
Stefanie Betz, Ulrich Reimer (Hrsg.): Modellierung 2016 Workshopband,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 117

Flexible Deep Modeling with Melanee

Colin Atkinson and Ralph Gerbig1

Abstract: Multi-level modeling has gained increasing attention in recent years as the maturity of the
supporting tools has grown. One of the most advanced tools for deep modeling is Melanee [Me16]
which supports modeling through deep, multi-format, multi-notation user-defined languages. “Multi-
format” refers to seamlessly editing a language in several formats in parallel (e.g. diagrammatic,
textual and tabular) while “multi-notation” denotes the ability to mix notations arbitrarily (i.e. to
show one part of a model in a general-purpose, UML-like, notation and one part in a domain-specific
notation such as BPMN). The deep modeling component of the tool, underpinned by the orthogonal
classification architecture and deep instantiation, allows models to contain as many classification
levels as needed to concisely represent the domain in hand. This demonstration shows the capabilities
of the Melanee tool in the context of defining a language to model the structure of an enterprise.

Keywords: Domain-specific Languages, Deep Modeling, Melanee, Tool Demonstration

1 Introduction

The market for domain-specific language engineering tools is strongly segmented by the

set of features which modeling tools provide. For instance most tools focus exclusively

on one explicit format (i.e. textual, diagrammatic, etc.) and are usually limited to support

just two classification levels at a time (i.e. type level and instance level). An exception

is Jetbrains MPS which specializes in supporting multi-format editing but lacks support

for working with more than just two levels. However, no commercial tool today supports

multi-format, multi-notation, domain modeling across multiple classification levels. This

capability is advantageous in many domains, especially model execution [AGM15], enter-

prise language evolution [AGF15], cyber-physical systems modeling [At14], formal secu-

rity policy modeling [At12] and many more.

In this demonstration, a prototype tool called Melanee which meets this need for multi-

format, multi-notation domain-specific modeling will be presented. The implemented ex-

ample revolves around the creation of a language capable of modeling the structure of

an enterprise and demonstrates the following features: 1. multi-notation editing, 2. multi-

format editing, 3. seamless multi-level editing, 4. deep, aspect-oriented concrete syntax

definition 5. and deep context-sensitive languages.

2 Deep Modeling

Deep modeling is a form of multi-level modeling supporting the creation of models with

arbitrary numbers of classification levels based on the Orthogonal Classification Architec-

ture (OCA) [AK03] and deep instantiation [AK01]. An example of a how a deep enterprise

model fits into the OCA is shown in Figure 1.

The OCA is implemented as two classification stacks aligned orthogonally to one another.

One of these is the linguistic stack, labeled L2 to L0, and the other is the ontological stack,

1 University of Mannheim, Chair of Software Engineering, 68159 Mannheim, {atkinson,

gerbig}@informatik.uni-mannheim.de



118 Colin Atkinson, Ralph Gerbig

L2

L1

L0

CompanyType2

companyName =2

Feature

Element

name
Clabject
potency durability

Method

Attribute
mutability

* feature

O0 O1 O2

ITCompany
1

companyName =1

Pineapple :ITCompany
0

companyName = Pineapple0

Level

*

content

???
IT
Pineapple

IT
???

2 1 0

Figure 1: An illustration of the Orthogonal Classification Architecture.

labeled O0 to O2. Although this example shows an ontological stack with only three levels,

the number of levels is not limited in general. The so called linguistic meta model, L2, de-

fines all constructs available in the deep modeling language for populating the ontological

levels. Examples of these in Figure 1 are Clabject and Feature. Clabject is the superclass

for entities and connections and Feature the superclass for Method and Attribute which

characterize clabjects. Except for those in the most abstract ontological level, all clabjects

have two types in a deep modeling environment — the ontological type (horizontal, dashed

lines) indicating the clabject’s type from the point of view of the problem domain and the

linguistic type (vertical, dotted lines) used to represent a model element in the tool. The

linguistic meta model is implemented as an Ecore meta model in Melanee.

