
A Fault-Tolerant Processor Architecture1

Abdelmajid Bouajila, Thomas Sommer, Johannes Zeppenfeld, Walter Stechele, Andreas Herkersdorf,
Institute for Integrated Systems
Technische Universität München, Arcisstr. 21, 80290 München, Germany
Email: a.bouajila@tum.de

Kurzfassung
In diesem Artikel wird eine neue Architektur für den Entwurf fehlertoleranter Prozessoren vorgestellt, die sich aus der
DIVA Technik ableitet. In DIVA wird ein Prüfmodul unmittelbar vor der Speicherstufe (commit stage) des Prozessors
eingefügt. Das Prüfmodul führt sowohl die Berechnungen als auch die Zugriffe auf den Hauptspeicher oder den Regis-
tersatz erneut aus. Das ursprüngliche DIVA Prüfmodul wird selbst als völlig zuverlässig angenommen. Wenn es einen
Fehler erkennt, korrigiert es ihn, speichert das Ergebnis (d.h. schreibt in den Hauptspeicher oder den Registersatz), leert
die Pipeline des Prozessors und startet sie mit dem nächsten Befehl.
In unserer Modifizierten DIVA Architektur nehmen wir nicht mehr an, dass das Prüfmodul völlig zuverlässig ist. Im Fal-
le eines Fehlers wird die Prozessor Pipeline geleert und mit dem fehlerverursachenden Befehl neu gestartet. Aus diesem
Grund ist unsere modifizierte Architektur zuverlässiger. Um die Leistung zu steigern werden die Lesezugriffe auf den
Hauptspeicher mit ECC geschützt und müssen nicht vom Prüfmodul getestet werden. Somit konkurrieren Prüfmodul und
Prozessor nicht um den Speicherzugriff, wie es in der ursprünglichen DIVA Umsetzung der Fall ist. Des Weiteren haben
wir das Anwendungsgebiet der DIVA Technik um auf einen Standard Pipelined RISC Prozessor erweitert (die ursprüng-
liche DIVA Technik war hauptsächlich für superskalare Architekturen gedacht).
Diese neuartigen Verbesserungen der Architektur werden im Folgenden erläutert, mit der ursprünglichen DIVA Technik
verglichen und die Ergebnisse der VHDL Umsetzung gezeigt. Für die Auswertung dieser neuen Technik wurden in
VHDL Simulationen Fehler injiziert.

Abstract
This paper presents a new architecture for Fault-Tolerant processor design inspired from the DIVA technique [1]. DIVA
consists of inserting a checker unit in front of the processor commit stage. The checker unit re-executes both computa-
tion and memory/register file reads. Whenever an error is detected, the original DIVA checker which is assumed to be
fully reliable fixes the error, then commits results (i.e. writes them to memory/register file), flushes the processor and
restarts it at the next instruction.
In our Modified DIVA architecture, we no longer assume that the checker is fully reliable. In case of error detection, the
processor is flushed and restarted at the erroneous instruction. Therefore our modified architecture is more reliable. In
order to increase performance, we protect external memory reads with ECC, our checker unit does not re-execute them
and therefore the checker and processor are no longer competing for memory accesses as was the case in original DIVA.
We have also extended the application of the DIVA technique to a standard RISC pipelined processor (original DIVA
was mainly aimed at Superscalar architectures).
These new architectural improvements in comparison to original DIVA are presented in this paper, and VHDL imple-
mentation results are reported. Fault injection in VHDL simulations was used to evaluate this new technique.

1 This work is supported by BMBF project 01 M 3083 “Autonome Integrierte Systeme."

1 Introduction
CMOS technology evolution leads to dense integrated cir-
cuits with ever smaller devices. Transistors in future inte-
grated circuits will contain only few atom dopants, which
will result in variability increase in the same chip [2].
Hence transistors within the same chip will have different
electrical characteristics. Also, as they contain small
amount of charges, they are more sensitive to external per-
turbations such as neutrons and alpha particles. This will
increase the probability of timing and soft error occurrence
[2] and will make the use of fault-tolerant design no longer
necessary solely in critical applications such as avionics
and medical, but also in consumer electronics.
Building reliable consumer electronics has tougher cost
constraints than in critical applications. So the question has
been how we can build fault-tolerant circuits while keep-
ing costs low.
In this paper, we present a low-cost fault-tolerant architec-
ture for processor protection. Subsection 1.1 will present
related work. Section 2 will present the original DIVA ar-
chitecture [1]. Section 3 will present the architecture of our
new technique which is inspired from DIVA. Section 4
presents implementation results and an evaluation. Para-
graph 5 concludes the paper.

