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Goal Driven Architecture Development using LEAP

Methods for goal driven system engineering exist and propose a number of categories of goals including

behavioural, formal, informal and non-functional. This article goes further than existing goal driven

approaches by linking goals directly to the semantics of an architectural modelling language called LEAP

with an operational semantics. The behavioural goals are expressed using a Linear Temporal Logic and the

non-functional goals are expressed as functions over meta-properties of the model. The meta-properties are

supported using an encoding represented using Java reflection. The article describes the LEAP approach using

a simple case study written in the LEAP language supported by the LEAP toolset.

1 Introduction

The architectures of modern IT systems are dis-

tributed and heterogeneous and therefore lend

themselves to design using component-based ap-

proaches. A component based approach, as op-

posed to large scale ERP implementations leads

to multiple possible configurations of system

components raising questions such as what is

the best component configuration and how to

develop component-based designs. Any develop-

ment that changes an architecture should start

with a requirements analysis phase, yet most

modelling approaches focus on what the system

should do. In Architecture Design Languages

(ADLs) or SystemDesign Languages such as UML,

functional behaviour is expressed using invari-

ants and pre and post-conditions. In Enterprise

Architecture (EA) these are represented by as-is

and to-be architectures most clearly character-

ised by approaches such as TOGAF (Spencer et

al. 2004). Other approaches such as Archimate

(Lankhorst et al. 2010) also utilise informational,

behavioural and structural models organised as

different architectural layers such as business,

application and technical infrastructure to ex-

press these architectures. Despite the exhaustive

modelling performed to develop an architecture

model for an organisation’s new requirements,

scant effort is applied to understand and codify

the knowledge that represents the rationale of

the why behind these architectural modelling de-

cisions.

Requirements in the form of functional system

specifications are supported by a number of tech-

nologies including UML and formal languages

such as B and Z, and various logics. UML can be

categorised as structured but imprecise and the

formal languages as being precise but generally

unstructured or difficult to map to implementa-

tion features.

In both cases, these technologies do not support

motivational aspects of system development that

are often expressed in terms of non-functional

properties such as cost, reliability and usabil-

ity. Motivation or Intention of business require-

ments, if supported satisfactorily, can provide a

means for analysing the relationships between

business requirements or needs and IT infrastruc-

ture and thus address one of the perennial issues

in Information Systems/Information Technology

(IS/IT) research, that of business-IT alignment.

This relationship between business and IS/IT per-

formance has received much attention from as

far back as 1977 (McLean and Soden 1977) and a

more recent review of the key issues being iden-

tified in Chan and Reich (2007).

Motivation or intention aspects of requirements

engineering has resulted in a new branch require-

ments modelling based around goal oriented re-

quirements engineering (GORE) techniques
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(Mylopoulos et al. 1999) such as i* (Yu 1997; Yu

and Mylopoulos 1994) and KAOS (Dardenne et al.

1993; Letier and Van Lamsweerde 2004; Van Lam-

sweerde 2008). GORE based techniques present a

variety of options for analysis such as providing

a more formal basis of how goals realise other

goals, conflict between goals and the positive

and negative contributions goals make to other

goals. Further, the relationship between the pro-

posed solution and actual need is more clearly

delineated.

Requirements Engineering methods such as

KAOS and i* aim to address the structured as-

pect of requirements in terms of goal model-

ling. Goals capture the motivation behind system

design and goal modelling languages provide a

mechanism for structuring the goals and linking

them to system elements that are responsible for

achieving the goals.

In order to be effective goal-modelling must ad-

dress the following:

precision In the early stages a requirements en-

gineer is likely to have a broad understand-

ing of the required system. Therefore, goals

should support informal discursive require-

ments. However, as requirements are refined,

their precision should increase to the point

where they can be, in principle at least, pro-

cessed mechanically.

semantics Whether a goal is informal or formal,

it must be possible, in principle, to provide

its meaning. In general a goal is a predic-

ate over some features of a system. Behavi-

oural goals are predicates over system execu-

tions and therefore, it is important to be able

to articulate such executions to the required

level of precision. Non-functional goals are

typically more difficult to express, however

our proposal is that non-functional goals are

predicates over meta-properties of a system

(whether static or dynamic). If, in principle, a

non-functional goal cannot be expressed pre-

cisely in these terms then it is not measurable

and is of limited use in system development.

structure The use of requirements engineering

techniques are justified in terms of system size

and complexity. Therefore, requirements must

have structure that allows them to be decom-

posed and analysed independently. Decom-

position should support the analysis of altern-

atives. Ultimately, behavioural goals should

decompose into system component responsib-

ilities and therefore the goal model structure

should support links to design elements that

realise the specified behaviour.

