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Abstract: Temporal expressions are important structuresaioral language. In

order to understand text, temporal expressions twabe extracted and normalized
to 1SO-based values. For these purposes rule-based machine learning

techniques were proposed. In this paper we premshicompare two approaches
for automatic recognition of temporal expressions fiee text, based on a
supervised machine learning approach and trainecromnnotated corpus for
temporal information, namely TimeBank. The first eggrh performs a token-by-

token classification following B-I-O encoding. Theecond one does a binary
constituent-based classification of chunk phrasas: experiments demonstrate
that on the TimeBank corpus the constituent-basaskification performs better

than the token-based one. It achieves F1-measlresvaf 0.852 for the detection
task and 0.828 when an exact match is required;hnilsi better than the state-of-
the-art results for temporal expression detectioTineBank.

1 Introduction

Temporal information extraction in free text hagba research focus since 1995, when
temporal expressions, sometimes also referred tinasexpressions or TIMEXes, were
processed as single capitalized tokens within tope of the Message Understanding
Conference (MUC) and the Named Entity Recognitiaskt As the demand for more
deep semantic analysis tools increased, rule-bspgsteéms were proposed to solve this
problem. The rule-based approach is characterizedraviding decent results with a
high precision level, and yields the rules, whien de easily interpreted by humans.
With the advent of new annotated linguistic corposapervised machine-learning
approaches have become the enabling techniquedny problems in natural language
processing, among which are named entity recognifi@rsing, tagging and semantic
role labeling. In 2004 the Automated Content Extoac(ACE) launched a competition
campaign for Temporal Expression Recognition Noizagibn, TERN. The tasks were
set to identify temporal expressions in free texd aormalize them providing ISO-based
date-time values.



While the ACE TERN initiative along with the proed corpus aimed at the recognition
and normalization problems, more advanced tempm@tessing on the same dataset
was not possible. The most recent annotation laggur temporal expressions,

TimeML [PCI03], and the underlying annotated corfumeBank [PHS03], opens up

new horizons for automated temporal informatiorration and reasoning.

A large number of rule-based and machine learnipgr@aches were proposed for
identification of temporal expressions. Comparatstedies became possible with
standardized annotated corpora, such as the ACENT&R TimeBank. While the ACE
TERN corpus is very often used for performance riépg it restricts the temporal
analysis to identification and normalization. Byntrast, TimeBank provides a basis for
all-around temporal processing, but lacks expertaigmsults. In this paper we describe
and compare two supervised machine learning appesador identifying temporal
information in free text. Both are trained on Ting®, but follow two different
classification techniques: token-by-token followigl-O encoding and constituent-
based classifications.

The remainder of the paper is organized as folldwsSection 2 we provide the details
of relevant work done in this field along with corp and annotations schemes used.
Section 3 describes the approaches. Experimentah,seesults and error analysis are
provided in Section 4. Finally, Section 5 givesaanlook for further improvements and
research.

2 Related Work

Since the task of temporal information extractismot new, there have been a large
number of implementations primary developed in #wmpe of the ACE TERN
evaluations with the underlying corpus. As TimeBanrkvides annotations for more
deep semantic analysis of temporal aspects in alatamguage, there have been also
attempts of temporal taggers for this corpus, ey \few. For better understanding of
the performance levels provided in the paper vat fiescribe evaluation metrics defined
for the temporal expression recognition task areh tthe datasets and methods used in
previous research.

2.1 Evaluation Metrics

With the start of the ACE TERN competition in 20@p major evaluation conditions
were proposed: Recognition+Normalization (full faakd Recognition only [TEO4].



2.1.1 Detection (Recognition)

Detection is a preliminary task towards the fullRNE task, in which temporally relevant
expressions have to be found. The scoring is venyegus and implies a minimal
overlap in the extent of the reference and theesystutput tags. As long as there is at
least one overlapping character, the tags will lgned. Any alignment of the system
output tags are scored as a correct detection.

2.1.2 Sloppy Span

Spans usually refer to strict match of both bouiedainthe extent) of a temporal
expression (see Exact Match). “Sloppy” admits reioed temporal expressions as long
as their right-side boundary is the same as incthreesponding TimeBank’s extents
[BAO5]. The motivation was to assess the correstne$ temporal expressions
recognized in TimeBank, which was reported as isist@nt with respect to some left-
side boundary items, such as determiners and peerdi@ers.

