and lower-case letters for a token. 9 is 
used for representing numeric tokens. Once the character types are computed, the 
corresponding character patterns are produced. A pattern consists of the same symbols as 
character types, and contains no sequential redundant occurrences of the same symbol. 
For example, the token “January” has character type “Xxxxxxx” and pattern “X(x)”. The 
same feature design is applied to each token in the context window of three tokens to the 
left and to the right in the sequence limited by sentence boundaries. 

                                                           
2 http://maxent.sourceforge.net/ 
3 http://opennlp.sourceforge.net/ 
4 In literature such patterns are also known as shorttypes. 



3.2 Constituent-based Classification Approach 

For constituent-based classification the entire phrase is under consideration to be labeled 
as a TIMEX or not. We restrict the classification for the following phrase types and 
grammatical categories derived from the Penn Treebank tagset: nouns (NN), proper 
nouns (NNP), cardinals (CD), noun phrases (NP), adjectives (JJ), adjective phrases 
(ADJP), adverbs (RB), adverbial phrases (ADVP) and prepositional phrases (PP). In 
order to make it possible, for each sentence we parse the initial input line with a 
Maximum Entropy parser [Ratn99] and extract all phrase candidates with respect the 
types defined above. Each phrase candidate is examined against the manual annotations 
for temporal expressions found in the sentence. Those phrases, which correspond to the 
temporal expressions in the sentence are taken as positive examples, while the rest are 
considered as a negative set. Only one sub-tree from a parse is marked as positive for a 
distinct TIMEX at once.  After that, for each candidate we produce a feature vector, 
which includes the following features: head phrase, head word, part-of-speech for head 
word, character type and character type pattern (see Section 3.1) for head word as well 
as for the entire phrase. For example, the constituent “January 30th” has character type 
“Xxxxxxx 99xx” and pattern “X(x) (9)(x)”. 

4 Experiments, Results and Error Analysis 

All experiments were conducted following 10-fold cross validation and evaluated with 
respect to the to the TERN 2004 evaluation plan described in Section 2.1. 

4.1 Token-based Classification Experiments 

After pre-processing the textual part of TimeBank, we received a set of 26509 tokens 
with 1222 correctly aligned TIMEX3 tags. Due to a token-based classification strategy 
our evaluation for the detection task is stricter than the ACE TERN methodology (see 
Section 2.1). While the ACE TERN evaluations measure the results requiring one 
overlapping character to be correct we compare obtained labels for entire tokens.  The 
experimental results demonstrated the performance in detection of temporal expressions 
with precision, recall and F1-measure at 0.928, 0.628 and 0.747 respectively. When an 
exact match is required, the classifier performs at the level of 0.888, 0.382 and 0.532 for 
precision, recall and F1-measure respectively.  

4.2 Constituent-based Classification Experiments 

After pre-processing the TimeBank corpus of 182 documents we had 2612 parsed 
sentences with 1224 temporal expressions in them. 2612 sentences resulted in 49656 
phrase candidates.   



After running experiments the classifier demonstrated the performance in detection of 
TIMEX3 tags with precision, recall and F1-measure at 0.872, 0.836 and 0.852 
respectively. Since the candidate phrases provided by the parser do not always exactly 
align annotated temporal expressions, the results for the exact match experiments are 
constrained by an estimated upper-bound recall of 0.919. The experiments on exact 
match demonstrated a small decline of performance level and received scores of 0.866, 
0.796 and 0.828 for precision, recall and F1-measure respectively. 

4.3 Comparison and Improvements 

Comparing the performance levels of the tested temporal taggers, we discovered the 
differences in classification results of chunk-based and token-based approaches with 
corresponding F1-measure values of 0.852 vs. 0.747 for detection, and 0.828 vs. 0.532 
for exact match.  Previous experiments on the ACE TERN corpus, especially those in 
[Ahn05; Ahn07], confirmed the same phenomenon and reported a drop in F1-measure 
between detection and exact match, but the token-based approach delivers generally 
better results. For our experimental results we assume that the problem lies in a local 
token classification with pure lexico-syntactic features. A context-dependent 
classification may solve it. In order to prove this hypothesis, the next series of 
experiments is performed with an additional feature set, which contains the classification 
results obtained for preceding tokens, so called Maximum Entropy Markov Model. The 
experimental setup varies the number of previously consecutive obtained labels between 
1 and 3 with the same context window size of 3 tokens to the left and to the right. The 
context is considered within the sentence only. The results of these experiments are 
presented in Table 2. The number of the previously obtained labels used as features is 
denoted by N, with N=0 as a baseline, which is described above (see Section 3.1) 

N 
Detection  Exact match 

P R F1 P R F1 
0 0.928 0.628 0.747 0.888 0.382 0.532 
1 0.946 0.686 0.793 0.921 0.446 0.599 
2 0.94 0.652 0.768 0.911 0.426 0.578 
3 0.936 0.645 0.762 0.905 0.414 0.566 

Table 2: Performance of machine learning approaches with B-I-O encoding 

It is worth to mention that by taking into account labels obtained for preceding tokens 
the performance level rises and reaches the maximum at N=1 for both, the detection and 
exact match tasks, and decreases from N=2 onwards.  