LEAP is a technology for constructing and anim-

ating architectural models (Clark and Barn 2011,

2012; Clark et al. 2011). It is based on a small

collection of features including: components and

connectors, messages, operations, operation spe-

cifications, information models, events, state ma-

chines, and rules. The design of LEAP has been

motivated by a desire to provide a simple collec-

tion of orthogonal executable modelling features

that can be used as a basis for system design

from enterprise-wide architectures through to in-

dividual IT components. Our approach is to use

components as containers of information and be-

haviour, and to use messages between connected

components as a basis for computation. Com-

ponents can be used to represent both physical

and logical features of a system, and the data

stored in components and passed in messages

between components, may include components

themselves. Our claim is that by making compon-

ents higher-order features of the LEAP language

offers a highly expressive basis for system mod-

elling at all levels without the need for a diverse

collection of different elements.

LEAP is based on existing languages and ap-

proaches including the port-and-connector mod-

els of UML, class and object models of UML, state

machines, the Object Constraint Language (OCL),

functional programming languages particularly

higher-order functions, list comprehensions and

pattern matching, event driven programming,

and KAOS. LEAP uses a functional language in

two ways: to implement component behaviour

and to abstract over system models. The LEAP
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tool supports the leap language and provides tex-

tual and graphical editors for constructing and

viewing LEAP models. The definitions in this

article are LEAP source code and the diagrams

(with the exception of Fig. 8) are generated by

the LEAP tool.

Existing goal-modelling languages address preci-

sion, semantics and structure as described above.

However the degree to which this is achieved

is limited because the languages are either im-

precise (such as BMM) or general purpose (such

as KAOS and i*). In particular KAOS provides a

formal language for behavioural goals based on

temporal logic, however this does not map on

to any specific executable system and therefore

remains very general. In addition, no existing

goal modelling notation addresses the issue of

non-functional requirements in a precise way.

LEAP makes a contribution to architectural mod-

elling in the following ways:

• LEAP brings together an integrated collection

of orthogonal features that we propose as a

basis for the design of component based archi-

tecture. Our claim is that these features are

appropriate for high-level architectures such

as those found in EA and also appropriate for

smaller scale system architecture. This article

provides an example of a system architecture

but see Clark and Barn 2011, 2012; Clark et al.

2011 for other examples.

• LEAP extends component-based modelling

with intentional features in the form of goals,

this together with the executable features of

LEAP makes it unique as a component-based

design language. This article provides examples

of the use of the intentional features.

• LEAP uses a formal logic to express behav-

oural goals over component executions, whilst

other systems provide such mechanisms, LEAP

is unique in that it integrates the logic with

a traditional component-based modelling lan-

guage. This article provides many examples of

LEAP behavioural goals and defines the formal

language.

• Our proposal is that non-functional goals can

be formalised as meta-predicates over extra-

calculational system properties. This allows

so-called soft goals to be precisely defined in

LEAP compared to other approaches that re-

quire non-functional goals to be expressed

in natural language. This article provides a

number of examples of non-functional goals

in LEAP and describes the technical machinery

that allows the non-functional goals to be

checked.

This article describes the LEAP approach to goal

modelling. We introduce the approach using a

case study and then define the languages used.

Finally we compare LEAP with other goal mod-

elling approaches.

2 Case Study

Ruritanian General Practitioners (GPs) are re-

quired to provide an automated consultation

booking system. Patients register with a medical

practice in order to use it. When they register

they may indicate a particular GP that they wish

to see during consultations. The Ruritanian med-

ical system is entirely on-demand: patients walk

in to the practice and request a consultation. If

the patient is registered with a particular GP then

they will see that GP when they are free, other-

wise the patient sees any GP. Being a Ruitanian

GP is tough since they must always be available

in the surgery. A record must be kept of all con-

sultations and the medicines that are dispensed.

