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Estimating the Data Origin of Fingerprint Samples

Patrick Schuch!, Jan Marek May?, Christoph Busch?

Abstract: The data origin (i.e. acquisition technique and acquisition mode) can have a significant
impact on the appearance and characteristics of a fingerprint sample. This dataset bias might be
challenging for processes like biometric feature extraction. Much effort can be put into data nor-
malization or into processes able to deal with almost any input data. The performance of the former
might suffer from this general applicability. The latter losses information by definition. If one is
able to reliably identify the data origin of fingerprints, one will be able to dispatch the samples to
specialized processes. Six methods of classification are evaluated for their capabilities to distinguish
between fifteen different datasets. Acquisition technique and acquisition mode can be classified very
accurately. Also, most of the datasets can be distinguished reliably.

Keywords: fingerprint recognition, machine learning, dataset bias.

1 Introduction

No two fingerprints are the same. Every fingerprint is at least slightly different from an-
other. This fact makes a fingerprint a valuable trait for biometric recognition. However,
two fingerprint samples of the very same fingerprint can also be very different. An impor-
tant source of variation arises from the two aspects of a sample’s data origin: acquisition
technique and acquisition mode.

Fingerprint samples might have been acquired with different techniques. For example,
they can be acquired using dedicated fingerprint livescanners. There is a variety of man-
ufacturers and devices. The latter can differ in physical acquisition principles, e.g. optical
or capacitive. Besides dedicated devices, almost any camera may be used for acquisition.
Fingerprints may also be acquired using ink and paper. There are also latent fingerprints or
fingermarks, which are typically evidences from crime-scenes. Those fingerprints are cap-
tured using special techniques, e.g. photography of fingerprints highlighted with powders.
Not only the technique of acquisition matters, but also how the finger is presented. There
are namely four modes of acquisition. The finger may be placed plain on an acquisition
surface. Fingerprints can be rolled over an acquisition surface. Some devices require the
fingerprint to be swiped over a line scanner. While these three modes are all contact-based,
the fingerprint may also be acquired contact-less. Many of the possible combinations of
technique and mode are actually deployed in operational scenarios..

In general, the fidelity of a fingerprint sample to its source depends on the data origin
[IS16]. Thus, all data is biased by its origin. This dataset bias tends to be very different
among different datasets. Dealing with such differences can be challenging for any process

I NTNU, NBL Norwegian Biometrics Lab, Gjgvik, NO, patrick.schuch2 @ntnu.no
2 Dermalog Identification Systems GmbH, Hamburg, DE, marek.may @dermalog.com
3 NTNU, NBL Norwegian Biometrics Lab, Gjgvik, NO, christoph.busch@ntnu.no



2 Patrick Schuch, Jan Marek May, Christoph Busch

Cfel aBRlOHE -

General Approach
Specialized Approach

Dedicated Process A

Data
Source Dispatcher

. Dedicated Process B
Classifier

All Incoming Data

Dedicated Process C

Fig. 1: Knowing a sample’s origin enables usage of specialized processing methods.

using the data. And it turns out that biometric comparison across different data origins is
challenging [Ji12].

There are two ways of dealing with the dataset bias (see Figure 1). One-fits-all solutions
need to be able to deal with any input at hand. This general applicability comes at the
cost of recognition performance. Dedicated or specialized modules modules can be tai-
lored to the special needs of an input. The more the inputs differ, the larger is the benefit
of a specialized processing pipeline. If you do not know, what you are processing, you
will have to apply a one-fits-all solutions. But if you do know, what kind of data you are
processing, you will be able to benefit from specialization. There are standardized data
interchange formats, which provide meta information about acquisition mode and tech-
nique, e.g. the international standard ISO/IEC 19794-4 [IS11]. But fingerprint samples do
not always come with such information about their origin or the information is not reli-
able. This lack of information may be unintentional, e.g. when processing legacy data in a
system, in which the samples have various data origins. Or it may be by intention, e.g. in
benchmarks or competitions like FVC-ongoing [Do09]. If you still want to apply special-
ized approaches, you will have to guess the origin of the input data. Guessing the origin
essentially makes use of dataset bias, since this bias is what makes data distinguishable. In
this case, the dataset bias is a desirable property.