2.1.3 Exact Match (Bracketing or Extent Recognition)

Exact match measures the ability of the systemotoectly identify the extent of the
TIMEX. The extent of the reference and the systemtput tags must match exactly the
system output tag to be scored as correct.

2.2 Datasets

To date, there are two annotated corpora usedeidonqmance evaluations of temporal
taggers, the ACE TERN corpus and TimeBank [PHSD8this section we provide a
brief description of the temporal corpora and aatioh standards.

2.21 ACE TERN Corpus

Most of the implementations referred to as theestditthe-art were developed in the
scope of the ACE TERN 2004. For evaluations, aningi corpus of 862 documents with
about 306 thousand words was provided. Each documsgmesents a news article
formatted in XML, in which TIMEX2 XML tags denotemnporal expressions. The total
number of temporal expressions for training is 804VIEX2 tags with an average of
10.5 per document. The test set comprises 192 demismwith 1828 TIMEX2 tags

[Ferro04].



The annotation of temporal expressions in the AGEpus was done with respect to the
TIDES annotation guidelines [Ferro03]. The TIDESanstard specifies so-called

markable expressions, whose syntactic head muahkappropriate lexical trigger, e.g.

“minute”, “afternoon”, “Monday”, “8:00", “future” ¢éc. When tagged, the full extent of

the tag must correspond to one of the grammatii@gories: nouns (NN, NNP), noun
phrases (NP), adjectives (JJ), adjective phrasd3JP) adverbs (RB) and adverb
phrases (ADVP). According to this, all pre- and tpoxdifiers as well as dependent
clauses are also included to the TIMEX2 extent, Hige days after he came back”,

“nearly four decades of experience”. Such a brogdng for annotations is of course
necessary for correct normalization, but on thesiotiand, introduces difficulties for

exact match. Another important characteristic af fIDES standard are the nested
temporal expressions as for example:

<TIMEX2>The<TIMEX2 VAL = "1994"> 1994 </TIMEX2> basball season
</TIMEX2>

2.2.2 TimeBank Corpus

The most recent annotation language for temponatessions, TimeML [PCI03], with
an underlying corpus TimeBank [PHSO03], opens up reenues for temporal
information extraction. Besides the specificationtemporal expressions, i.e. TIMEXS,
which is to a large extent inherited from TIDESmEML provides a means to capture
temporal semantics by annotations with suitablyingef attributes for fine-grained
specification of analytical detail [BP0O7]. The ataion schema establishes new entity
and relation marking tags along with numerous laitds for them. This advancement
influenced the extent for event-based temporal esgion, in which dependent clauses
are no longer included into TIMEX3 tags. The TimaBacorpus includes 186
documents with 68.5 thousand words and 1423 TIMEXS3.

2.3 Approachesfor Temporal Tagging

As for any recognition problem, there are two majarys to solve it. Historically, rule-
based systems were first implemented. Such systeensharacterized by a great human
effort in data analysis and rule writing. Delivagihigh precision results such systems
can be successfully employed for recognition ofgeral expressions, whereas the recall
reflects the effort put into the rule developmedy.contrast, machine learning methods
require an annotated training set, and with a defesrture design and a minimal human
effort can provide comparable or even better reghtin rule-based implementations. As
the temporal expression recognition is not onlyuatio detect them but also to provide
an exact match, machine learning approaches canliided into token-by-token
classification following B(egin)-I(nside)-O(utsidedncoding and binary constituent-
based classification, in which an entire chunk-paras under consideration to be
classified as a temporal expression or not. In tldse, exact segmentation is the
responsibility of the chunker or the parser used.



2.3.1 Rule-based Systems

One of the first well-known implementations of tesn@l taggers was presented in
[Mani00]. The approach relies on a set of handtedaind machine-discovered rules,
which based upon shallow lexical features. On ayeithe system achieved a value of
0.832 for F1-measure against hand-annotated datadataset used comprised a set of
22 New York Times articles and 199 transcripts @icé of America taken from the
TDT2 collection [Graff99]. It should be noted th#te reported performance was
provided in terms of an exact match. Another exangblrule-based temporal taggers is
Chronos, described in [NM04], which achieved thghkist F1-scores in the ACE TERN
2004 of 0.926 and 0.878 for recognition and exaaticinrespectively.