Apart from the functional requirements given

above, Ruritania defines some non-functional re-

quirements in terms of fairness, cost, efficiency,

and risk. It requires that its medical practices are

fair in the sense that no GP is overworked, all

patients are seen within a sensible time, and no

consultation takes too long. In addition, the total

cost of ownership for a medical practice should

be below a specified amount. The costs will in-

clude the development cost of the software, the

costs of running the software, and the costs of the

GPs. The risk of sensitive medical knowledge be-

ing leaked is reduced if the system is distributed
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Figure 1: The Surgery Goal Tree

over more than one site. Finally, a system imple-

ments the requirement functionality as efficiently

as possible.

3 LEAP: Goal Directed Models

3.1 Goals

Figure 1 shows the LEAP goal decomposition tree

for the GP case study. All goals denote predicates

over aspects of a system architecture, for example

SurgeryBookingSystem are the conditions under

which any architecture represents an acceptable

system, whereas Doctors are the conditions for

the correct behaviour of the part of the system

that manages information about GPs. Goal types

differ in terms of the type of language used to

express the condition and in terms of the things

that the goal can denote. LEAP supports goals of

the following types:

informal An informal goal is expressed using

natural language. It is intended to scope out

an area of the system that is subsequently re-

fined. A goal decomposition tree usually has

an informal goal at its root. Informal goals are

expressed in LEAP diagrams as clouds.

behavioural A behavioural goal uses linear tem-

poral logic to precisely define the behaviour

of some aspect of the system. A LEAP model

consists of a collection of components each

of which contains a database of terms. LEAP

execution occurs in terms of messages that

cause changes in component databases; there-

fore LEAP executions are sequences of states

and messages. A behavioural goal is a con-

dition that applies to LEAP executions. Be-

havioural goals are shown as nodes labelled

».
Behavioural goals are not necessarily limited

to the scope of a single component. As a goal-

decomposition tree is developed from root to

leaves, the scope of behavioural goals nearer

the root are likely to be scoped over sub-sys-

tems that comprise multiple interactive com-

ponents. Behavioural goals near the leaves of

the tree tend to relate to single components

and may even be limited to single operations.

Invariant An invariant goal is something that

must be true at all times during system ex-

ecution. A behavioural goal that specifies a

condition that must hold in all states of an

execution is an invariant. However, the be-

havioural goals described above are specified

using a language that is limited to component

messages and states. Other types of invari-

ant relate to meta-properties of a system such

as cost, reliability, etc. Therefore, LEAP in-

variants can be expressed using the following

meta-features: state which is used to refer-

ence the current system state in terms of its

messages and database terms; calc that is

used to reference the sequence of states in a

system execution; reify that is used to map

between model elements and database terms;

intern that is used to map between data-

base terms and model elements. Invariants are

expressed on LEAP diagrams as !.

component Goals can be linked to specific LEAP

components. The goal may be used to spec-

ify that the component has particular beha-

viour or meta-properties. Behavioural goals



Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 1, March 2013

44 Tony Clark and Balbir Barn

Figure 2: Goal Data

can be used to specify the behaviour of par-

ticular component operations and as such will

map directly on to the specification contained

in the component.

Goal decomposition is shown as nodes and links

that connect the goal types described above. De-

composition may be in terms of conjunction (X)
or disjunction (+). Decomposition is a mechan-

ism for separation of concerns and for refine-

ment.

The model shown in Fig. 1 has a root goal Sur-

geryBookingSystem that is decomposed into

NonFunctionalGoals and Functional

BookingSystem. The details of these goals are

described in the following sections.

3.2 Behavioural Goals

The behavioural goals are defined with respect

to the data types shown in Fig. 2. In LEAP, both

the state of a component and the messages that

are processed by a component are represented

as terms whose types are defined by classes. We

use UML-style stereotypes to designate the dif-

ference between messages and passive data. Fig-

ure 2 uses the tags «IN» and OUT to represent mes-

sages that communicate with the system environ-

ment. The tag «INTERNAL» is used to represent a

message that is both produced and consumed by

the system. The reason for using data for both

active and passive information is that goal-based

requirements need not commit to specific distinc-

tions at such an early stage of development.