Ghiani et al. proposed linear Support Vector Machines for pairwise discrimination of

datasets [Gh17]. This is the first extensive investigation of methods for estimating the ori-
gin of fingerprint samples using a multitude of datasets. In this work, we propose to use a
Convolutional Neural Network (CNN) for guessing the origin of the fingerprint. To assess
this approach, its performance is then compared to other prominent classifiers.
The rest of this work is organized as follows: Section 2 gives an overview on related
research. A CNN based approach is described in Section 3. Section 4 describes the ex-
periments with this approach and five alternative classifiers. It also presents the results
achieved. A conclusion can be found in Section 5.
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2 Related work

Capabilities of generalization are always important for methods of pattern recognition. If
a pattern recognition method is not able to deal with other data than the data used for
training, the method will be useless. The dataset bias, also known as the covariate shift,
might be the most challenging aspect for generalization. Dealing with the dataset bias is
therefore an important topic in pattern recognition. A lot of research has been done in
enabling methods to deal with data, that has not been seen during the training phase.
Besides the improvements in the generalization capabilities, there is another way to look at
the dataset bias. For example, Torralba and Efros investigated how well image datasets can
be distinguished [TE11]. They evaluated their method on datasets available at the time for
large classification benchmarks. They called this task the Name the Dataset game. Their
motivation was to measure and to understand the bias in datasets. This bias may usually
result in generalization problems for classifiers, when the test data differs from the training
data.

The challenge of generalization becomes even more important as the accuracies rise. In
case of high accuracies, slight differences in performances between training and test data
can result in significant relative differences between these performances. CNNs are state
of the art in several domains of image processing and pattern recognition. The accuracies
achieved with CNNs are remarkably high and dataset biases can have a strong impact here.
Tommasi et al. did extensive experiments on the dataset bias when using CNNs [To17].
The dataset bias is a prominent challenge in fingerprint recognition. This challenge is also
known as cross device biometric recognition. Jia et al. developed a dataset, which contains
fingerprint samples from the same fingerprint acquired with nine different devices [Ji12].
They showed that recognition across different devices is challenging.

Ghiani et al. proposed to use a linear Support Vector Machine for classification of different
datasets [Gh17]. They used the classification to apply specialized methods of presentation
attack detection on the fingerprint samples. They evaluated classification between pairs of
datasets. This work provides comparison of six methods of classification and evaluation
on a multitude of fingerprint datasets.

3 CNN:s for Data Origin Estimation

Estimating the data origin is a typical classification task. CNNs are currently state of the
art in classification tasks. We therefore propose to use a CNN for this task.

In the following we will sketch an architecture for a CNN, which is capable of this task.
We will also provide information on how the training of the CNN was performed.

Architecture Table 1 gives an overview over the entire architecture and the outputs of
each layer. There has been no extensive optimization of any hyperparameters. The entire
model is built from six different types of layers: Convolutional layers (ConvLayer), Para-
metric Rectified Linear Units (PReLu), Maximum Pooling layers (MaxPooling), Flatten
layers (Flatten), Dense layers (Dense), and Softmax layers (Softmax). All ConvLayer have
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Tab. 1: Straight forward architecture of proposed CNN.

‘ # ‘ Layer ‘ Output ‘
0 Input (192x192x1) (192x192x1)
1 ConvLayer (32x3x3x1) | (190x190x32)
2 MaxPooling (2x2) (95%x95x%x32)
3 PReLLU (95x95x%32)
4 | ConvLayer (32x3x3x32) (93x93x%x32)
5 MaxPooling (2x2) (46x46x32)
6 PReLU (46x46x32)
7 | ConvLayer (32x3x3x32) (44x44x32)
8 MaxPooling (2x2) (22x22x%32)
9 PReLU (22x22x%32)
10 | ConvLayer (32x3x3x32) (20x20x%32)
11 MaxPooling (2x2) (10x10x32)
12 PReLLU (10x10x32)
13 | ConvLayer (32x3x3x32) (8x8x32)
14 MaxPooling (2x2) (4x4x32)
15 PReLU (4x4x32)
16 Flatten (512)

17 Dense (32x512) (32)
18 PReLU 32)
19 Dense (32x32) (32)
20 PReLU 32)
21 Dense (15x%x)32 (15)
22 Softmax (15)

32 kernels. All kernels are 3x3 filters. There was no striding in the ConvLayers. MaxPool-
ing was performed on 2x2 blocks. The CNN has less than 60,000 trainable parameters.
Generalization is always a crucial issue when training a classifier. In this approach, the ca-
pability of generalization was enforced by adding a /-regularization on the kernels of the
Dense layers. A common approach to strengthen the generalization capabilities of a CNN
is the introduction of Batch Normalization [IS15]. However, usage of Batch Normaliza-
tion in this approach led to an undesired behavior: The CNN was not able to distinguish
between the different datasets any more.