Putting the received figures in context, we can conclude that the chunk-based machine 
learning approach for temporal expression recognition performed at a comparable 
operational level to the state-of-the-art rule-based approach of Boguraev and Ando 
[BA05] and outperformed it in exact match. A comparative performance summary is 
presented in Table 3.  



 
 P R F1 

Detection 

CBC approach 0.872 0.836 0.852 

Sloppy Span 

Boguraev and Ando 
[BA05] 

0.852 0.952 0.896 

Exact Match 

CBC approach 0.866 0.796 0.828 
Boguraev and Ando 
[BA05] 

0.776 0.861 0.817 

Table 3. Comparative performance summary for the constituent-based classification (CBC) 
approach. 

4.4 Error Analysis 

Analyzing the classification errors we see several causes for them. We realized that the 
current version of TimeBank, TimeBank 1.2, is still noisy with respect to annotated data. 
An ambiguous use of temporal triggers in different context, like “today”, “now”, 
“future”, makes correct identification of relatively simple temporal expressions difficult. 
Sometimes it is very hard even for humans to identify the use of obvious temporal 
triggers in a specific context. As a result, many occurrences of such triggers remained 
unannotated, for which TIMEX3 identification could not be properly carried out.   Apart 
of obvious incorrect parses, inexact alignment between temporal expressions and 
candidate phrases was caused by annotations that occurred at the middle of a phrase, for 
example “eight-years-long”, “overnight”, “yesterday’s”. In total there are 99 TIMEX3 
tags (or 8.1%) misaligned with the parser output, which resulted in 53 (or 4.3%) 
undetected TIMEX3s. Definite and indefinite articles are unsystematically left out or 
included into TIMEX3 extent, which introduces an additional bias in classification.  



5 Conclusion and Future Work  

In this paper we presented two machine learning approaches for detecting temporal 
expressions using a recent annotated corpus for temporal information, TimeBank. The 
first approach implements a token-by-token classifier following B-I-O encoding, the 
second one performs a constituent-based classification. The feature design for both 
methods is very similar and takes into account contentual and contextual features. The 
obtained results were evaluated with respect to the ACE TERN evaluation plan for the 
two following tasks: detection and exact match. As the evaluation showed, both 
approaches provide a good performance level for detection temporal expressions, 
whereas constituent-based classification outperforms token-based one, with F1-measure 
values of 0.852 vs. 0.747. If an exact match is required, only the constituent-based 
classification can provide reliable recognition with a F1-measure value of 0.828. For the 
same task token-based classification reaches only 0.532 in terms of F1-measure. The 
token-based method in this case has very low recall values, which results in a low overall 
performance. By employing additional features that represent the classification history of 
previous tokens, so called Maximum Entropy Markov Model, the method increases the 
performance level and reaches its maximum, when only the classification result for the 
previous token is used (with F1-measures of 0.793 and 0.599 for detection and exact 
match respectively).   

Our best results were obtained by the binary constituent-based classification approach 
with shallow syntactic and lexical features. The method achieved a performance level to 
a rule-based approach presented in [BA05] and for the exact match task our approach 
even outperforms the latter. Although a direct comparison with other state-of-the-art 
systems is not possible, due to different evaluation corpora, annotation standards and 
corpus volumes, our experiments disclose a very important characteristic. While the 
recognition systems in the ACE TERN 2004 reported a substantial drop of F1-measure 
between detection and exact match results (6.5 - 11.6%), our phrase-based detector 
demonstrates a light decrease in F1-measure (2.4%), whereas the precision declines only 
by 0.6%. This important finding leads us to the conclusion that most of TIMEX3s in 
TimeBank can be detected at a phrase-based level with a reasonably high performance.  

Despite a good recognition performance level there is, of course, room for improvement. 
Many implementations in the ACE TERN 2004 employ a set of apparent temporal 
tokens as one of the features; by contrast, we learn them from data. In our 
implementation, the classifier has difficulties with very simple temporal expressions 
such as “now”, “future”, “current”, “currently”, “recent”, “recently”. A direct 
employment of vocabularies with temporal tokens may substantially increase the F1-
measure of the presented methods, however, it yet has to be proven. As reported in 
[Ahn07] a precise recognition of temporal expressions is a prerequisite for accurate 
normalization.  