The FunctionalBookingSystem goal speci-

fies a range of system behaviour. Behavioural

goals use Linear Temporal Logic (LTL) to express

constraints, for example:

always {
forall BookingRequest(p) {
Patient(p) implies
before(10) {
Consultation(_,p)

}
}

}

requires that after a booking request is recorded,

if the patient is registered with the practice then a

consultation must be recorded before 10 minutes

have passed. The following goal requires that a

request is politely and immediately denied for

customers not registered with the practice:

always {
forall BookingRequest(p) {
not(Patient(p) implies next { Refusal(p) })

}
}

Finally, the following requires that a patient is

eventually seen:

always {
forall BookingRequest(p),Dr(d) {
Patient(p) and Registered(Dr(d),Patient(p))
implies
eventually {
Consultation(Dr(d),Patient(p))

}
}

}

3.3 Non-Functional Goals

Functional goals can be expressed in terms of

system behaviour that is represented in terms of

calculations (sequences of run-time states). This

may be expressed as pre and post-conditions

(one step in the calculation), invariants (every

step in the calculation), or as LTL expressions

(sub-sequences of the calculation). Our proposal

is that non-functional goals are those that re-

quire extra-calculational information, i.e., data

that relates to any aspect of the system execution,

but may not be directly necessary to express the
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execution rules. Examples include the cost of re-

sources that are used during execution, whether

or not an architecture satisfies given structural

guidelines, and the rates of component failure

that lead to system exceptions.

Therefore, non-functional goals are expressed in

terms of meta-properties of the system. The prop-

erties should be made sufficiently precise so that,

at least in principle, they can be mechanically

checked. Meta-properties may be static or dy-

namic. Static meta-properties include structural

properties of the system models, for example

checking how many connections a component

has or placing a requirement on the overall num-

ber of components. Checking for architectural

patterns is a meta-property of a system. In addi-

tion, it is important to allow developers to extend

the basic meta-types of a system to support their

own static meta-information that can be checked

in constraints. A typical example of this is the

extension of standard UML classes to introduce

a new RDBMS table meta-type.

Static meta-properties can be extended to dy-

namic meta-properties in a straightforward way

providing the system has a well defined dynamic

semantics. Typically this will involve defining a

static structure for the system and then extend-

ing it to sequences, trees or graphs of system

states. Once these system execution structures

are defined it is possible to define measurable

dynamic non-functional properties in terms of

the meta-properties of the individual states.

LEAP supports meta-access in the following ways.

The contents of the current system state is avail-

able via the variable state and the sequence

of states in a system calculation is denoted by

calc. Any LEAP value can be transformed into

a LEAP term that has a uniform structure and

which can be processed using pattern matching,

using the meta-operator reify. The inverse of
reify is called intern.

In the following example goals, we will make use

of some operators that allow a LEAP component

to be processed as a LEAP term. The operator

walkComp is defined below as a standard LEAP

operator (all the code in this article is written

in the LEAP programming language). The argu-

ments of walkComp are map that transforms

all components in a tree, cons that combines

a mapped component with its mapped children;

sib that combines mapped components with

their siblings; base that is the result of mapping

the empty sequence of component siblings.

walkComp(map,cons,sib,base) {
fun (comp) {
let f = fun(children) {
case children {
c:cs →
sib(walkComp(map,cons,sib,base,c),f(cs));
[] → base
}
} in cons(map(comp),f(comp.children))
}
}

The operator getComponents is constructed

by supplying walkComp with the identity map-

ping id and operators that build lists. The op-

erator getMess maps a component to the mes-

sages it processes:

getComponents = walkComp(id,cons,app,[])
comp2Messages = fun(c) [ m |
p ← c.ports,
m ← p.messages

]
getMess = walkComp(comp2Messages,app,app,[])

Risk: The Ruritanian Government has identified

that public sector systems are at risk if they en-

tirely hosted in one place. Therefore, the goal

Risk requires that any compliant system must

be distributed over at least 2 hosts. The goal

needs to reflect on the structure of the system

and requires that each component has meta- in-

formation defining where the component is hos-

ted:

let system = reify(self);
C = getComponents(system);
hosts = set([ intern(c).host | c ← C ])

in #hosts > 1

Efficiency: The efficiency of a system can be

defined in relation to the amount of inter-compo-

nent communication that is performed. The Rurit-

anian Government requires that any IT solution

to the surgery requirements are efficient where
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this is defined in terms of a measure of the num-

ber of possible messages within the system (recall

that risk requires at least 2 different components).

