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ABSTRACT
Developers struggle to integrate cryptographic functionality
into their applications. Many mistakes have been identified
by related work and tools have been developed for detecting,
automatically repairing, or otherwise assisting developers in
secure integration of cryptographic functionality.We present
a cryptographic API that has been designed to prevent cryp-
tographic mistakes for developers without a background
in cryptography. For that purpose, common cryptographic
mistakes were categorized systematically. A qualitative user
study was performed that evaluates the usability of the API.
The results indicate that a simple, comprehensive API can
aid developers in implementing cryptographic functionality
securely without much effort.
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1 INTRODUCTION
Results from Egele et al. [17] and Nadi et al. [39] show that
the average developer makes severe mistakes when using
cryptography in their products, which puts their users at
risk. Developers usually have no security background and
lack resources to acquire the required knowledge [8, 16].
Findings from related work regarding developer behavior
indicate that app development is performed with minimum
cost and effort [9]. Therefore, adding cryptographic func-
tionality should be made possible with low cost and effort.
Green and Smith [24] also argue that developers should be
supported by offering convenient cryptographic APIs. In
addition, developers can be nudged into developing more
privacy-friendly applications, if they are offered simple APIs
that fit their use case [29]. Transferring these findings to the
misuse of cryptographic libraries, it is reasonable to assume
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that presenting simple, intuitive cryptographic APIs to devel-
opers results in fewer mistakes when they use cryptography
in their software.
For that purpose, we implemented a convenient API for

different scenarios, where cryptographic functionality is uti-
lized. In order to protect against common cryptographic
mistakes, we first present a systematization derived from
related work and give an overview of research on this topic.
Second, we discuss design choices that our cryptographic
API is based on. Third, we discuss evaluation methods and
provide results of a qualitative user study.

2 RELATEDWORK
The field of research on cryptographic misuse is mostly com-
posed of techniques that are used to detect [16, 17, 32, 33, 38,
41, 42] or repair [36, 41] cryptographic mistakes, discussions
of possible implications [25, 34], and recommendations on
how to integrate cryptographic functions securely [7, 14, 16,
17, 32, 34, 41].

Only a few scientific contributions describe how a crypto-
graphic API can be designed in a way that it prevents mis-
takes in the first place [10, 11, 20]. However, there are some
cryptographic libraries available that claim to be easy to use
andmisuse resistant. There is Sodium1, which in turn is based
on NaCl2, introduced by Bernstein et al. [10]. Sodium is used
as a basis for our implementation presented in Section 4.
Monocypher3 and Themis4 offer similar APIs to Sodium.
Tink5 has a different API, but requires somewhat knowledge-
able developers, due to the exposure of low-level primitives.
Related work, that detects or repairs cryptographic mis-

takes, analyzes Android apps [14, 17, 38, 42], iOS apps [35],
and projects on GitHub [16]. The methodology used for de-
tecting cryptographic mistakes can be divided into static
and dynamic analysis – well-known techniques for analyz-
ing software: (i) Static Analysis, which is used to inspect the
source code or binaries of applications without executing
them. This is done by either automatically [17, 38] or manu-
ally [14] extracting and evaluating features from application

1https://libsodium.org
2https://nacl.cr.yp.to
3https://monocypher.org
4https://www.cossacklabs.com/themis/
5https://github.com/google/tink
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resources. (ii) Dynamic Analysis, which is used to inspect
the behavior of applications during run time. This is usually
done manually [14, 35, 42] as it depends on the user inter-
acting with the application. Muslukhov et al. [38] performed
source attribution of cryptographic mistakes found in An-
droid applications and found that most mistakes are included
via third-party libraries.

Arzt et al. [7], Iacono and Gorski [26], and Nadi et al.
[39] identify commonly required use-cases depending on
cryptography that were used as a basis for use-cases provided
in the API we have implemented.

3 SYSTEMATIZATION OF CRYPTOGRAPHIC
MISTAKES

We analyzed selected papers and categorized cryptographic
mistakes based on their cause. Some papers [14, 16, 42]
already present a categorization of the mistakes they dis-
cuss. This was taken into account as we saw fit. Mistakes,
for which the cryptographic engineer is clearly responsible
were left out, such as implementation bugs within the cryp-
tographic library. These mistakes can not be prevented by
developers, even if they utilize the cryptographic API as in-
tended. Mistakes can be assigned to multiple categories and
categories are not independent of each other, e. g., the lack of
examples in the documentation (knowledge base) contributes
to higher usage complexity, as the developer has to figure
out, how to use the API correctly. The remaining part of
this section introduces the categories our systematization
consists of.

