
Feature Based Representation and Detection of
Transcription Factor Binding Sites

Rainer Pudimat, Ernst-Günther Schukat-Talamazzini, Rolf Backofen
Friedrich-Schiller-Universität Jena, Institut für Informatik

Ernst-Abbe-Platz 3, 07743 Jena
email : {rpudimat,backofen}@inf.uni-jena.de

Abstract: The prediction of transcription factor binding sites is an important problem,
since it reveals information about the transcriptional regulation of genes. A commonly
used representation of these sites are position specific weight matrices which show
weak predictive power. We introduce a feature-based modelling approach, which is
able to deal with various kind of biological properties of binding sites and models
them via Bayesian belief networks. The presented results imply higher model accu-
racy in contrast to the PSSM approach.
Keywords: Bayesian networks, transcription factor binding sites, stochastic mod-
elling, gene expression

1 Introduction

A fundamental challenge of recent biological research is to understand the regulation of
gene expression. A gene’s expression level is mainly controlled via the binding of tran-
scription factors to regulatory DNA-elements (called transcription factor binding sites)
in the upstream region of a gene [AJL+02]. Despite the quite strong sequence simi-
larity among the binding sites of certain transcription factor, the development of highly
specific and accurate computer-aided detection approaches is still an unsolved problem
[LH02]. Since the relatively short sequences occurring at binding sites can show a certain
degree of variability and could be present by chance anywhere in a genome without hav-
ing regulatory functionality, most current solutions suffer from a high false positive rate
[FH97, PBCB99].

In this paper, we consider the supervised learning of binding site motifs. Although nearby
any known modelling approach has been applied, the majority of current available solu-
tions uses position specific weight matrices (PSSM) [ATC+03, BOH03, KGR+03]. Each
entry of such a matrix stands for the frequency of certain nucleotide (matrix rows) in cer-
tain position within the binding site motif (matrix columns) [St00].

Albeit its predominant role, PSSMs have only weak predictive power for two reasons.
First, PSSMs assume statistical independence among the motif positions. Recent literature
shows that this strong assumption is invalid [BJC02, BEFK03]. Second, PSSMs do not
allow to employ any other binding site properties such as DNA structural properties [Gr02,
PBCB99].

Our paper deals with the development of binding site models that abolish these putative
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sources of weakness. We employ Bayesian belief networks (BNs) [Mi97], since they pro-
vide the necessary flexibility for choosing the most predictive properties of the sites. In
addition, BNs overcome the second obstacle of PSSMs, in allowing to express dependen-
cies between these properties. Note that Bayesian belief networks are commonly used in
modelling problems concerning gene expression networks [So03, NKIM04]. Barash et al
first applied them to binding site prediction in 2003 [BEFK03]. In contrast to our work
their application of BNs is just an extension of the PSSM through considering dependen-
cies between sequence positions, without modelling more complex sequence properties.
Bayesian belief networks also have been used for methodical similar tasks like modelling
of splice sites [CDKK00].

This paper is structured as follows: In section 2, we introduce basic principles of our
modelling strategy and describe the different site properties used in the belief networks. In
section 3, we perform model accuracy tests on an exemplarily data set. It is shown, how
the predictiveness increases if we enrich the former approach with dependency modelling
and flexible motif descriptions.

2 Methods

2.1 Model Features

The goal of learning is to detect common properties between different samples given in
the data sets. For this purpose, it is common to describe these properties by a vector
F1, . . . , Fk of features, which can be extracted directly from the sample sequences. For
PSSMs, this features are simply the nucleotides at the different positions. In our case,
we have more complex features, e.g. ’being in an CpG island’. Using these features, we
are also able to characterise important properties of the flanking regions like structural
attributes. In addition, they are also used as a technique for parameter reduction.

Now these features F1, . . . , Fk are modeled as discrete random variables, and the problem
of learning is to estimate the joint probability distribution P (F1, F2, . . . , FK) from a set
of training samples. In what follows, these random variables associated to the features in
our model are called model features. We distinguish between six main classes of features
(called feature types) which are currently implemented: nucleotide features, consensus
features, helical parameter features, GC content features, CpG island features and PSSM
hit features.