The number of messages in a system model is a

meta-property. It is found by reifying the system

and mapping the resulting term to the number

of messages it contains. The size of the resulting

set is calculated by the following:

let system = reify(self)
in fold(add,0,set(getMess(system))) < 20

TCO: The total cost of ownership is defined the

Ruritanian Government as the development costs,

the hosting costs and the staffing costs of any IT

system. The non-functional requirement that the

TCO should be less than 1000 Ruritanian Rurs is

a meta-constraint that is applied to properties of

the model. Both the development and hosting

costs are meta-properties of the components in

the system. The staffing costs are calculated by

mapping the state of all system components to

the set of GPs that they contain and then mul-

tiplying by GPcost:

let system = reify(self);
C = getComponents(system);
devcosts = [intern(c).devcost | c ← C];
devcost = fold(add,0,devcosts);
hostcosts =
[(intern(c)).hostcost | c ← C];

hostcost = fold(add,0,hostcosts);
staff =
set([d | c←C,Term(’Dr’,[d])←c.state]);

staffcost = #staff * GPcost * #calc
in devcost + hostcost + staffcost < 1000

FairLoading: The Ruritanian Government ex-

pects all GPs to put in a fair and equitable amount

of effort. Some Ruritanian patients register with

a particular GP in a medical practice and expect

to see only that GP for any consultation. How-

ever most are happy that all GPs are of similar

quality and will see the next available GP when

they request a consultation. Therefore, fairness is

defined to ensure that the difference in the num-

ber of GP consultations is never greater then 2

from the average:

let doctors = [Dr(n) | Dr(n) ← state];
consultations(dr) =
#([1 | Consultation(dr,p) ← state,

?([n | Registered(dr,p)←state]=[]])
M = [ consultations(dr) | dr <- doctors ]

in (max(M) - min(M)) ≤ 4

4 Design
This section outlines the LEAP support for opera-

tion specification and for animating architecture

designs. It provides a specification, architectural

diagram, and implementation of the case study. It

also describes how LEAP supports animation and

visualisation of data in terms of object diagrams.

An object diagram is used to show a snapshot

of a running system. A simple interface for the

case study is constructed using the LEAP built-in

components for constructing interactive GUIs.

4.1 Component Architecture
The goal model shown in Fig. 1 links to leaf

components named doctors, bookings and

patients. The behaviour of these components

is captured in the goal model using behavioural

goals together with the non-functional require-

ments for the overall system.

Figure 3 shows the next level decomposition of

the system where the components are connected

to support message-based communication. Each

component is named and has a collection of ports

shown as boxes on the outside of the component

box. Each port is named and may be designated

for input (white boxes) or output (black boxes).

For example the bookings component has a

port that handles requests from the gui com-

ponent and produces patientRequests to

the patients component.

Each connection between ports has an interface

type that is shown as text positioned close to

the connection edge. The interface type defines

the messages that may be sent along the con-

nection. For example, the connection between

bookingCommands in gui and requests
in bookings is labelled with the following in-

terface:

interface {
addGP(name:str):void;
requestConsultation(name:str):void;
next():void

}

The message return types indicate whether the

message is synchronous or asynchronous. Most

messages in the case study are asynchronous and

have the return type void.
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Figure 3: Surgery Component Architecture

4.2 Specifications

A goal decomposition tree should lead to the

identification of a collection of components

whose individual behaviours are specified by be-

havioural goals. The goals should identify the

information content of each component and also

define the messages that the components must

support. The designer then has freedom to parti-

tion the messages between ports and to specify

the behaviour of the components in response to

each message.

LEAP provides a specification clause in the defin-

ition of a component that is used to specify the

behaviour the component in response to mes-

sages. Individual behaviours are then simulated

in LEAP using a variety of mechanisms including

state machines, transition rules and operations.

This section gives an overview of the specifica-

tion clause in terms of the case study.