Initialization
Initializing cryptographic keys, passwords, pseudorandom
number generator (PRNG) seeds, or nonces – including ini-
tialization vectors (IVs) – incorrectly might render the cryp-
tographic operation ineffective. Since there are many possi-
ble mistakes during initialization, this category was further
divided into the following subcategories.

Predictable Sequences. Most initialization mistakes use or
lead to predictable sequences, where an attacker might be
able to, e. g., predict a cryptographic secret. Using a random
number generator that is not cryptographically secure [19,
34] or even using a cryptographically secure random number
generator seeded with low entropy [14, 17, 25, 34] results in
predictable sequences. Predictability is not only a problem
for cryptographic secrets, but also for observable values, such
as nonces [14, 17, 35, 36, 38, 42].

Re-use. Re-using values is a special case of predictable se-
quences, where the security is weakened by using values
more than once. This can even be problematic, if values
are generated securely. This category includes the re-use of

keys [14], nonces [16, 20, 42], or PRNG seeds [14, 34]. Com-
mon cases for re-use are static values, i. e., values that are
constant, which includes static keys [14, 17, 25, 35, 36, 38,
41], PRNG seeds [14, 19, 36, 38, 41], CTR counters [14, 16],
and nonces [14, 16, 17, 19, 35, 41] – with the special case of
a nonce being constantly zero [16, 17, 22, 35]. Hard-coded
values are static values as well, with the additional prop-
erty that they can easily be retrieved from the application
itself. Hard-coding is mentioned for keys [14, 34, 35, 42],
passwords [42] – some of them used for password-based
encryption (PBE) [14], and nonces [14].

Weak Values. Another special case of predictable sequences
are weak values. For example, if cryptographic secrets are
too short, they can easily be broken using a brute-force at-
tack. Therefore, it is a mistake to have short keys [14, 19, 34,
42]. Some cryptographic algorithms have the requirement
that cryptographic keys have a certain structure in order
to provide the intended security [19, 34]. If values are con-
stantly zero, they are considered weak as well, specifically
mentioned are nonces [16, 17, 22, 35].

Source. Nonces are supposed to be truly random, but some
developers derive them from the key [34] or from the mes-
sage [14]. Since true randomness is hard to achieve, some
developers derive randomness from seemingly unpredictable
sources, such as the key itself [25] or from files [25].

Insecure Defaults
Values, which are not explicitly set by the caller are some-
times initialized with default values provided by the cryp-
tographic library. This is usually a good thing, as this can
reduce the complexity of the API. However, some default
values are insecure [13, 14, 16, 17, 20, 22, 33, 39, 41]. For exam-
ple, some libraries use ECB as the default mode of operation
such as the Java cryptographic API (JCA) [14, 17, 33, 41] or
PyCrypto [16]. The latter also uses a static IV as default for
AES in CBC mode [16, 22].

Weak Algorithms
Many cryptographic algorithms have been proved insecure
over time. Although they are outdated, they are often still
supported by cryptographic libraries due to backward com-
patibility. However, since developers lack the knowledge,
which algorithms to use, they might not adopt newer and
more secure algorithms. An example, which we already men-
tioned, is the usage of ECB [14, 17, 19, 22, 25, 33, 36, 38,
41, 42]. Related work mentions DES [14, 17, 19, 22, 32, 33,
34, 38, 42] and RC4 [14, 19, 34, 38] as insecure algorithms
for symmetric encryption. MD4 [22, 34, 42], MD5 [17, 19,
22, 33, 34, 36, 42], and SHA1 [14, 19, 33, 34] are specifically
mentioned as insecure hash functions. Other cases of weak
algorithms are self-implemented primitives or protocols, e. g.,
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a re-implementation of AES [14] or authenticated encryp-
tion [16]. The usage of deterministic encryption (not IND-
CPA secure) [35] is considered weak as well.

