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Enhanced low-latency speaker spotting using selective
cluster enrichment

Jose Patino, Héctor Delgado and Nicholas Evans1

Abstract: Low-latency speaker spotting (LLSS) calls for the rapid detection of known speakers
within multi-speaker audio streams. While previous work showed the potential to develop efficient
LLSS solutions by combining speaker diarization and speaker detection within an online processing
framework, it failed to move significantly beyond the traditional definition of diarization. This paper
shows that the latter needs rethinking and that a diarization sub-system tailored to the end applica-
tion, rather than to the minimisation of the diarization error rate, can improve LLSS performance.
The proposed selective cluster enrichment algorithm is used to guide the diarization system to better
model segments within a multi-speaker audio stream and hence detect more reliably a given target
speaker. The LLSS solution reported in this paper shows that target speakers can be detected with a
16% equal error rate after having been active in multi-speaker audio streams for only 15 seconds.
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1 Introduction

Low-latency speaker spotting (LLSS), a form of biometric speaker recognition, was re-
cently defined [Pa18] in order to address the needs of the security and intelligence services
to detect known speakers from multi-speaker audio streams as soon as possible. LLSS
solutions are also relevant to consumer applications involving voice-based personal assis-
tants and speaker-dependent, text-independent wake-up word detection.

Solutions to LLSS call for the closer integration of speaker detection [KL10] and diariza-
tion [An12] technologies, traditionally separate tasks, and their combination within an
online processing framework. The bulk of speaker detection research, e.g. [RQD00, Ke07,
De11], concerns the processing of single-speaker audio streams, or two-speaker telephone
conversations, e.g. [RKC09]. Many security and intelligence applications, in contrast, may
involve audio streams containing multiple speakers. The application of speaker detec-
tion to multi-speaker data calls for some form of speaker segmentation and clustering,
or speaker diarization. Speaker diarization is an enabling technology; it is rarely the end
application itself. Past evaluation campaigns may not have provided the best platform to
develop solutions that perform reliably when they are deployed in practical scenarios, in-
cluding those involving speaker detection. When diarization solutions are combined with
some form of speaker detection, then the use of the diarization error rate (DER) to opti-
mise a diarization system will inherently lead to a suboptimal, combined system. Speaker
detection and speaker diarization systems should be optimised in unison.
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Fig. 1: An illustration of the low-latency speaker spotting (LLSS) task. Original illustration produced
by H. Bredin, adapted and reproduced here with permission from [Pa18].

Whereas speaker detection systems are readily adapted to online processing, their per-
formance tends to degrade rapidly when they are applied to speech segments of smaller
duration [Fa07]. Speaker diarization can be applied to cluster together short, same-speaker
segments, thereby helping to protect performance, yet speaker diarization systems do not
lend themselves well to online processing. While specific, online solutions have been pro-
posed, e.g. [Ok12, ZP16, DF17, So16], most have been developed as an enabling technol-
ogy and without regard to an eventual end application.

Our first attempt to develop an efficient LLSS solution [Pa18] took the first steps to unite
the optimisation of speaker detection and speaker diarization technologies within a com-
mon online framework. While that work showed the potential, it failed to move signif-
icantly beyond the traditional definition of diarization. This paper aims to redefine the
diarization problem such that the solution is more closely married to the core LLSS task.
The approach exploits the use of the target speaker model (the one which is pre-trained for
the speaker detection task) to guide diarization to cluster more reliably matching segments
in the incoming audio stream. The process is referred to as selective cluster enrichment.

The remainder of this paper is organised as follows. Section 2 summarises the LLSS
framework reported originally in [Pa18]. Section 3 describes the new selective cluster
enrichment procedure. Experiments are reported in Section 4. Conclusions are the focus
of Section 5.

2 Low-latency speaker spotting

The low-latency speaker spotting (LLSS) task was originally defined in [Pa18]. Accord-
ingly, only a brief summary is presented here.

2.1 Task definition

The LLSS task is illustrated in Figure 1. It shows a 500-second long audio stream which
contains the speech of a known, target speaker. The target starts speaking at time t∗, a little
under 100 seconds, and is then active during the segments illustrated to the bottom of the
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figure. The goal of LLSS is to detect the target speaker as soon as possible after t∗. In the
example illustrated, the speaker is detected at tθ , implying a detection latency of tθ − t∗.

A suitable solution to the LLSS problem involves the comparison of a log-likelihood func-
tion Λ (blue profile in Figure 1) to a threshold θ according to:

Γ(t) = 1

(
max

τ∈[0,t]
Λ(τ)−θ

)
(1)

where 1 is the Heaviside function which returns 0 for negative values and 1 for positive
values and where the log-likelihood ratio is given by:

Λ(t) = ln f (at
0|H1)− ln f (at

0|H0) (2)

where at
0 is the speech from time t = 0 to t and f () is a conditional probability density

function given two competing hypotheses, namely that before time t the target speaker is
either active (H1) or inactive (H0). Ideally, Λ should be less than θ for t < t∗ and greater
than θ for t ≥ t∗.