Nucleotide Features represent base distributions at single motif columns, analogous to
columns of a PSSM. A consensus feature is used to determine if a defined subsequence
of a binding site contains a match of a given consensus sequence. Helical parameter fea-
tures evaluate the mean of sequence-dependent structural dinucleotide steps over a defined
sequence range according to [PPF+99, EHC97]. One has the choice of 38 different confor-
mational parameters defined on dinucleotides(for instance helical twist or mayor groove
width ). GC content features represent the fraction of guanine and cytosine in the neigh-
bourhood of a site. It can be applied to approximate the overall base composition in the
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environment of a site. CpG island features behave similar to GC content features but pos-
sess distinct value sets. They take the value true if the site is within a CpG island and
false if the site is not. The matrix hit feature was constructed to deal with the preference
of transcription factor binding sites to occur in the close neighbourhood of a co-acting
transcription factor’s site [La98]. Due to this, they are used to scan the flanking regions of
a site for hits of a defined PSSM.

Albeit model features differ in their value range and their rules for mapping sequences to
feature values, we simply assume that they are discrete functions Fk : S × IN 7→ ran(Fk)
from the Cartesian product of the set S of DNA sequences and integers to the feature range.
The additional integer input determines a reference position of the sequence. Since we
cannot deal with continuous random variables, the continuous range of helical parameter
features and GC content features is discretised. The interval borders for discretisation are
determined by an entropy-based algorithm developed by Fayyad and Irani [FI93].

Example. Let’s consider a model feature F of the type consensus feature. In this case
let the consensus pattern be WWWW (W stands for either A or T). Further let the range to be
scanned for matches be [i + 1, i + 9]. Thus, this instance of a consensus feature decides
whether or not there is a A-T subsequence with flexible start point. Then given an input
sequence s = s1s2 · · · sL the value of feature F is determined as follows:

F (s1s2 · · · sL, i) =

{
true : si+1 · · · si+9 contains a subseq matching WWWW

false : otherwise

Figure 1 gives an overview of all available model features types. Given a set of model fea-
tures which forms a binding site model of certain factor, it is possible that some nucleotides
contribute to more than one feature which leads to correlations between the involved fea-
tures. Furthermore, it has to be pointed out that PSSMs are embedded as a special case in
our modelling approach since they can be constructed out of nucleotide features for each
position inside the motif.

2.2 Bayesian Belief Networks

Constructing a model for binding sites of a transcription factor requires the choice of
model features F1, F2, . . . , FK with maximal discriminative power. The next step is the
estimation of the joint probability distribution P (F1, F2, . . . , FK). If we would assume
independence of the different features as done in the case of PSSMs, this joint distribu-
tion would be calculated as the product of single probabilities of the feature values, i.e.,
by
∏k
i=1

P (Fi). But clearly, we cannot assume statistical independence between features
like mentioned above. Even if there were no possibly overlapping features (like consensus
features) in the model, recent literature reports interdependencies between the columns of
binding motif [BJC02]. This implies, that the joint probability has to be combined from
conditional probabilities modelling the dependencies.

However, with respect to the usual amount of training data and the exponential growing
number of distribution parameters which have to be estimated, it is hardly practicable
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Figure 1: Model feature types

to model all putative dependencies. Bayesian belief networks (BN) are a good trade-off
between these two extrema [BEFK03]. The motivation for the decision in favour of BNs
with respect to Hidden Markov Models (HMM) is as follows. Beside the fact that they are
similar in the sense of modelling dependencies, a HMM is a finite state machine. Thus, at
each time point they take a state out of a state alphabet. The probability of taking a state
depends on previous states of the machine. This implies an order of the states (e.g. in time
series) which is not reasonable to our framework of model features whose sequence ranges
could overlap. In the Bayesian belief networks approach there are no ordered states.

A BN is a pair B = (G,P ) where G is an annotated directed acyclic graph (DAG) whose
vertices correspond to random variables out of a set X = {X1, X2, . . . , XK} and whose
edges determine dependencies between the connected variables. Independence assump-
tions in the sense that each random variable is independent from all its non-parents are
given implicitly by the graph structure. The parameter set P quantifies the network. It
contains parameters pxk|πxk = PB(Xk = xk |Πxk = πxk ) for each possible value xk of
random variable Xk and each assignment πxk of values to the set of parent variables Πxk

[FGG97]. So, a BN B defines a unique joint probability distribution over all concerned
random variablesX given by

PB(x1, x2, . . . , xK) =

K∏

k=1

PB(xk |πxk). (1)
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It is clear that our model features play the role of the random variables in the BNs. Ad-
ditionally there is another variable called class variable C [FGG97] which can be used
to learn a single BN for binding sites of different factors or to distinguish binding site
subclasses of one transcription factor. Together with a class variable a BN is also called
Bayesian Classifier. An exemplary BN trained on MEF-2 binding sites is shown in fig-
ure 2.