Validation
Even if encryption is performed securely, mistakes can be
made during validation of certificates or other assets such
as ciphertexts. This topic is prevalent in related work about
TLS, regarding the validation of TLS certificates, where many
things can go wrong [18, 42], such as not validating at all,
missing or erroneous host name validation, accepting ex-
pired or revoked certificates, and validating only a subset
of the whole certificate chain. We added lack of authenti-
cated encryption [20] and the usage of expired cryptographic
keys [42] to this category.

Persistence of Secrets
The security of cryptographic mechanisms depends on the
used secrets being actually kept secret. If the key or password
is stored in plain along the ciphertext, the cryptographic
mechanism is rendered ineffective. There are two major pur-
poses for which cryptographic secrets are persisted: authen-
tication and re-use. Secrets kept for authentication can be
securedmore easily as only a salted hash should be stored. Se-
crets for re-use however need to be stored reversibly, which
might result in keys stored in plain [25].

Usage Complexity
Many mistakes can be attributed to complex API calls, where
the correct parameters or call sequences need to be respected
in order for the mechanism to be secure [13, 16, 21, 39]. The
user is faced with many choices obscure to him, due to the
lack of cryptographic background. In addition, some cryp-
tographic libraries add feature bloat and support very rare
protocols or outdated algorithms. Examples for insecure pa-
rameters chosen for specific algorithms are RSA without
OEAP [14, 25, 31, 42], CBC with PKCS5 padding [14, 25],
and PBE without salt [14, 17, 25] or with less than 1000
iterations [14, 17, 36, 38, 40, 41] as recommended in RFC
2898 [30]. Further mistakes can be attributed to insecure
combinations of cryptographic primitives or the lack of nec-
essary steps, such as forgetting to initialize a nonce with
a random value [16, 42]. Missing but required features like
authenticated encryption forces developers to provide their
own custom and insecure combinations [16]. Non-obvious
error handling [16, 25], the use of uninitialized values that
leads to predictable sequences [34], as well as missing com-
pile and run time validations can be attributed to the lack of
modern programming language features [16]. For deeper in-
sights into how developers struggle with the JCA specifically,
refer to Nadi et al. [39]. Jaeger and Levillain [28] discuss the
intrinsic security characteristics of programming languages.

1 private static byte[] encrypt(byte[] raw, byte[] clear)

throws Exception {↪→

2 SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES");
3 Cipher cipher = Cipher.getInstance("AES");
4 cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
5 byte[] encrypted = cipher.doFinal(clear);
6 return encrypted;
7 }
8

9 byte[] keyStart = "this is a key".getBytes();
10 KeyGenerator kgen = KeyGenerator.getInstance("AES");
11 SecureRandom sr = SecureRandom.getInstance("SHA1PRNG");
12 sr.setSeed(keyStart);
13 kgen.init(128, sr); // 192 and 256 bits may not be available
14 SecretKey skey = kgen.generateKey();
15 byte[] key = skey.getEncoded();
16

17 byte[] encryptedData = encrypt(key,b);
18 byte[] decryptedData = decrypt(key,encryptedData);

Listing 1: Insecure example taken from Stack Over-
flow, showing how to encrypt data with the JCA

Knowledge Base
In addition to the usage complexity described earlier, devel-
opers have a hard time finding resources helping them to
figure out how to integrate cryptographic software into their
applications securely. It is hard to find useful information
in the official documentation of cryptographic libraries [16,
39], officially provided examples are insecure [16] or the
examples lack a security discussion [16, 17, 22]. Third-party
information sources, such as Stack Overflow, are also filled
with insecure suggestions and examples [4, 5, 19].

Other
There are other mistakes that were considered by related
work, such as not using cryptography at all [14], side-channels
introduced through compiler optimizations [34], or incom-
plete processing of internal buffers or clearing secrets from
memory [14, 27, 33].