The input to the CNN is a gray scale image, which is cropped to its central region of size
192x192 pixels (see Figure 2). The approach does not rely on any foreground detection,
it simply crops a region of interest from the center. This allows an automatic processing.
The CNN therefore does only see a small part of the fingerprint sample.

The output of the Softmax layer can be understood as the likelihood for the fifteen respec-
tive classes of datasets (see Section 4). The model was created and trained in the deep
learning framework Tensorflow [Ab16].
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Tab. 2: Datasets used for evaluation.

Acquisition | Acquisition
# Dataset Technique Mode Ref
1 | FVC2000 DB1 Optical Plain
2 FvVC2000 DB2 Capacitive Plain [Ma02a]
3 | FVC2000 DB3 Optical Plain
4 | FVC2002 DB1 Optical Plain
5 | FVC2002 DB2 Optical Plain [Ma02b]
6 | FVC2002 DB3 | Capacitive Plain
7 | FVC2004 DB1 Optical Plain
8 | FVC2004 DB2 Optical Plain [Ma04]
9 | FVC2004 DB3 Thermal Swiped
10 | FVC2006 DB2 Optical Plfiin [Ca07]
11 | FVC2006 DB3 Thermal Swiped
12 MCYT DP Optic.:a}l Pla%n [0r03]
13 MCYT PB Capacitive Plain
14 NIST DB4 Ink-based Rolled [WW92]
15 NIST SD14 Ink-based Rolled [WaO1]

Training The model was trained with the optimizer Adam [KB14] . There were no sig-
nificant differences when using optimizers Adagrad or SGD. Learning rate was set to
A=10"*%

The number of samples per batch was selected to be 128. Larger batch sizes did not im-
prove performance. Smaller batch sizes resulted in instabilities during training. The net-
work was trained to minimize cross validation loss. The samples in each batch were ran-
domly picked from the training data. Data augmentation was applied to the fingerprint
samples. The samples were rotated randomly. The 192x192 pixel region used as the input
was cropped randomly from a region nearby the sample’s center. Such a data augmenta-
tion is commonly used to increase the amount of training data. This indirectly prevents the
CNN from overfitting to the training data. Therefore it also helps enabling generalization
of the CNN.

For training the CNN, the training set was split into two parts. About two thirds of the fin-
gerprint samples were used as training data. The remaining fingerprint samples were used
as a validation set. Training was stopped when the improvement of loss for the validation
set stopped. Such an early stopping strategy is a common method to prevent a CNN from
over-fiting. Training the CNN took less than an hour on a GPU*.

4 Experiments

Datasets The fifteen tested datasets are a sub set of publicly available datasets. Only
publicly available dataset were chosen to allow reproducibility of the results. Even though,

4 NVIDIA GTX 780
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Fig.2: Samples from the datasets used for evaluation (see Table 2 for numbering). The red square
indicates the 192x192 crop region used for training and testing.

some dataset might be some kind of out-dated, they still represent legacy data. Each dataset
represents its own class for classification. Table 2 summarizes details on the single dataset
used during our experiments. These datasets represent a subset of the variability of ac-
quisition techniques and acquisition modes. > There are datasets, which were acquired by
livescanners using optical, capacitive, and thermal sensors. There are also two datasets ac-
quired by using ink-based techniques. Most of the datasets contain plain fingerprints. Two
datasets contain rolled fingerprints and two datasets contain swiped fingerprints. Each data
will represent one class in the classification. Thus, it will be a multi-class classification.
The number of samples in the datasets differs. Using all samples in the evaluation would
have imbalanced the influence of each dataset. Therefore, only the first 800 samples in
each dataset have been selected for these experiments. By doing so, all datasets have the
same amount of training data and testing samples respectively.
The images were cropped to their central region of 192x192 pixels. This prevents the clas-

3 In terms of ISO/IEC 19794-4 the acquisition technique may be deducted from the capture device ID identifier.
The acquisition mode is represented by the impression type identifier in the standard.
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sifiers to learn from trivial features like image dimensions or any systematic artifacts at the
borders of the fingerprint samples.