Consensus−
Features

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Hel1

Hel2
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Con2

Helical
Features

Nucleotide Features

C

Figure 2: Bayesian belief network for MEF-2 binding sites

Learning. The learning process of Bayesian belief networks comprises both: estimat-
ing the probability distribution and the dependencies between variables (i.e. the graph
structure). Since finding the best network structure of a BN given some training data is a
NP-hard problem [Pe88], we restrict to three special cases of BN for which the freedom
of drawing edges in the graph is more or less constrained. The simplest kind of BN con-
sidered here is the so called Naïve Bayesian classifier (NBC) [DH73]. There, every model
feature F is dependent of the class variable C. Other dependencies are not considered.
Using NBCs, one can simulate the PSSM approach. In the second class of networks em-
ployed here each model feature F depends on the class variable C and at most one other
model feature F ′. Beside the outgoing edges of C such networks form sets of trees. For
that reason they are called Tree-augmented networks (TAN). There are efficient structure
learning algorithms for TANs which reduces the problem to finding a maximum weighted
spanning tree [CL68]. The last graph topology discussed here is quite similar to TAN
with the difference that model features which have no relevance for the classification, are
disconnected from the class variable and correlations between these and other features are
not considered. Due to this they are called Selective TANs (STAN) [SP95].

To perform supervised learning BNs with transcription factor binding sites, one needs a
sample set of known binding sites justified with respect to a reference position. We have
chosen the reference position to be the first position according to TRANSFAC [WCF+01].
In addition, we must include as much flanking regions relative to that position as the in-
cluded model features demand. Each site in the sample set has to be transformed into a
vector of variable assignments by applying the model feature functions. After all these
vectors are presented to the network learning procedure.
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Application of Trained Models. The procedure for scanning an input sequence s =
s1s2 · · · sL is quite similar to the learning process. A variable assignment vector
(f1(l), f2(l), . . . , fK(l)) is computed for each position l of the sequence. The network
returns the joint probability of each vector. Due to the fact that a model feature could use
basepairs upstream of the reference position, some positions at the 5’ end of a sequence
cannot be evaluated (the same is the case for the 3’ end).

To decide whether a sequence position is a putative binding site or not, we compare the out-
put probability PB(f1, f2, . . . , fK) of the binding site model with the output probability
PN (f1, f2, . . . , fK) of a background model, which is an equally dimensioned (according
to the features which were chosen) Bayesian belief network trained on arbitrary eukaryotic
promoter sequences. This is done using the common log-odds scores

S = log2

PB(f1, f2, . . . , fK)

PN (f1, f2, . . . , fK)
. (2)

Comparing scores of different models to decide, which is the most probable transcription
factor, binding at certain position, is more difficult. One can easily reflect that models of
different factors could contain distinct numbers and types of model features according to
the demands to describe their binding sites. These circumstances lead to problems. First
of all, the model with the higher number of features would tend to have smaller probability
values. Second, it is not possible to compare probabilities produced by features of different
nature (Is it better to see a T at position 1 with probability 0.9 or to see a helical twist
above 34.5◦ with probability 0.75 at subsequence sm · · · sn ?). Furthermore there arises
the question to which background model these probabilities should be compared to.

We start to tackle these problems by answering the last question. Let U be the set of all
model features which occur in any model within our classification system. Then the back-
ground model is constructed by including all features U ∈ U and learning the probability
distribution and network structure given the background data described above. The next
step is to expand each site model (i.e. the numerator in equation 2) in a simple way to
include the missing context of the background model. Let F ⊂ U be the set of model
features considered in a model B and G = U − F the set of features which are included
in other models and in the background model N . Then the joint probability producing a
value vector u = (f , g) of the variable set U = F ] G is

P (f , g) = P (f ) · P (g |f ) . (3)

The first part of the product on the right is simply approximated by the joint probability
PB( · ) of the binding site model B whereas the second part which is not modeled in B is
substituted by the conditional probability of observing values g of variables in G given the
values f of variables in F according to the background distribution PN ( · ). Fortunately,
efficient algorithms to approximate these conditional probabilities with Bayesian belief
networks exist [LS88]. The expanded equation for computing log-odds scores is then

S = log
P (f , g)

PN (f , g)
≈ log

PB(f) · PN (g |f )

PN (f , g)
. (4)
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The result of computing the scores in this way is that we achieve comparable scores in the
sense described at the beginning of this paragraph.