Example
The following scenario visualizes the problem of crypto-
graphic misuse in practice. Assume a developer wants to add
encryption to an Android application. Since he has no back-
ground in cryptography, he simply searches for “android
encryption example” and finds a highly rated accepted an-
swer on Stack Overflow [1]. Even though there is a warning
message and several comments indicating that the example
is insecure, this might not prevent the developer from us-
ing the code. There are seven actual cryptographic mistakes
and two potential weaknesses in the code snippet displayed
in Listing 1, which was taken directly from the cited Stack
Overflow answer.
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(i) In Line 3 "AES" is specified as the cipher that should
be used. The block mode and padding are not pro-
vided and will default to "AES/ECB/PKCS5PADDING", even
though this problem in JCA was already pointed out
in 2013 [17] (insecure default), and

(ii) a discussion regarding ECB being the default was not
found in the documentation of the JCA (knowledge
base).

(iii) The algorithm choices (Line 2, 3, 10, and 11) are string
values and typos will result in run time errors. As de-
scribed, the string can also be used to configure the
blockmode and padding. Knowledge about which algo-
rithms are available and considered secure is required
(usage complexity).

(iv) The variable keyStart, which is used as a PRNG seed in
Line 12, is initialized with a hard-coded value in Line
9 (initialization) [19].

(v) The PRNG uses outdated SHA1, as can be seen in Line
11 (weak algorithms).

(vi) In Line 1–15 a custom key derivation function is im-
plemented (weak algorithms).

(vii) The ciphertext encryptedData is deterministic (weak al-
gorithms), and

(viii) not authenticated (validation).
(ix) The usage of non-specific types for the encrypt() func-

tion allows for swapping both arguments accidentally.
This could result in the clear text being used as key
(initialization).

This example illustrates that the problem of cryptographic
misuse is pervasive. The approach we take to prevent as
many mistakes as possible is to carefully design the cryp-
tographic API. We will cover this design in the following
section.

Limitations
The systematization can only be consideredwork-in-progress.
It lacks a clear and reproducible paper selection process, as
well as a sound methodical review, such as presented by
Maass et al. [37]. The categories were created by a single
person and hence are subjective. Categorization should be
the result of inter-coder agreement and has to be performed
with at least two persons. Aside from these limitations, many
cryptographic mistakes were extracted from related work,
providing a coarse overview of the topic.

4 DESIGN CHOICES
Bloch [12] formulated characteristics for good APIs. Most
notably for the following section, “APIs should be easy to use
and hard to misuse”, they “must coexist peacefully with the

platform” (platform integration), and “Fail fast” (“Compile-
time is best”). Based on these characteristics and the cate-
gories of cryptographic mistakes identified in the previous
section, we designed a cryptographic API for the Swift pro-
gramming language. In order to make the API available to
developers, we implemented an open source framework for
iOS and macOS called Tafelsalz6.
Swift was chosen due to its modern language features,

and the author’s familiarity with it and the iOS and macOS
platforms. However, our design choices are conceptual and
can be applied to other languages, such as Java, or the more
modern Kotlin programming language, which are available
on Android, as well. Ideally, a usable cryptographic API is
provided by the platform vendor as part of the standard SDK
or adopted by other cryptographic libraries [23].

Tafelsalz is based on Sodium,which already protects against
many mistakes, such as initialization, insecure defaults, weak
algorithms, and validation [16]. The usage complexity varies,
as there are various bindings for different programming lan-
guages that offer slightly different APIs than the C-based
library libsodium. The API differences are a necessity, due
to platform integration requirement.

Initialization mistakes, e. g., length checks, are handled at
run time in libsodium. In contrast to C, modern program-
ming languages like Swift have more strict type checking
mechanisms, typed null pointers (optionals), overflow pro-
tection, other compile time checks, and more features that
can be utilized to move errors from run time to compile
time. This allows failing before a cryptographic function is
called (fail fast). The type (or class) should prevent objects
from being instantiated, if they are invalid, e. g., due to an
unexpected size. Typing can further support developers to
initialize the internal values of objects. Ideally, developers
do not need to know that a cryptographic key has to be
initialized with a cryptographically secure random number.
The cryptographic engineer can define the correct behavior
in the type’s constructor already. This does not prevent de-
velopers from making mistakes, as objects often need to be
initialized with a given value, such as a persisted or shared
key. However, this is another use-case and should require a
different API call.