A specification clause contains a collection of

message specifications that are defined using

three types of sub-clause: pre-condition; post-

condition; message-condition. A pre-condition is

a predicate that must hold at the time the mes-

sage is processed in order for the post-condition

and the message-condition to hold. Both pre and
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post-conditions are expressed in terms of pat-

terns over the state of the component (although

both may refer to general boolean expressions

e via the syntax ?(e)). The message-condition

is a predicate that applies to the output ports

of the component and uses pattern matching to

determine message membership of the output

queue.

A specification clause should follow directly from

behavioural goals in the goal model. KAOS uses

a similar method to determine patterns in the

LTL formulas that can be ascribed to single op-

eration calls. The following shows a fragment

of the specification for the doctors compon-

ent and defines the behaviour of the component

in response to handling the addGP and hasGP
messages:

spec {
addGP(name:str):void {
pre not(Dr(name))
post Dr(name)
}
hasGP(patient:str):void {
pre Registered(Dr(dr),Patient(patient))
messages responses ← gp(patient,dr)
}
hasGP(patient:str):void {
pre not(Registered(Dr(dr),Patient(patient)))
messages responses ← nogp(patient)
}
}

When refining the behaviour of a component

from that imposed by goals to that provided by a

specification clause, it may be necessary or useful

to also refine the data model. LEAP goal mod-

els are associated with components. The model

in Fig. 1 is associated with a component called

surgery that contains the four components

shown in Fig. 3. The data model for surgery is

shown in Fig. 2 and is therefore used throughout

the goal model.

We would like to refine the representation of

patient bookings so that LEAP lists are used to

implement a queue and therefore impose an or-

dering on processing the bookings for a GP. The

refinement is shown in Fig. 4. It shows an exam-

ple of LEAP data references that are displayed

Figure 4: Patient Model

as links between classes with arrows. A refer-

ence is shown as a field and an edge, for ex-

ample dr:Dr in Consultation and the edge

labelled dr. This is because the classes are ac-

tually term-types and the field order is impor-

tant, whereas the graphical representation using

nodes and edges aids comprehension. A typical

consultation term is:

Consultation(
Dr(’phibes’,[Patient(’fred’)]),
Patient(’wilma’),3)

The specification clause for the patient com-

ponent is shown below:

spec {
addGP(d:str):void {
pre not(Dr(d,_))
post Dr(d,[])

}
requestConsultation(patient:str):void {
messages doctorRequests ← hasGP(patient)

}
gp(p:str,dr:str):void {
post Dr(dr,b) ?(exists Patient(p) in b)

}
nogp(patient:str):void {
post Dr(d,b) and exists Patient(patient) in b

}
next():void {
pre Dr(d,Patient(p):b)

not(Consultation(Dr(d),_))
post Dr(d,b) Consultation(Dr(d),Patient(p))

}
}

4.3 Implementation

At this point in design, goals have placed beha-

vioural and non-functional requirements on the

system, the requirements have been refined into

a component architecture including ports and

connectors. An initial data model may have been
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refined into local data models for each compon-

ent and an associated specification for each of

the messages that the component handles. The

final step is to provide an implementation for

each message.

LEAP provides three mechanisms for implement-

ing component behaviour. Where a compon-

ent exists in a number of pre-defined states and

where behaviour can be conveniently defined in

terms of state transitions, LEAP provides pattern

directed state machines that monitor changes in

the state of a component and fire transition when

guards become satisfied. Our case study does not

use state machines.

A less structured form of state-machine beha-

viour is provided in the form of rules that mon-

itor changes in the state of a component and

fire when the rule-condition is satisfied. The

bookings component uses rules to manage con-

sultations. Finally, a component defines a col-

lection of named operations. Operations can be

directly called from within the component and,

if the operation name matches a message name,

are invoked when a message is processed.

The rest of this section provides examples of the

implementation of three of the surgery com-

ponents. The GUI component is the subject of

the following section.

patients: The state of a component is modified

using new and delete. The exists operator is
used to match patterns over the current state of

the component:

component patients {
devcost = 200
hostcost = 10
host = ’local hospital’
operations {
register(name) {
new Patient(name)

}
isRegistered(name) {

exists Patient(name)
}

}
}

doctors: The doctors component provides ex-

amples of the use of find that selects an element

from the current state of the component that

matches a given pattern. the replace ... with
operator is used to replace a term that matches a

pattern. The← operator sends a message to the

named port:

component doctors {
devcost = 500
hostcost = 10
host = ’surgery’
operations {
addGP(name) {
new Dr(name)