2.2 Metrics

Two LLSS metrics are reported in [Pa18]. The first, referred to as the absolute latency
refers to the difference:

δθ = max(tθ − t∗,0) (3)

which is in the order of 50s for the example illustrated in Figure 1. The second metric
reported in [Pa18], and that used everywhere in this paper, is the speaker latency which
takes into consideration only the time in tθ − t∗ during which the target speaker is active.
The detection threshold θ needs to be set carefully in order to minimise latency while not
triggering false alarms before the target is active, or not active in the audio stream at all.

In practice, and for a given database, the average speaker latency will increase monoton-
ically with θ . Different values of θ will furthermore lead to different levels of detection
performance. The detection performance, e.g. the detection cost Cdet(θ) such as that used
with the speaker recognition evaluations administered by NIST, e.g. [Sa17], is typically
convex in nature; low values of θ will produce too many false alarms whereas high values
of θ will results in too many missed detections. A variable speaker latency may then be
optimised according to the measure of detection performance. Alternatively, and as is the
case for all work reported here, one can fix an application-dependent speaker latency δ ,
determine the maximum value of the likelihood function prior to t∗+δ
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λδ = max
t∈[0,t∗+δ ]

Λ(t), (4)

compare λδ to threshold θ and then measure detection performance according to some
appropriate metric, e.g. Cdet(θ) or, more simply, the equal error rate (EER).

3 Selective cluster enrichment

This section describes the adaptation of a diarization sub-system to the operation of a
subsequent speaker detection sub-system.

Speaker diarization systems typically entail some form of segmentation and clustering
process in order to determine the number of speakers within a multi-speaker audio stream
and who speaks when. Generally, diarization is performed offline, meaning a diarization
algorithm has access to the full audio stream before deriving a diarization hypothesis. In
contrast, online diarization can be performed by processing an audio stream in segmental
or sequential fashion and by updating the current diarization hypothesis to account for new
speech data as it is encountered.

Be them offline or online, speaker diarizaton systems are usually evaluated using the clas-
sical DER which combines measures of background noise mistaken for speech, speech
mistaken for background noise and speech assigned to the wrong speaker. In practice, one
must strike a balance between under and over clustering. When the number of clusters is
too high, i.e. greater than the number of speakers, then resulting clusters may have high
purity – they are not contaminated excessively by the data of other speakers – by result-
ing models tend to be poorly trained using insufficient data [Ev12]. In contrast, when the
number of clusters is too few, models are comparatively well trained using more data, but
purity decreases – inhomogeneous clusters are trained using data from multiple speakers.
Somewhere in between, the balance between data quantity and impurity helps to min-
imise the DER or, as is the goal of the work reported in this paper, to optimise a more
application-inspired metric.

The research hypothesis under investigation in the work reported here is that there is po-
tential to guide the clustering process in a way that better balances data quantity and purity
in order to improve the reliabilty of a subsequent speaker detection algorithm. This idea
is explored within the context of a LLSS task which seeks to detect a particular target
speaker for which a model is already trained and available. It seems logical in this case
that the diarization process should at least make use of the target speaker model.

The original LLSS approach uses an online speaker diarization process that produces an
evolving diarization hypothesis comprising n clusters clustert

1 ... clustert
n. Newly arriving

data is assigned to the closest cluster in the current diarization hypothesis. The set of
clusters are then scored against the target speaker models giving a set of scores st

1 ... st
n.

The maximum score among them is then compared to threshold θ in order to derive the
detection decision Γ(t).
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Fig. 2: An illustration of the low-latency speaker spotting solution that combines online speaker
diarization with detection. Figure adapted from [Pa18] to incorporate selective cluster enrichment.

The proposed modification is illustrated in Figure 2. The idea is to consider the target
speaker model in the assignment of newly arriving data to one of the clusters in the current
diarization hypothesis. The closest matching cluster is derived as before. In contrast to the
original approach, though, the newly trained cluster for time t is replaced by the previous
cluster for time t−1 if the new cluster score st

n is less than the previous cluster score st−1
n .

The result is that the closest matching cluster is enriched with newly arriving data only if
it improves the match between the cluster and the target speaker model. According to the
max operation to the right of Figure 2, the set of scores st

1 ... st
n will then be monotonically

increasing with t. As before, the largest of these scores is then compared to threshold θ in
order to derive the detection decision Γ(t).

Even if the use of the target model at the heart of the diarization process is entirely intu-
itive, the motivation for the specific way in which it is used is far less intuitive. We attempt
now to explain why its use in this way should lead to better LLSS performance. Selective
cluster enrichment will have one of two effects. In the case that the closest cluster to newly
arriving data match well the target model, then the process will serve only to purify the
cluster, increase still further the match with the target model and improve LLSS perfor-
mance. Other clusters that do not match well the target model can still only be enriched or
adapted towards the target speaker model. In the case that the audio stream does not con-
tain speech from the target speaker, then clusters will be either poorly trained using very
little data, in which case diarization performance will deteriorate, or they will be adapted
successfully towards the target, thereby degrading LLSS performance (since the speakers
do not match). The hypothesis is that, even if clusters are inadvertently adapted to the tar-
get model, they will rarely be adapted sufficiently well such that the likelihood exceeds the
detection threshold. In this case, the benefit of purifying matching clusters will outweigh
the penalty of inadvertently adapting non-matching clusters. Accordingly, selective cluster
enrichment should help to improve LLSS performance.
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4 Experimental work

This section describes experiments designed to evaluate LLSS performance and the benefit
of selective cluster enrichment.