Another example is the persistence of secrets, which is hard
to get right. Sodium only offers persistence of secrets used for
authentication, by transforming the secret into a string that
can be stored in a database or similar. Storing secrets for re-
use however, is a platform-, even device-specific problem and
thus not offered by Sodium. The security of the cryptographic
operation depends on the secrecy of the key. If the key is
persisted, its secrecy depends on the security of the storage
medium. Ideally, a hardware authentication device should

6https://github.com/blochberger/Tafelsalz
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let alice = Persona(uniqueName: "Alice")
let box = SecretBox(persona: alice)!
let plaintext = "Hello, World!".utf8Bytes
let ciphertext = box.encrypt(plaintext: plaintext)
let decrypted = box.decrypt(ciphertext: ciphertext)!

Listing 2: Symmetric encryption with Tafelsalz

// Alice's side
let alice = Persona(uniqueName: "Alice")
let bob = Contact(publicKey: bobsPublicKey)!
let box = SecretBox(persona: alice)!
let plaintext = "Hello, World!".utf8Bytes
let ciphertext = box.encrypt(message: plaintext, to: bob)

// Bob's side
let bob = Persona(uniqueName: "Bob")
let alice = Contact(publicKey: alicesPublicKey)!
let box = SecretBox(persona: bob)!
let decrypted = box.decrypt(message: ciphertext, from:

alice)!↪→

Listing 3: Asymmetric encryption with Tafelsalz

be used. However, these are not always available. On iOS
and macOS Tafelsalz utilizes the Keychain, which is secured
by the tamper-resistant co-processor called Secure Enclave
on iOS devices and some recent Macs. On devices without
Secure Enclave, the Keychain is secured with PBE [6]. This
makes the API harder to misuse, as the developer does not
have to implement a custom persistence mechanism.
The knowledge base of Tafelsalz consists of use-case ori-

ented examples and detailed API documentation. The docu-
mentation includes warnings for dangerous operations, e. g.,
a warning indicates that initializing a cryptographic key with
a given byte sequence should not be used for generating new
cryptographic keys.

In addition, Tafelsalz offers a more use-case oriented API,
so that the developer finds an interface for the specific task
he intents to accomplish instead of primitives he must com-
bine to achieve this. The use-cases resulted from the usage of
Sodium, functionality that often contains cryptographic mis-
takes, and the implementation of various demonstrators. The
following subsections provide insights into improvements
Tafelsalz offers compared to Sodium to prevent further cryp-
tographic mistakes.

Identity Management
There are two types of identities (or actors) in a classic cryp-
tographic setting:
Persona An identity, of which the user possesses the secret

key, so that he can en- or decrypt messages for this
persona at will. The term persona was chosen, as it
refers to “the personality that a person projects in

let password = Password("Correct Horse Battery Staple")!
let hashedPassword = password.hash()!

// Store `hashedPassword.string` to database.

// Authenticate a user with the password he entered
if hashedPassword.isVerified(by: enteredPassword) {

// The user is authenticated successfully.
}

Listing 4: Password hashing with Tafelsalz

public” [2], which in contrast to identity infers that a
single person can have multiple secret keys, e. g., for
different contexts such as work and private life.

Contact An identity, of which the user only possesses a
public key, so that he can encrypt messages for the
contact or decrypt messages received from the contact.

A persona is identified by a unique name (per app) and can
be used as a source for cryptographic secrets for symmetric
or asymmetric encryption. If the developer wants to encrypt
a string that only the persona is supposed to know, he can
utilize the SecretBox class as depicted in Listing 2. Symmet-
ric encryption with the default secure algorithm provided
by Sodium will be performed. The persona object checks
whether a persisted secret already exists in the system’s Key-
chain that can be used for symmetric encryption. If none ex-
ists, it will create a new one. Secrets are app-specific, so that
personas with the same name in two different applications
are segregated. If the developer wants to asymmetrically
encrypt a message from Alice to Bob, he can use a slightly
similar call, as depicted in Listing 3.

Password Hashing
Passwords that are used to authenticate users must not be
stored. A salted password hash should be stored instead. In
order to make the API usable, the developer does not need to
knowwhich algorithm is used, and he does not need to figure
out how to correctly salt passwords. Hence, a convenient
password hashing function has been added, which can be
used as depicted in Listing 4.