Metrics The performance of the classifiers was assessed by the accuracy acc in predict-
ing the correct data origin. Three accuracies were evaluated. First, the accuracy accgagaset Of
estimating the correct dataset was evaluated. Second, the accuracy accpege for estimating
the correct acquisition mode was measured. Third, the accuracies acce.p, for estimating the
correct acquisition technique was measured.

Let a tuple (x;,y;) contain the i-th fingerprint sample x; and its actual class y; € Y in the
set Y of all classes. Let F(x;) be the estimated class for fingerprint sample x;. The accu-
racy aCCdapaset for a set X = {x; : i € [1,N]} containing N samples is therefore the expected
value for the rate of correct estimations for the dataset and can be calculated by using the
indicator function 1:

1 N
aCCataset = N Zi Lr(x)=y; Q)
i=

Let F;(y) =m:y €Y —1t €T be the function that maps a class y to it corresponding
mode ¢ in the set T of all acquisition modes, i.e. T = {’Optical’, *Capacitive’, *Thermal’,
"Ink-based’ }. Then the accuracy acceecp can be calculated as follows:

1 N
Wctech = g X Lrtra)=h) @

This accuracy accech can be understood as the expected value for the rate of correct esti-
mations for the acquisition technique.

Respectively, let F,,(y) =m :y € Y — m € M be the function that maps a class y to it corre-
sponding mode m in the set M of all acquisition modes, i.e. M = {"Plain’, 'Rolled’,’Swiped’ }.
Then the accuracy accpege can be calculated as follows:

1 N
2Cmode = y o Litr(s)=Fits) ®

This accuracy accpede can be understood as the expected value for the rate of correct esti-
mations for the acquisition mode.

The priors of the acquisition modes and acquisition technique are not equally distributed
over all classes. This imbalance has of course impact on the respective accuracy measures.
4-fold cross-validation was used to allow a more reliable evaluation. Each fingerprint
dataset was therefore split into four parts of equal size. In each fold of the evaluation,
one of the parts was kept out of the training data and used for testing only. No fingerprint
sample is in more than one testing split. The splits were performed randomly. All datasets
have more than one fingerprint sample per fingerprint. It was enforced, that all samples
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Fig. 3: t-SNE embedding for GLCM features already allows distinguishing between some datasets.

of the same fingerprint are in the same split. Therefore no two samples belonging to the
same finger are in the training split and the test split of the same fold. The fact, that finger-
print samples stemming from the same source (finger instance) were splitted into different
datasets, was neglected. The accuracies reported here are actually the mean accuracies
over all four evaluation runs.

For inspection of the failures in classifying the datasets, confusion matrices are calculated.
Those matrices allow to analyze the failures made with respect to the real data origin.

Alternative Classifiers Five alternative classifiers were tested to benchmark the perfor-
mance of the CNN based approach: Random Forest Classifier [BrO1], Extra Trees Clas-
sifier [GEWO06], Decision Tree Classifier, Logistic Regression and K Nearest Neighbor
Classifier.® All alternatives have implementations in the python based machine learning
toolbox scikit-learn and can be used out of the box [Pell].

Classification applied directly to the signal of the central crops did not perform well. Thus,
Gray level co-occurrence matrices (GLCM) have been calculated for each central crop. ’
Those represent the entire range of gray level values in a crop and the dynamics of neigh-
boring pixels [Ha73]. The intensities of gray values were subsampled by a factor of 4 to
reduce the number of features to a reasonable order.

A common step in classic pattern recognition is to do Feature Selection. Principal Com-
ponent Analysis (PCA) is probably the most standard method here. PCA analyzes input
data for their components of maximal variance. PCA transforms input data to a new base.

6 AdaBoost, Huber Regressor, and SVM were also tested but failed totally to learn a classification.
7 GLCM is a classic feature for texture classification. Other features for texture classification may be applied, of
course. However, GLCM already yielded impressive results for data origin classification.
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Tab. 3: The most relevant accuracies are those achieved on test data. Best result is marked in bold.