Recognition of temporal expressions using TimeBasmkn annotated corpus, is reported
in [BAO5] and based on a cascaded finite-state gram(500 stages and 16000
transitions). A complex approach achieved an Flsmeavalue of 0.817 for exact
match and 0.896 for detecting “sloppy” spans. Aeotknown implementation for
TimeBank is GUTim&— an adaptation of [Mani00] from TIMEX2 to TIMEX®8ith no
reported performance level.

2.3.2 Machine L ear ning Recognition Systems

Successful machine learning TIMEX2 recognition sy are described in [Ahn05;
HCDO5; PSTO07]. Proposed approaches made use dfea-tiy-token classification for
temporal expressions represented by B-I-O encoditty a set of lexical and syntactic
features, e.g., token itself, part-of-speech tabel in the chunk phrase and the same
features for each token in the context window. peegormance levels are presented in
Table 1. All the results were obtained on the AGERN dataset.

Approach F1 (detection (exaclilmatch)
Ahn et al. [Ahn05] 0.914 0.798
Hacioglu et al. [HCDO5] 0.935 0.878
Poveda et al. [PSTO07] 0.986 0.757

Table 1: Performance of machine learning approaeifitésB-1-O encoding

Constituent-based, also known as chunk-based, ifcdas®n approach for temporal
expression recognition was presented in [Ahn07]c8wmparing to the previous work of
the same authors [Ahn05] and on the same ACE TE®RBbdt, the method demonstrates
a slight decrease in detection with F1l-measure.844 and a nearly equivalent F1-
measure value for exact match of 0.787.

The major characteristic of machine learning apginea was a simple system design
with a minimal human effort. Machine-learning basedognition systems have proven
to have a comparable recognition performance ldwelstate-of-the-art rule-based
detectors.

! http://lwww.timeml.org/site/tarsqi/modules/gutimefex.html



3 Our Approaches

The approaches presented in this section employpergsed machine learning
algorithm following a similar feature design buffeient classification strategies. Both
classifiers implement a Maximum Entropy Model

3.1 Token-based Classification Approach

Multi-class classifications, such as the one with® encoding, are a traditional way for
detection tasks in natural language processingefample Named Entity Recognition
and chunking. This method does not require deeptiamel-consuming pre-processing
and merely relies on shallow lexical and syntattfeatures generated for each token
under consideration and in the context window. Hus approach we employ the
OpenNLP toolkit when pre-processing the data. The toolkit makes afsthe same
Maximum Entropy model for detecting sentence botueda part-of-speech (POS)
tagging and parsing tasks [Ratn96; Ratn99]. Thenided output along with detected
POS tags is used for generating feature vectors avie of the labels from the B-I-O
encoding. The feature-vector design comprises tfigali token in lowercase, POS
tagger, character type and character type pétt€haracter type and character type
pattern features are implemented following AhnlefAhn05]. The patterns are defined
by using the symbols X, x and 9. X and x are uswdcharacter type as well as for
character type patterns for representing capitdl lawer-case letters for a token. 9 is
used for representing numeric tokens. Once theacter types are computed, the
corresponding character patterns are producedtt&rpaconsists of the same symbols as
character types, and contains no sequential redarodzurrences of the same symbol.
For example, the token “January” has character Bfpexxxx” and pattern “X(x)". The
same feature design is applied to each token iedghtext window of three tokens to the
left and to the right in the sequence limited byteace boundaries.

2 http://maxent.sourceforge.net/
8 http://opennlp.sourceforge.net/
4 In literature such patterns are also known astsipas.