4.1 Database and protocol

The database used for all experimental work reported here is exactly the same as that used
in the original LLSS work [Pa18]. It is based upon the Augmented Multi-party Interaction
(AMI) meeting corpus [Ca07], a popular, publicly available database that is annotated at
the speaker/segment level. All work reported here was performed not using the standard
AMI protocols but, instead, protocols specifically designed to support the development and
evaluation of LLSS. These have been made publicly available in order to support repro-
ducibility3. Standard protocol training, development and evaluation partitions are still re-
spected. Training data is used exclusively for background modelling. Speaker disjoint de-
velopment and evaluation sets are both partitioned into enrollment and test subsets where
enrolment data is used to train target speaker models. Full details of the protocol and its
design are available in [Pa18].

4.2 LLSS implementations

The performance of the selective cluster enrichment algorithm is compared to an LLSS
baseline system with both oracle and automatic online diarization. The oracle system
simulates the behaviour of an error-less, but still online system. The automatic online
diarization system relies upon a long short-term memory (LSTM) based voice activity
detector (VAD) [YBB17]. Diarization is then performed using i-vectors [De11] and an
online sequential clustering algorithm. The system uses 19 MFCC coefficients as a fron-
tend, a universal background model (UBM) of 256 components and a T matrix of rank
100, both learned from training data. Two speaker detection algorithms are used: a stan-
dard, 256-component Gaussian mixture model with universal background model (GMM-
UBM) [RQD00], and an i-vector system [De11] with a T matrix of dimension 100 and
probabilistic linear discriminant (PLDA) scoring [SGR14]. Full details of both systems
are available in [Pa18].

4.3 Results

Results in Table 1 illustrate LLSS performance for the baseline and proposed solution,
for both oracle and automatic diarization and for both GMM-UBM and i-vector speaker
detection algorithms. Performance is expressed in terms of the equal error rate (EER)
for various fixed speaker latencies: 3, 5, 10 and 15 seconds. On account of non-target

3 github.com/pyannote/pyannote-db-odessa-ami
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Fig. 3: An illustration of LLSS using PLDA scoring for an arbitrary trial utterance containing a target
speaker. Profiles shown for the baseline and proposed solution with selective cluster enrichment.

Tab. 1: LLSS performance illustrated in terms of EER for different fixed speaker latencies.

GMM-UBM i-vector
Latency 3 5 10 15 3 5 10 15

Baseline
Oracle 26.9 17 15.99 15.69 27.49 16.94 15.56 15.24
Automatic 36.56 26.3 23.28 22.53 32.41 20.2 18.06 17.31

Proposed
Oracle 27.77 17.81 16.32 15.87 29.34 18.33 15.95 15.33
Automatic 34.32 23.86 20.98 20.22 31.08 19.27 16.61 15.82

models being poorly trained, results show that performance universally degrades for oracle
diarization. However, results universally improve in the case of automatic diarization. This
is due to improvements to target model purity stemming from selective cluster enrichment.
While it is not the goal of this work to compare GMM-UBM and i-vector algorithms, it is
reassuring that selective cluster enrichment improves the performance of both.

These observations confirm the hypotheses presented in Section 3. Further evidence is
illustrated in Figure 3 which shows the evolution in PLDA scoring (Equation 3) for the
baseline and proposed LLSS solutions for an arbitrary utterance that contains the target
speaker during the intervals indicated towards the top. The LLSS output for the proposed
system is consistently higher than that of the baseline, showing that selective cluster en-
richment serves to improve purity, forcing a monotonic increase in the score.

5 Conclusions

This paper shows how the performance of a low-latency speaker spotting (LLSS) solu-
tion can be improved by tailoring the operation of a speaker diarization sub-system to that
of the following speaker detection sub-system. The proposed selective cluster enrichment
scheme exploits the target speaker model to guide the diarization process in order to en-
hance the purity of matching clusters in the diarization hypothesis. The works serves to
show that the optimisation of a diarization system on its own will never produce optimal
results when diarization is only but one components of a more complex toolchain. Se-
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lective cluster enrichment will surely degrade the reliability of the diarization hypothesis
when assessed with the traditional diarization error rate, but it nonetheless leads to more re-
liable speaker detection and LLSS performance. Universal improvements observed across
two different speaker detection algorithms and a range of different speaker latencies show
the potential for still further improvements using additional end-to-end optimisations. The
latter is the subject of our ongoing work.
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