1.1 Related work
In [9], Ernst et al. demonstrate the protection of a CPU
pipeline with Razor, a technique for the detection and cor-
rection of timing errors. Whenever an error is detected, a
one cycle delay is inserted for correction. This technique
does not protect the pipeline against transient errors.
Chardonnerau et al. [10] provide both timing and soft-error
detection. Their technique is based on Nicolaidis shadow
registers [11], and works by adding a second, shadow flip-
flop to each main flip-flop that is to be protected. By de-
laying the clock to the shadow flip-flop, both timing- and
soft-errors can be detected. The extra registers are added to
the inter-stage registers of the CPU. Error correction was
not addressed however. In Bouajila et al. [12], both timing
and transient errors are detected. The concept is also based
on using Nicolaidis shadow registers [11] as an error moni-
tor, with the addition of a custom micro-rollback imple-
mentation [13] for error correction.

2 Original DIVA Architecture
Speculative execution has been used in high performance
processors to decrease CPI. For instance, a branch predic-
tor may take wrong decisions but they will be discarded
later without register file and memory corruption. DIVA
uses such concepts in order to increase processor reliability
while keeping overheads low. In DIVA, a hardware check-
er is inserted in front of the processor commit stage (see
Figure 1). The DIVA core (see Figure 1) will compute the
instructions and forward in execution order each instruc-
tion opcode, its operands and results to the checker, which
will re-execute this instruction. In load/store architectures,
the instruction results can be either a register update
(arithmetic operations, load) or a memory update (store).
We say that an instruction has committed its results when
it writes them to the register file or memory system.
In case the checker results differ for those forwarded from
the DIVA core, an error is reported. The DIVA checker is
simple (no forwarding or prediction logic) so according
to [1] it will be assumed reliable, and its results will be
considered as correct. Thus in case of an error detection,
the checker results will be committed (written to the regis-
ter-file/memory).
As stated above, the checker unit receives the instruction
opcode, its operands, and its result. We can split the
checker verification mechanism into two tasks:
� Verifying the communication part of an instruction: read

operands again in RF. Memory loads are re-executed.
� Verifying the computation part of an instruction: arith-

metic operations, load/store address generation
In case of error detection, the original DIVA approach will
consider that the checker unit is fully reliable and its val-
ues will be used to commit the instruction. The DIVA core
will be flushed and will be restarted at the next instruction.
High level implementations of DIVA have been reported
in [1]. Main limitations identified by the authors are the
fact that the checker competes with the DIVA core on
external memory and in register file accesses. This re-
sults in a performance decrease. We should mention that
according to our knowledge no full DIVA architecture (in-
tegrated core processor and checker unit) register transfer
level implementation has been reported so far.

DIVA CheckerDIVA Core

out-of-order execute

CHK

instructions
with inputs
and outputs in-order verify

 and commit

Traditional Out-of-Order Core

WT

CTIF & ID

IURS

IURS

FPURS

ROB CT

nonspeculative results

in-order commitin-order issue

out-of-order execute

IF & ID

IURS

IURS

FPURS

ROB

in-order issue

Figure 1: DIVA Concept (DIVA consists of inserting a Checker Unit (CHK) before the

commit stage (CT), the processor is unchanged before the re-order buffer (ROB). The processor part till the ROB is un-
changed and is called DIVA core (see right figure)