3.2 Constituent-based Classification Approach

For constituent-based classification the entirepéiris under consideration to be labeled
as a TIMEX or not. We restrict the classificatiar the following phrase types and
grammatical categories derived from the Penn Tmgeliagset: nouns (NN), proper
nouns (NNP), cardinals (CD), noun phrases (NP)edides (JJ), adjective phrases
(ADJP), adverbs (RB), adverbial phrases (ADVP) anepositional phrases (PP). In
order to make it possible, for each sentence waepéne initial input line with a
Maximum Entropy parser [Ratn99] and extract allgsler candidates with respect the
types defined above. Each phrase candidate is erdnasigainst the manual annotations
for temporal expressions found in the sentences@phrases, which correspond to the
temporal expressions in the sentence are takewssvp examples, while the rest are
considered as a negative set. Only one sub-tree &r@arse is marked as positive for a
distinct TIMEX at once. After that, for each catate we produce a feature vector,
which includes the following features: head phrdmsd word, part-of-speech for head
word, character type and character type patterm $&ztion 3.1) for head word as well
as for the entire phrase. For example, the coestittdanuary 30th” has character type
“Xxxxxxx 99xx” and pattern “X(x) (9)(x)".

4 Experiments, Resultsand Error Analysis

All experiments were conducted following 10-folcbss validation and evaluated with
respect to the to the TERN 2004 evaluation plamwcritesd in Section 2.1.

4.1 Token-based Classification Experiments

After pre-processing the textual part of TimeBawnle received a set of 26509 tokens
with 1222 correctly aligned TIMEX3 tags. Due toaken-based classification strategy
our evaluation for the detection task is strictaart the ACE TERN methodology (see
Section 2.1). While the ACE TERN evaluations meastite results requiring one

overlapping character to be correct we compareimmddalabels for entire tokens. The
experimental results demonstrated the performamcietection of temporal expressions
with precision, recall and F1-measure at 0.9282&.&nd 0.747 respectively. When an
exact match is required, the classifier performhatievel of 0.888, 0.382 and 0.532 for
precision, recall and F1-measure respectively.

4.2 Congtituent-based Classification Experiments

After pre-processing the TimeBank corpus of 182udoents we had 2612 parsed
sentences with 1224 temporal expressions in thé&h2 Zentences resulted in 49656
phrase candidates.



After running experiments the classifier demonstiathe performance in detection of
TIMEX3 tags with precision, recall and Fl-measure 0a872, 0.836 and 0.852

respectively. Since the candidate phrases provigethe parser do not always exactly
align annotated temporal expressions, the resattghe exact match experiments are
constrained by an estimated upper-bound recall .19 The experiments on exact
match demonstrated a small decline of performaecel land received scores of 0.866,
0.796 and 0.828 for precision, recall and F1-measespectively.

4.3 Comparison and | mprovements

Comparing the performance levels of the tested teaiptaggers, we discovered the
differences in classification results of chunk-lthssd token-based approaches with
corresponding F1-measure values of 0.852 vs. Of@ddetection, and 0.828 vs. 0.532
for exact match. Previous experiments on the AGRN corpus, especially those in
[AhnO5; Ahn07], confirmed the same phenomenon amibnted a drop in F1-measure
between detection and exact match, but the tokeaebapproach delivers generally
better results. For our experimental results weirassthat the problem lies in a local
token classification with pure lexico-syntactic tig@s. A context-dependent
classification may solve it. In order to prove thigpothesis, the next series of
experiments is performed with an additional featet which contains the classification
results obtained for preceding tokens, so callediiviam Entropy Markov Model. The
experimental setup varies the number of previoashsecutive obtained labels between
1 and 3 with the same context window size of 3 mski the left and to the right. The
context is considered within the sentence only. Témults of these experiments are
presented in Table 2. The number of the previooblgined labels used as features is
denoted by N, with N=0 as a baseline, which is deed above (see Section 3.1)

N Detection Exact match

P R F1 P R F1
0]0.928 0.628 | 0.747| 0.888 0.382 0.532
1]0.946 0.686 | 0.793| 0.921 0.446 0.599
2| 0.94| 0.652| 0.768 0.911 0.426 0.5Y8
310.936 0.645| 0.762| 0.905 0.414 0.566

Table 2: Performance of machine learning approaeifitesB-1-O encoding

It is worth to mention that by taking into accouaibels obtained for preceding tokens
the performance level rises and reaches the maxiaiuxd=1 for both, the detection and
exact match tasks, and decreases from N=2 onwards.