Internal Protection
In addition to the presented API, the Tafelsalz framework
protects secrets and passwords that are kept in memory from
being accessed. This functionality is provided by Sodium as
well, however the developer needs to actively invoke the
appropriate functions. Since Tafelsalz uses typed objects,
protections can be enabled as part of the type’s functional-
ity. To mitigate timing attacks, passwords and hashes are
compared in constant-time automatically.
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Discussion
The implementation of the usable cryptographic API Tafel-
salz can be used by developers without security background
to integrate cryptographic functionality without much effort.
However, the API lacks general applicability and is tailored
to specific use-cases.
The API is designed in a way that developers without

security background can use it properly without having to
change default values. For developers with advanced back-
ground, some configuration is possible. In addition, Sodium
lacks backward compatibility, as it removes weak algorithms.
Data encrypted or hashed with deprecated algorithms from
a previous version of the library has to be updated with more
secure alternatives. Similarly, developers might be required
to use specific algorithms that are not included in Sodium,
which is not possible with Tafelsalz as well.

Note that not every cryptographic mistake identified in
Section 3 is addressed in our design. We included at least one
mistake from each category. In addition, more findings from
the field of usable API design should be taken into account.
The documentation was only done superficially and best

practices should be taken into account in the future. Future
evaluation should also determine whether the class and func-
tion names are appropriate, as the expected lack of security
background within the target audience might cause confu-
sion for terms like password.hash() or SecretBox, which were
adopted from Sodium.
A final minor finding: We implemented a demonstrator

that supports interoperation between iOS and Android. We
found that using the sensitive configuration for the password
hashing algorithm of Sodium exceeds the default memory
limits for Java Virtual Machines on Android. If this level of
protection is required, the memory limits can be increased.

5 EVALUATION
Several qualitative as well as quantitative methods can be
used to evaluate the usability and comprehensibility of Tafel-
salz and its documentation. In this section we will describe
the evaluation steps we have taken so far and elaborate on
possibilities for future evaluation.

There are two major settings in which Tafelsalz or similar
libraries can be evaluated: First by observing or interviewing
developers during their daily work when using Tafelsalz to
perform a task and second by providing specific tasks for the
developers to solve using our library. We will focus on the
second setting since it enables us to evaluate specific aspects
of the library, like the quality of the documentation or the
cryptographic primitives being used.

Introductory Challenge
We have developed an introductory challenge to work with
Tafelsalz called DCrypt7, which serves two main purposes:
(i) act as a starting point for developers willing to learn the
concepts being employed in Tafelsalz, and (ii) give us the
opportunity to qualitatively evaluate the usability of the
Tafelsalz interface and its documentation.

DCrypt provides an application stub, so that the devel-
oper can concentrate on the relevant missing cryptographic
operations. The challenge consists of several tasks with in-
creasing difficulty, which are described abstractly. This is on
purpose to force the developer to contact the documentation
and understand the interface Tafelsalz provides.
The first task is to implement encryption and decryp-

tion with the Tafelsalz framework. Participants have to con-
tact the documentation and can implement their encryption
based on an example in the documentation. The second task
is to add unit tests for their implementation. The unit tests
allow the participants to work more efficiently, especially
when implementing further tasks. This reduces the overall
time required for the challenge. In addition, participants can
reflect on their ideas, especially if they solved the first task
by copying example code from the documentation. The third
task is to test, whether decryption still works after they re-
launch their application and to fix it in case it does not. The
goal of this task is to introduce the problem of persisting
keys. The last task is to encrypt files in a way, that they can
be decrypted by another group. This introduces the problem
of sharing or transferring keys, and the expected solution is
to use PBE.

It is planned to include further tasks dealing with key ex-
change, key derivation, hashing, and asymmetric encryption.

Pilot Study
We had the chance to present Tafelsalz at the GI DevCamp
20188, a workshop for developers. The workshop consisted
of different topics that were presented to all participants in
the beginning. Our pilot study was one of the topics. After
the introduction of the topics, the participants could choose
which topic they want to attend. 12 students with different
backgrounds in computer science participated in our pilot
study, where they had to solve all tasks of our introductory
challenge. All of them but one had no or just marginal knowl-
edge in cryptography and the use of cryptographic APIs.
After a short introduction to the problem to be solved,

we confronted them with the challenge and let them work
on it on their own just with the help of the Tafelsalz docu-
mentation. This process was observed by two hosts, which
were also available for questions. Afterwards we presented