3 Experiments and Results

We demonstrate the improvements of our modelling approach using a set of 26 exper-
imental proven mammalian MEF-2 binding sites which were taken from TRANSFAC
[WCF+01], TRRD [KIA+02] and from supplementary material of Wasserman and Fick-
ett [WF98]. The models were validated via 10-fold cross validation tests. In each trial
90 % of the samples were used to learn a model which then was applied to the genomic
sequences of length 2000 bp containing the remaining 10 % of the sample sites.

The scores assigned to each position of the test sequences were normalised to the range
[0, 1] to absolutely ensure comparable results. Positions whose scores exceeded 0.9 were
counted as matches. Since additional known MEF-2 binding sites in these genomic neigh-
bourhood of a sample were masked in the test processes and since one can assume that
these well-investigated mostly muscle-specific promoter sequences don’t contain unknown
MEF-2 sites, only the current test sample site of each trial was treated as true positives
(TP), other matches as false positives (FP).

For each sequences the distance between the score Sm of the known site to the sequence’s
average S̄ (denoted by ∆S̄|Sm) was calculated and averaged over all test cases. As a second
quality measure the so-called F-measure was computed from the contingency tables: F =
2·r·p
r+p

, where p = TP

TP+FP
(precision) is the fraction of true positives among all matches

and r = TP

TP+FN
(recall) is the part of real sites which were considered as matches.

We expect improvements in two dimensions, by considering dependencies and by using
additional features. In the first experiment whose results can be seen in Table 1a, three
models according to the three structure classes (NBC, TAN, STAN) were trained. As all
of them contained only nucleotide features, thus the NBC model is equivalent to a PSSM.
Both the distance ∆S̄|Sm and F increase when we model dependencies. In the case of
TAN the improvement is stronger than in the case of STAN, the mean distance between
average score and site scores even decreases in the STAN model. The graphs in Figure 3a
show clearly the stronger signal of the known binding site toward the background in the
TAN case.

a.)
Measure NBC TAN STAN
∆̄S̄|Sm 0.6226 0.6683 0.5789
F 0.6956 0.8275 0.7499

b.)

Structure Measure M1 M2 M3

∆̄s̄|sm 0.6400 0.6924 0.7209NBC
F 0.7272 0.7042 0.7272
∆̄s̄|sm 0.6861 0.7156 0.7339TAN
F 0.8421 0.8421 0.8571

Table 1: a.) Comparison of models with different structure classes. b.) Quality measures of models
with additional features.

In the second series of experiments, additional features were successively integrated. No-
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tice that an algorithm for selecting the best model features is not developed yet. Hence, the
choice of model features was based on visual inspection of the data. Models M1 contain
a consensus feature which evaluates whether there is a matching sequence for consensus
TD starting from position 1 at the sites (D means nucleotides A, G or T). The M2 models
contain the same features plus another consensus examining whether there exists a subse-
quence of length 4 with consensus WWWW (nucleotides A or T. In the M3 models, a helical
feature which measures the approximated minor groove width within the site and discre-
tises the values according to threshold 5.36 was added. The quality measure for the NBC
and the TAN approach increases from M1 to M3 (table 1b).

In a final step we analysed the values of recall r and precision p of the PSSM-like NBC
model and the best found model (TAN–M3) with respect to different score threshold. The
graph of precision is shown in Figure 3b. Clearly, the PSSM has a weaker performance
compared to the multi-feature TAN model. Since there were hardly false negative errors
in the test sets, the recall values are always nearby 1.
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Figure 3: a.) Score series for a NBC and TAN model on the same sequence. b.) Comparison of
precision values between a PSSM-like model and the multi-feature TAN model

4 Conclusion

We have developed a flexible feature-based probabilistic representation of transcription
factor binding sites. The predictive power of PSSMs was exceeded by both considering
predictive properties of the sites (and their flanking regions), and modeling dependencies
among these properties. To represent these properties, we used Bayesian belief networks.

We have investigated different types of belief networks and compared the performance
with respect to classical PSSMs. As we could show for the MEF2-transcription factor, the
scores of the true sites are better distinguished from the average scores using the belief net-
works incorporating consensus and structural features. In addition, we have found out that
the TAN (tree-augmented networks) perform better compared to STAN (selective TAN).
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