Putting the received figures in context, we canctade that the chunk-based machine
learning approach for temporal expression recagmitperformed at a comparable
operational level to the state-of-the-art rule-lbasg@proach of Boguraev and Ando
[BAO5] and outperformed it in exact match. A congiare performance summary is
presented in Table 3.



| P | R | R
Detection

CBCapproach | 0.872 | 0.836 0.851
Sloppy Span

Boguraev and Andg

[BAO5] 0.852 0.952 0.896

Exact Match

CBC approach 0.866 0.796 0.824

Boguraev and Andg
[BAOS] 0.776 0.861 0.817

Table 3. Comparative performance summary for thetitorent-based classification (CBC)
approach.

44 Error Analysis

Analyzing the classification errors we see seveaaises for them. We realized that the
current version of TimeBank, TimeBank 1.2, is stidisy with respect to annotated data.
An ambiguous use of temporal triggers in differeantext, like “today”, “now”,
“future”, makes correct identification of relatiyesimple temporal expressions difficult.
Sometimes it is very hard even for humans to iderttie use of obvious temporal
triggers in a specific context. As a result, mamgwrences of such triggers remained
unannotated, for which TIMEXS identification couldt be properly carried out. Apart
of obvious incorrect parses, inexact alignment ketw temporal expressions and
candidate phrases was caused by annotations thatred at the middle of a phrase, for
example “eight-years-long”, “overnight”, “yesterdgly In total there are 99 TIMEX3
tags (or 8.1%) misaligned with the parser outpuhictv resulted in 53 (or 4.3%)
undetected TIMEX3s. Definite and indefinite articlare unsystematically left out or
included into TIMEX3 extent, which introduces ardanal bias in classification.



5 Conclusion and Future Work

In this paper we presented two machine learningagmhes for detecting temporal
expressions using a recent annotated corpus fgpareahinformation, TimeBank. The
first approach implements a token-by-token classifollowing B-1-O encoding, the
second one performs a constituent-based classificahe feature design for both
methods is very similar and takes into account exaioial and contextual features. The
obtained results were evaluated with respect toAGE TERN evaluation plan for the
two following tasks: detection and exact match. #he evaluation showed, both
approaches provide a good performance level foeatien temporal expressions,
whereas constituent-based classification outpeddioken-based one, with F1-measure
values of 0.852 vs. 0.747. If an exact match isuireq, only the constituent-based
classification can provide reliable recognitiontwét F1-measure value of 0.828. For the
same task token-based classification reaches ab320in terms of F1-measure. The
token-based method in this case has very low reahles, which results in a low overall
performance. By employing additional features teatresent the classification history of
previous tokens, so called Maximum Entropy Markowddl, the method increases the
performance level and reaches its maximum, whewn thd classification result for the
previous token is used (with F1-measures of 0.48&B @599 for detection and exact
match respectively).

Our best results were obtained by the binary cusii-based classification approach
with shallow syntactic and lexical features. Thethod achieved a performance level to
a rule-based approach presented in [BAO5] andHereixact match task our approach
even outperforms the latter. Although a direct carigpn with other state-of-the-art
systems is not possible, due to different evalmatiorpora, annotation standards and
corpus volumes, our experiments disclose a veryoitapt characteristic. While the
recognition systems in the ACE TERN 2004 reportelilastantial drop of F1-measure
between detection and exact match results (6.5.6%) our phrase-based detector
demonstrates a light decrease in F1-measure (2wBgyeas the precision declines only
by 0.6%. This important finding leads us to the @osion that most of TIMEX3s in
TimeBank can be detected at a phrase-based letlehweasonably high performance.

Despite a good recognition performance level tigref course, room for improvement.
Many implementations in the ACE TERN 2004 emploget of apparent temporal
tokens as one of the features; by contrast, wenlgaem from data. In our
implementation, the classifier has difficulties hwivery simple temporal expressions
such as “now”, “future”, “current”, “currently”, ‘&cent”, ‘“recently”. A direct
employment of vocabularies with temporal tokens reapstantially increase the F1-
measure of the presented methods, however, it gettén be proven. As reported in
[AhnO7] a precise recognition of temporal expressids a prerequisite for accurate
normalization.



With our detector and a future normalizer we arke abake the first step towards a
comprehensive temporal analysis of free text. Quuré work will be focused on

improving current results by a new feature desfgmalizing the normalization task and
identification of temporal relations. All these cpoments will result in a solid system
infrastructure for all-around temporal analysis.
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