. Feature aCCdataset aCCmode aCCtech

Input Classifier Selection | Train l Test Train l Test Train l Test
Decision none 100% 89.2% 100% | 97.4% 100% | 96.7%
Tree PCA 100% 83.2% 100% | 93.5% 100% | 91.6%
Extra none 100% | 92.9% 100% | 98.5% 100% | 98.3%
Trees PCA 100% | 90.2% 100% | 97.0% 100% | 96.2%
GLCM Random none 99.8% | 93.2% 100% | 98.6% 100% | 98.4%
Forest PCA 99.8% | 91.1% | 99.9% | 97.0% | 99.9% | 96.4%
Logistic none 100% | 95.6% 100% | 98.1% 100% | 97.9%
Regression PCA 84.3% | 833% | 94.9% | 94.5% | 93.6% | 93.0%
K Nearest none 92.8% | 86.7% | 98.1% | 96.6% | 97.4% | 95.2%
Neighbors PCA 92.6% | 86.4% | 98.0% | 96.5% | 97.3% | 95.1%
Images CNN none 100% 94.7% 100% | 99.7% 100% | 99.5%

This base allows to select only those axes with the largest variance in the data. Figure 3
visualizes a two dimensional embedding of the reduced feature set, which was generated
by t-distributed stochastic neighbor embedding (t-SNE) [MHO08]. Obviously, the input fea-
tures allow distinguishing between most datasets.

All approaches were evaluated on the full set of input features and also on a reduced
feature set. The reduced set contained the important components, which together explain
more than 99.9% of the variance in the original data. The PCA based transformation was
calculated on the training data only, of course.

Results Table 3 summarizes the results of the evaluated methods. Figure 4 visualizes the
confusion matrices for classifications based on the features derived from entire GLCMs.
Most of the classifiers were able to classify the acquisition mode and the acquisition tech-
nique very reliable. The CNN based approach achieved an accuracy of 99.7% for estimat-
ing mode and 99.5% for technique respectively. The best alternative classifier achieved
similar accuracies.

Despite this, dataset classification is more challenging. Most of the classifiers are able to
distinguish very reliably even between the different datasets. Of course, the most important
aspect is the accuracy achieved for the test sets. The best result of all evaluated approaches
is achieved by the Logistic Regression: 95.6% of the samples were classified correctly.
Some pairs of datasets were confused more often than others. Failures are made by con-
fusing samples from the two thermal/swipe datasets. Samples from both datasets contain-
ing rolled fingerprints were also confused in some cases. Finally, samples from datasets
FVC2002D DB2 and FVC2006 DB2 often were also misclassified. Actually, both datasets
were acquired with scanners from the same manufacturer. It is likely, that the same scanner
model or even the very same scanner was used for acquisition. If so, the classifiers based
their decision on additional dataset biases, e.g. environmental influences.

All classifiers overfitted to the training data. All training data could be classified almost
perfectly by all classifiers. However, using the PCA for feature selection did not work out
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Fig.4: The confusion matrices can be used to identify class-specific failures made by a classifier.
Each dataset is identified by the numbering provided in Table 2. Most failures in classification are

made between datasets 9 and 11 (both thermal swipe), between datasets 15 and 16 (both ink-based
rolled), and datasets 5 and 10 (both likely the same scanner).

well. In general, the accuracy achieved on the test data was lower, when feature selection
was applied before classification.

5 Conclusion

The dataset bias can be a challenge for any process, which has to deal with unknown
input data. We propose to exploit the database bias. If one can use the dataset bias as a
distinguishing property for the origin of a fingerprint sample, one will be able to use this
information to dispatch the sample to a process, which is specialized on such inputs. Five
classifiers to guess the origin of a fingerprint were evaluated. Acquisition mode and acqui-
sition technique were classified very reliable. Fifteen datasets containing their individual
dataset biases were tested for evaluation. Most of the conventional classifiers worked well
out of the box: Accuracy for the estimation was over 95%. The classification errors do
not distribute equally among the different classes. While most of the datasets were distin-
guished reliably by the classifiers, some are harder to be distinguished. The CNN based
approach and the conventional approaches performed similar.
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