Connections and entities are referred to as Clabjects because they play the role of types

(class) and instances (object) at the same time. This becomes obvious in the middle onto-

logical levels, e.g. ITCompany is an instance of CompanyType and a type for Pineapple at

the same time in the example.

Deep instantiation is the capability to specify over how many subsequent levels a model

element can influence other model elements. In other words, it represents the “deepness”

of a model element. The concept of deep instantiation is implemented in Melanee through

potencies which are attached to Clabjects (potency), Features (durability) and Attribute val-

ues (mutability). The rule for all potencies is that they have to be decreased by one when

an instantiation takes place. Model elements with a potency smaller than 0 cannot exist.

In Melanee, potencies are displayed next to the name of Clabjects and Features, and the

mutability next to the value of Attributes as shown in Figure 1.

3 Melanee

The architecture of the Melanee tool is displayed in Figure 2. The tool is built on the Eclipse

Platform using the GMF , EMF , Epsilon and OCL projects. The basic Melanee download is

based on this technology stack. Its features are: 1. the Linguistic Model defining the deep

modeling language 2. the diagrammatic Deep Model Editor featuring the default UML-

like syntax for editing deep models 3. the Visualization Search algorithm which finds the

notations and formats to visualize a model element 4. the Emendation service offering

seamless deep model editing and 5. Workbench Management functionality such as storage

of user preferences.



Flexible Deep Modeling with Melanee 119

Application Built on Melanee
e.g. Naomi, Deep-Robot Modeling Framework, GeoWars

Deep OCL Deep ATL Diagram Text Designation Application Reasoning

Melanee - The Deep-modeling Domain-specific Language Workbench

EMFGMF Epsilon OCL

Eclipse Platform

Workbench

ManagementVisualization Search

Linguistic Model

Deep Model

Editor (LML)

Emendation

Form Table

Figure 2: The Melanee architecture.

This core functionality can be extended by implementing extension points. At the time

of writing the following extension points are available with reference implementations:

1. the Deep OCL constraint language 2. the Deep ATL transformation language supporting

deep model to deep model transformations, ecore to deep model transformations and deep

model to ecore transformations 3. diagram, textual , tabular and form supporting predefined

and user-defined languages in their corresponding format 4. designation capabilities for the

advanced naming of model elements 5. an application language supporting the modification

of the modeling environment itself and 6. Reasoning services including model checking.

For all of these extension points additional implementations can be provided by using

standard Eclipse APIs which lowers the learning curve when extending Melanee.

The Melanee framework has been used to implement several prototypes demonstrating the

capabilities of deep modeling. The orthographic software modeling environment Naomi

[AGT13a] applies the deep modeling approach to store its central underlying data model

and the views on this model using deep, predefined languages. Naomi also realizes trans-

formations between the views and the central data model through the deep ATL [AGT13b]

dialect. A prototype robot modeling language [At14] has been implemented which is ex-

tensible to different kinds of robots and can be used to create executable behavior by means

of executing the C code produced by the textual, user-defined language feature. To demon-

strate the advantages of deep modeling in the area of model execution a game, GeoWars

[AGM15], has been implemented on top of the Melanee framework. In this demonstra-

tor, a Melanee model is connected through sockets to a model execution engine. This bi-

directional connection allows changes in the running game to be reflected in the Melanee

model and vice versa. This prototype demonstrates amongst other things the advantages

of distinct ontological levels for behavior modeling and behavior execution.

4 Building a User-Defined Language with Melanee

The Melanee workbench is shown in Figure 3. The workbench has a Project Explorer on

the left hand side which is used for managing projects and the deep models they contain.