7https://github.com/AppPETs/DCrypt
8https://hamburg.dev-camp.com
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an example for possible cryptographic mistakes when us-
ing other libraries like the one given in Section 3 and had
a focus-group-like discussion about the participants experi-
ences. On one hand, the observation during the challenge
as well as the discussion allowed us to evaluate our design.
On the other hand, the presentation allowed us to educate
the participants by increasing the awareness of the prob-
lem of cryptographic mistakes. That way participants gained
something from taking part in our workshop.
We just want to give some high-level results of our ob-

servations and the discussion here. The participants despite
their missing knowledge of cryptography had no problems
with successfully implementing secure symmetric encryp-
tion functionality in DCrypt (apart from programming lan-
guage related questions). Only the concept of storing keys in
the macOS Keychain in combination with the Tafelsalz per-
sona concept lead to some misunderstandings which could
not completely be solved by just contacting the documenta-
tion. With some hints provided by the hosts the participants
were able to solve all challenges successfully within a time
frame of about 1.25 h. About 0.75 hwere used for introducing
the problem, presenting common cryptographic mistakes,
and discussing the challenges.
To end this section we just want to present a student’s

initial statement on how he would proceed when being con-
fronted with a task like the one given in DCrypt:

“Well, you visit Stack Overflow and take
the first hit for your search term.”

This is one reason, why we should continue to make our
cryptographic APIs as foolproof as possible.

Limitations
We have just taken the first steps for the evaluation of Tafel-
salz. Our results from the aforementioned workshop look
promising in regard to the usability of our library for devel-
opers with minor cryptographic knowledge. We got feedback
which shows some shortcomings in the library as well as
its documentation that we can use to improve their qual-
ity. Further evaluation steps in the future should include
well-conceived tests with a larger test population and repro-
ducible quantitative results. In addition, our API should be
compared to other existing cryptographic libraries in order
to determine whether our design choices are effective.

Future Work
Several methods are known from the fields of psychology or
UX testing [15], which can be employed to get insights into
strengths and shortcomings of Tafelsalz. These include:
Questionnaires Asking developers who use the library for

their opinions on Tafelsalz. An obvious problem is that
there is no possibility to interact with the developers.

Expert interviews Asking experts in the field of crypto-
graphic APIs for their opinion on the design and im-
plementation of Tafelsalz.

Moderated testing Interacting with and observing the de-
veloper, when he performs a task. Optionally the so-
called think-aloud method can be used, where the de-
veloper is asked to tell his thoughts during the task.
This can give further insights into problems during
working with Tafelsalz.

Focus groups Moderated discussion with several partici-
pants. Open questions and the influence of different
participants can lead to ideas, which would not come
up with other methods.

Another way of evaluating whether Tafelsalz succeeds in
empowering developers without a background in cryptogra-
phy to write secure cryptographic code, is to compare it to
other cryptographic libraries [3]. This requires a carefully se-
lected setting for the to be accomplished task. The compared
libraries must support the required primitives and it has
to be ensured that possible caveats, like complicated proce-
dures when including the libraries for the used development
environments, affect the test results as little as possible.

Furthermore, the possibly different preexisting knowledge
has to be taken into account. A developer with some under-
standing of cryptographic principles might perform com-
pletely different in comparison to a complete novice in the
field of cryptography. To avoid knowledge effects, each de-
veloper could execute the task with each library in a random
order (to prevent distorting learning effects) or at least the de-
veloper’s background has to be considered during evaluation.
The comparison can use several objective metrics:

• Could the task be accomplished at all?
• Were any cryptographic mistakes made in the task?
• How much time was needed to accomplish the task?

Additional questionnaires might lead to further insights
about the subjective experiences the developers had while
working with Tafelsalz.

6 CONCLUSION
In this paper we have presented a systematization of crypto-
graphic mistakes, details about our cryptographic API, which
tries to avoid cryptographic mistakes by design, and insights
into its evaluation. However, our contributions have some po-
tential for future work. The discussed limitations show that
further work on this topic is required to reduce the amount of
cryptographicmistakes in today’s applications.We show that
designing usable and comprehensible cryptographic APIs
enables developers without security background to secure
their users’ data.
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