With our detector and a future normalizer we are able make the first step towards a 
comprehensive temporal analysis of free text. Our future work will be focused on 
improving current results by a new feature design, finalizing the normalization task and 
identification of temporal relations. All these components will result in a solid system 
infrastructure for all-around temporal analysis.  

Acknowledgments   

This work has been partly funded by the Flemish government (through IWT) and by 
Space Applications Services NV as part of the ITEA2 project LINDO (ITEA2-06011). 

References 

[Ahn05] Ahn, D.; Adafre, S. F.; de Rijke, M.: Extracting Temporal Information from Open 
Domain Text: A Comparative Exploration. Digital Information Management, 3(1):14—
20, 2005. 

[Ahn07] Ahn, D.; van Rantwijk, J.; de Rijke, M.: A Cascaded Machine Learning Approach to 
Interpreting Temporal Expressions. In: NAACL-HLT 2007, 2007. 

[BA05] Boguraev, B.; Ando, R. K.: TimeBank-Driven TimeML Analysis. In: Annotating, 
Extracting and Reasoning about Time and Events. Dagstuhl Seminar Proceedings. 
Dagstuhl, Germany, 2005. 

[BP07] Boguraev, B.; Pustejovsky, J.; Ando, R.; Verhagen, M.: TimeBank Evolution as a 
Community Resource for TimeML Parsing. Language Resource and Evaluation, 41(1), 
91—115, 2007. 

[Ferro03] Ferro, L.; Gerber, L.; Mani, I.; Sundheim, B.; Wilson, G.: TIDES 2003 Standard for the 
Annotation of Temporal Expressions, http://timex2.mitre.org, 2003. 

[Ferro04] Ferro, L.: TERN Evaluation Task Overview and Corpus, 
http://fofoca.mitre.org/tern_2004/ferro1_TERN2004_task_corpus.pdf, 2004 

[Graff99] Graff, D.; Cieri, C.; Strassel, S.; Martey, N.: The TDT-2 Text and Speech Corpus. In: 
Proceedings of the DARPA Broadcast News Workshop, 1999; pp. 57—60. 

[HCD05] Hacioglu, K.; Chen, Y.; Douglas, B.: Automatic Time Expression Labeling for English 
and Chinese Text. In: Proceedings of the Conference on Intelligent Text Processing and 
Computational Linguistics 2005. Lecture Notes in Computer Science, vol. 3406, 
Springer-Verlag,  2005; pp. 348—359. 

[Mani00] Mani, I.; Wilson, G.: Robust Temporal Processing of News. In: Proceedings of the 38th 
Annual Meeting on Association for Computational Linguistics (Hong Kong, October 03 
- 06, 2000). Annual Meeting of the ACL. Association for Computational Linguistics, 
Morristown, NJ, 2000; pp. 69—76. 

[NM04] Negri, M.; Marseglia, L.: Recognition and Normalization of Time Expressions: ITC-irst 
at TERN 2004. Technical Report, ITC-irst, Trento, 2004. 

[PST07] Poveda, J.; Surdeanu, M.; Turmo, J.: A Comparison of Statistical and Rule-Induction 
Learners for Automatic Tagging of Time Expressions in English. In: Proceedings of the 
International Symposium on Temporal Representation and Reasoning, 2007; pp. 141—
149. 

[PCI03] Pustejovsky, J.; Castaño, J.; Ingria, R.; Saurí, R.; Gaizauskas, R.; Setzer, A.; Katz, G.: 
TimeML: Robust Specification of Event and Temporal Expressions in Text. In: IWCS-5, 
Fifth International Workshop on Computational Semantics, 2003. 



[PHS03] Pustejovsky, J.; Hanks, P.; Saurí, R.; See, A.; Day, D.; Ferro, L.; Gaizauskas, R.; Lazo, 
M.; Setzer, A.; Sundheim, B.: The TimeBank Corpus. Corpus Linguistics 2003, 647—
656, 2003. 

[Ratn96] Ratnaparkhi, A.: A Maximum Entropy Model for Part-of-Speech Tagging, In: 
Conference on Empirical Methods in Natural Language Processing, 1996; pp. 133—142. 

[Ratn99] Ratnaparkhi, A.: Learning to Parse Natural Language with Maximum Entropy Models. 
Machine Learning, 34(1): 151—175, 1999. 

[TE04] TERN 2004 Evaluation Plan, http://fofoca.mitre.org/tern_2004/tern_evalplan-
2004.29apr04.pdf, 2004. 

 