3 Modified DIVA Architecture
DIVA has good fault coverage (design, soft, timing and
permanent faults) while keeping overheads low [5]. We
have had ideas to improve both the performance and the
reliability of this technique [3]. Also we are presenting ar-
chitectural investigations that apply the DIVA concept to a
standard RISC pipelined processor.
First, we think that it is not realistic that the checker
unit is fully reliable as assumed in original DIVA. Data
can get corrupted whenever the checker unit is struck by a
soft error. We should mention that Austin suggested scal-
ing up checker transistor size to increase their reliability.
This is cannot guarantee full checker correctness.
In order to solve this DIVA weakness, we suggest that in
case of error detection (DIVA core and checker unit dis-
agreement) both the DIVA core and checker unit must re-
execute the errant instruction. This will be implemented by
flushing the DIVA core (as done in original DIVA) and re-
issuing the errant instruction (in original DIVA, the in-
struction after the errant one was issued).
Second, in the original DIVA, re-executing communica-
tion accesses is done in the checker unit (instruction oper-

ands are read from the register file and load transactions
are re-executed). This seems unnecessary as we can
guarantee reliable communication with the memory
and register file by using techniques such as error cor-
recting codes (ECC). Therefore we suggest that the
checker unit re-executes only computation operations
and not communication. This will result in performance
increase in our new architecture. In fact, [7] already quan-
tified the performance loss due to communication re-
execution in the checker unit.
The DIVA architecture was presented to protect supersca-
lar processors (the overhead of the simple checker is esti-
mated to be a small part of the whole core). Thanks to
(modified) DIVA’s large fault-coverage [1][7], we think
that DIVA is an interesting fault-tolerance technique for
RISC pipelined processors. We investigated how to apply
modified DIVA to a Leon3 RISC 7-stage pipeline. The
main difficulty was that a RISC pipelined processor
has no clear separation between the execution units and
the commit stage. For example in the Leon3 processor,
commit stage is implemented in Memory pipeline stage for
Memory stores and on the Write-back pipeline stage for
register file writes (see Figure 2). A straightforward appli-
cation of the modified DIVA to Leon3 processor pipeline
would mean to postpone stores till the write-back and in-
sert the checker before the write-back.
The re-execution of instructions is achieved in parallel to
the exception stage (XC), the comparison of the checker
unit’s newly computed values with the leon3 values will be
done in CP stage (see Figure 2). The re-execution is not
done in a separate stage after XC stage, as this would re-
sult in the error being detected two cycles after XC stage.
This might be too late because an undetected error at XC
stage can result on exception occurrence which will
change processor state registers and which will be hard to
rollback.

4 Implementation
As proof of concept of our modified DIVA architecture,
we chose to implement it into a Leon3 processor [4] which
is a Sparc V8 compatible RISC pipelined processor. It is a
widely used open source soft-core. This will provide a
DIVA processor RTL implementation and will demon-
strate how DIVA applies to RISC pipelined processors
(DIVA was originally suggested for complex superscalar
processor protection). Following are the steps needed to
implement a (modified) DIVA into an existing processor:
� Identify the commit stage: register file writes and mem-

ory writes (stores). Therefore the original processor will
be split into commit stage and DIVA core (i.e. a proces-
sor without its commit stage)

� Insert a checker unit consisting of re-execution and
compare logic

� Implement a rollback mechanism in order to flush the
DIVA core and restart it at a certain instruction (errant
instruction in case of modified DIVA).

WB

RA
EX
IM
XC

IF
ID

op1inst

res

ad1

res

ad2inst

inst

PC

inst

inst

resinst

op2

RF

IC

RF

DC

Figure 2: The original 7-stage Leon3 RISC processor.

4.1 Leon3 Processor
The Leon3 is a 7-stage pipelined processor. It is similar to
the Hennessy and Patterson RISC pipeline [8], but with a
decode stage divided into two stages (decode and register
access stages). A new stage called the exception stage is
added as well, in which traps and interrupts are handled.
The functionality of the resulting 7 stages is as follows [4]:
1 IF (Instruction Fetch): Instructions are transferred from
the instruction cache.
2 DE (Decode): Operand addresses are extracted from the
instruction word.
3 RA (Register Access): Operands are read from the regis-
ter file.
4 EX (Execute): ALU operations are performed (including
base-offset calculations for memory addresses)
5 IM (Memory): Data is read from or written to the data
cache.
6 XC (Exception): Traps and interrupts are resolved.
7 WR (Writeback): The result of the operation is written to
the register file.
Most of Leon3 instructions take 1 cycle for excecution.
But stores take 2 cycles. Although loads take 1 cycle for
execution, they communicate with memory controller dur-
ing 2 cycles (EX and IM).