The example shows a project to model a company called Pineapple. This project contains

a deep model named Employee Structure. Below the Project Explorer the graphical Outline

of the model currently opened in the diagram editor is displayed. Most of the space on

the screen is occupied by the diagrammatic, deep model editor. In Figure 3 the Employee

Structure model is opened. This screenshot shows a modeling language being defined. At

this point in time the highest level, O0 displays three types, CompanyType, DepartmentType



120 Colin Atkinson, Ralph Gerbig

and EmployeeType. These clabjects with potency two have been instantiated at the next

level, O1, into the concepts of ITCompany and different Departments. The Palette on the

right hand side of the editor provides the tools to build a deep model. Instantiation of

model elements is achieved through the DSL Elements section which dynamically displays

the types which can be added to the currently selected model element. A toolbar offering

actions for a particular model element has been opened on the Department clabject and

the notation “drop down” for the graphical (diagrammatic) format has been selected. The

user-defined Company notation, the built-in LML notation or the notation selected by the

model element container (Derived) are available for selection. The properties view at the

bottom offers capabilities to edit linguistic attributes (Linguistic tab page) or ontological

attributes (Ontological tab page). The Visualization Editor view to the right of the Properties

view is used to define the visualization of clabjects in all formats at run-time.

Figure 3: Building up the company structure example.

The final result created during the tool demonstration is displayed in Figure 4. The user-

defined modeling language is used to model a company called Pineapple consisting of two

departments and two employees. The model is displayed in a diagrammatic format (left),

form-based format (top right) and textual format (below form editor). The model can be

edited in all formats without one format negatively influencing another format.

5 Conclusions

In this tool demonstration we have shortly introduced the deep modeling approach, out-

lined the architecture of the Melanee tool and shown how a deep modeling language span-

ning three ontological levels can be defined. Additionally, the created model can be edited



Flexible Deep Modeling with Melanee 121

Figure 4: Displaying TechnicalEmployee in three fromats.

in three different formats. Melanee is the only tool at the time of writing which provides

such deep, multi-format, multi-notation, user-defined modeling capabilities.

References

[AGF15] Atkinson, Colin; Gerbig, Ralph; Fritzsche, Mathias: A multi-level approach to modeling
language extension in the Enterprise Systems Domain. Information Systems, 2015.

[AGM15] Atkinson, Colin; Gerbig, Ralph; Metzger, Noah: On the Execution of Deep Models. In
(Mayerhofer, Tanja; Langer, Philip; Seidewitz, Ed; Gray, Jeff, eds): Proceedings of the
1st International Workshop on International Workshop on Executable Modeling. Exe
2015, 2015.

[AGT13a] Atkinson, Colin; Gerbig, Ralph; Tunjic, Christian: A Multi-level Modeling Environment
for SUM-based Software Engineering. In: Proceedings of the 1st Workshop on View-
Based, Aspect-Oriented and Orthographic Software Modelling. VAO ’13, ACM, New
York, NY, USA, pp. 2:1–2:9, 2013.

[AGT13b] Atkinson, Colin; Gerbig, Ralph; Tunjic, ChristianVjekoslav: Enhancing classic transfor-
mation languages to support multi-level modeling. Software & Systems Modeling, pp.
1–22, 2013.

[AK01] Atkinson, Colin; Kühne, Thomas: The Essence of Multilevel Metamodeling. In
(Gogolla, Martin; Kobryn, Cris, eds): UML 2001. Springer, 2001.

[AK03] Atkinson, Colin; Kühne, Thomas: Model-Driven Development: A Metamodeling Foun-
dation. IEEE Softw., 20(5):36–41, September 2003.

[At12] Atkinson, Colin; Barth, Florian; Gerbig, Ralph; Freiling, Felix; Schinzel, Sebastian;
Hadasch, Frank; Maedche, Alexander; Muller, Benjamin: Reducing the Incidence of
Unintended, Human-Caused Information Flows in Enterprise Systems. In: 16th Interna-
tional Enterprise Distributed Object Computing Conference Workshops. 2012.

[At14] Atkinson, Colin; Gerbig, Ralph; Markert, Katharina; Zrianina, Mariia; Egurnov, Alexan-
der; Kajzar, Fabian: Towards a Deep, Domain Specific Modeling Framework for Robot
Applications. MORSE ’14. CEUR-WS.org, pp. 4–15, 2014.

[Me16] Melanee: , Project Website. http://www.melanee.org, 2016.