4.2 Commit Stage Identification
The commit stage includes the memory stores which are
implemented in the Leon3 memory stage (it should be
mentioned that the Leon3 pipeline communicates with the
memory controller during the execute and the memory).
The commit stage also includes the register file writes
(write-back stage).

4.3 Checker Unit Insertion
According to the DIVA design, the checker logic com-
prises a two-stage pipeline: one stage to redo the instruc-
tion (will be referenced as Redo in this paper) and one to
compare the checker results to that of the core (Compare
stage: CP). The lack of a reorder-buffer in the LEON3 re-
quires fitting the checker stages into the original 7-stage
pipeline. We chose the following design:
� An additional stage was inserted between the exception

and commit stages. It hosts the compare logic.
� The redo-logic is placed in the exception stage and proc-

essed in parallel to the exception logic.
The entire pipeline is thus expanded to 8 stages (see
Figure 3). Latency is not affected, as bypasses are provided
for register file writes and memory writes were excluded
from the commit stage. Error induced exceptions are can-
celed by the checker and have no visible effect.
The checker requires the intermediate results of the core,
i.e. the inputs and outputs of all checkable stages. These
values have to be passed on to the checker through the
pipeline.

4.4 DIVA Core Rollback
When an error is detected, a rollback procedure is acti-
vated. It includes two major steps:
� The errant instruction is not committed, i.e. its results

will not be written to register file (or memory in the gen-
eral case). Likewise, all following instructions in the
pipeline will be canceled and prevented from commit-
ting. The cancel ensures that all bypasses are deacti-
vated. This procedure is very similar to the pipeline
flushing employed when a trap is encountered, so al-
ready existing resources in the LEON3 can be reused.

� The pipeline is restarted at the errant instruction by pro-
viding its address to the fetch stage. It will traverse every
stage of the core and checker a second time.

WB

RA
EX
IM
XC
CP

IF
ID

op1inst

res

ad1

op2op1 res

ad2inst

inst

PC

op1 op2inst

inst

resinst

res2res

 =

inst

op2

RF

IC

RF

Figure 3: Modified DIVA applied to the Leon3 RISC
(Redo is done in parallel with exception stage (XC),

and comparison is done in the newly inserted stage CP)

It should be mentioned that the current VHDL implemen-
tation of modified DIVA does not yet include checking for
store and load instructions. This is subject to future work.
In the Leon3 processor a store instruction communicates
with the memory cache controller for 3 cycles (during the
execute, memory and exception pipeline stages). Therefore
isolating the store unit and moving it after the checker unit
will result in a large design effort. This is not the case in
superscalar architectures, where store units are more easily
identified.

4.5 VHDL Implementation and FPGA
Testing

The new modified DIVA architecture has been imple-
mented in the Leon3 processor pipeline [4]. We injected
some errors using Modelsim commands. Errors were de-
tected, the processor flushed and then correctly restarted at
the errant instruction.
Exhaustive error injections in VHDL simulations will be
reported in the next section. FPGA synthesis has been
done using Xilinx ISE 8.2. Tests on a Virtex4 FPGA board
have been done with injected errors, which were properly
detected and corrected.

5 Results Evaluation
We added a VHDL module which automatically inserts
faults in the DIVA core. Simulation was conducted by
running a set of Mibench testbenches [6]. All injected er-
rors were detected and correctly recovered.
 The test runs displayed a constant execution time over-
head of approximately 70 percent for an error rate of 10
percent, i.e. one error every ten cycles. For example, the
Mibench crc32 test provided an overhead of 74.1 percent
for an error rate of 10.6 percent, and an overhead of 0.13
percent for 0.0183 percent error rate. These measurements
match theoretical estimations. A detected error requires
flushing the core and restarting the errant instruction. This
results in an overhead of at least 7 cycles. The minimum
can be reached when no extra cache misses are encoun-
tered during rollback, as is usually the case (the data is still
present 7 cycles later).
As we have do not have an implementation of the original
DIVA on a Leon3, and since the reported results on origi-
nal DIVA were on a superscalar processor, we will make
both qualitative and quantitative comparisons where possi-
ble. As the modified DIVA has no memory accesses re-
execution, it should have better performance than original
DIVA, since memory bandwidth is often a major bottle-
neck in processor based systems. (In [1], 8 cycles are re-
quired for error correction in original DIVA, and with an
error rate of 0.1 percent, the slowdown was 2.6 percent.
With our technique, for a 0.1 percent error rate we only got
0.7 percent slowdown (for Mibench crc_32, Dijkstra and
qsort tests). However, please note that this is a very rough
comparison, as no in-depth information is provided in [1],
and we are comparing a superscalar vs. pipelined proces-
sor.)

It is worth mentioning that in error free operation, Mod-
elsim simulations showed that with all Mibench test-
benches, there are no performance overheads for the
modified DIVA processor. In other words, for a 0 percent
error rate, modified DIVA has the same performance as a
non-modified Leon3 processor. This is as was expected,
since, we have added forwarding paths from the checker
unit. This is better than original DIVA, which has a
performance decrease during error free operation of
more than 10% when running the SPEC95 turbo3D test-
bench [1].

6 Conclusion
In this paper, we have presented a modified version of the
DIVA architecture, which avoids the assumption that the
checker unit is completely reliable. The architectural as-
pects for the reliability and performance improvements of
this modified DIVA architecture have been examined. Fi-
nally, the adaptation of DIVA to a RISC processor pipeline
has been presented, and results from a VHDL implementa-
tion with automatic fault injections were reported.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
0%

20%

40%

60%

80%

100%

120%

crc_32 (pico)
bitcount (nano)
stringsearch
(small)
qsort (nano)
dijkstra (nano)

Pipeline Errors Per Cycle
E

xe
cu

tio
n

Ti
m

e
O

ve
rh

ea
d

Figure 4: Relative CPI = f (Error rate)

7 References
[1] Austin T.: DIVA: A Reliable Substrate for Deep

Submicron Microarchitecture Design, in MICRO1999
[2] Borkar B.: Designing Reliable Systems from Unreli-

able Components: The Challenges of Transistor Vari-
ability and Degradation. IEEE Micro 25(6): 10-16
(2005)

[3] Bouajila et al.: Error Detection Techniques Applicable
in an Architecture Framework and Design Methodol-
ogy for Autonomic SoCs, in IFIP BICC 2006, Chile,
August 2006

[4] Leon3 processor and datasheet available at Gaisler
Research website: www.gaisler.com

[5] Weaver C. et al., A Fault Tolerant Approach to Mi-
croprocessor Design: IEEE DSN-2001, June 2001.

[6] Mibench testbenches available at
http://www.eecs.umich.edu/mibench/

[7] Chatterjee S. et al.: Efficient Checker Processor De-
sign: ACM/IEEE 33rd International Symposium on
Microarchitecture (MICRO-33), December 2000

[8] David A. Patterson, John L. Hennessy: Computer Or-
ganization and Design: The Hardware/Software Inter-
face. Third Edition, Elsevier, 2005

 [9] Dan Ernest, et al “Razor: A Low-Power pipeline
Based on Circuit- Level Timing Speculation”, the 36th
Annual International Symposium on Microarchitec-
ture (Micro-36), December 2003razorpipeline03

[10] Chardonnereau D, Nicolaidis M: Fault Tolerant 32-
bit RISC Processor: Implementation and Radiation
Test Results, downloaded on july 2006 from
http://www.iroctech.com/pdf/RISC_rad_results.pdf

[11] Michael Nicolaidis: Time Redundancy Based Soft-
Error Tolerance to Rescue Nanometer technologies,
7th IEEE VLSI Test Symposium 1999

[12] Abdelmajid Bouajila, Johannes Zeppenfeld et al.:
Organic Computing at the System on Chip Level. IFIP
VLSI-SoC 2006, IFIP WG 10.5 International Confer-
ence on Very Large Scale Integration of System-on-
Chip, Nice, France, 16-18 October 2006. IEEE 2006

[13] Tamir et al.: High-Performance Fault-Tolerant VLSI
Systems Using Micro-rollback, IEEE Transactions on
Computers, Vol. 39, NO. 4, April 1990