}
allocatePatient(dr,p) {
new Registered(Dr(dr),Patient(p))

}
recordConsultation(dr,p) {
find Consultations(Dr(dr),ps) {
replace Consultations(Dr(dr),ps)
with Consultations(Dr(dr),p:ps)

} else new Consultations(Dr(dr),[p])
}
hasGP(p) {
find Registered(Dr(d),Patient(p)) {
responses ← gp(p,d)

} else responses ← nogp(p)
}

}
}

bookings: The bookings component provides

examples of component rules. the rule named

next has a pattern that matches a Dr-term that

contains a non-empty queue of waiting patients

p:ps. The use of not(...) in the rule next
requires that there is no current consultation for

the GP named d. The body of next creates a

new Consultation -term, sends a message to

record the consultation, and removes the patient

from the GP’s waiting list.

The rules consult and complete deal with

processing the consultation. The system requires

a message next to occur in order to start any

pending consultations. The rule consult then

matches any ongoing consultations that have not

reached their time limit, and increases the con-

sultation time by 1. The complete rule fires

when the consultation is over:

component bookings {
devcost = 1000
hostcost = 100
host = ’surgery’
operations {
addGP(d) {
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new Dr(d,[])
}
requestConsultation(p) {
if patientRequests.isRegistered(p)
then doctorRequests ← hasGP(p)
else results ← refusal(p)
}
gp(p,d) {
find Dr(d,bs) {
replace Dr(d,bs) with Dr(d,bs+[Patient(p)])

} else new Dr(d,[Patient(p)])
}
nogp(p) {
find Dr(d,bs) when

not(exists Dr(d′,bs′) {#bs>#bs′}) {
replace Dr(d,bs) with Dr(d,bs+[Patient(p)])
} else error(’cannot allocate gp to ’ + p)
}
next() {
new Next()
}
}
rules {
next:
Dr(d,p:ps)
not(Consultation(Dr(d,_),Patient(_),_)) {
new Consultation(Dr(d,ps),p,5);
guiCommands ← recordConsultation(p,d);
replace Dr(d,p:ps) with Dr(d,ps)
}
consult: Next

Consultation(Dr(d,b),Patient(p),n)
?(n>0) {

delete Next;
replace Consultation(Dr(d,b),Patient(p),n)
with Consultation(Dr(d,b),Patient(p),n-1);
requests ← next()
}
complete:
c=Consultation(Dr(d,b),Patient(p),0) {
delete c;
doctorRequests ← recordConsultation(d,p);
requests ← next()

}
}
}

4.4 State

LEAP is an architecture simulation language. A

simulation may be generated interactively, as

described in the next section, or programmatic-

ally. Component state can be initialised directly

by listing a collection of terms, or indirectly by

sending components some initial messages to

start the simulation. Messages may be synchron-

ous or asynchronous. The← operator sends a

message asynchronously in which case there will

often be an issue regarding the relative order-

ing of groups of asynchronous messages. LEAP

Figure 5: Registered Patients

provides the do construct to place an ordering

on message groups: do { ms } then c sends

the messages ms concurrently, but waits for all

the messages to be completed before proceeding

to command c. Therefore, in the following ex-

ample, all the GPs are added before the patients

are registered and subsequently consultation re-

quests made:

do {
bookings.requests ← addGP(’phibes’)
doctors.requests ← addGP(’phibes’)
bookings.requests ← addGP(’who’)
doctors.requests ← addGP(’who’)
bookings.requests ← addGP(’watson’)
doctors.requests ← addGP(’watson’)

} then do {
patients.commands ← register(’fred’)
patients.commands ← register(’wilma’)
patients.commands ← register(’barney’)
patients.commands ← register(’betty’)
patients.commands ← register(’pebbles’)
patients.commands ← register(’bam bam’)
doctors.requests ← allocatePatient(’phibes’,’fred’)
doctors.requests ← allocatePatient(’watson’,’betty’)

} then do {
bookings.requests ← requestConsultation(’fred’)
bookings.requests ← requestConsultation(’wilma’)
bookings.requests ← requestConsultation(’betty’)
bookings.requests ← requestConsultation(’barney’)
bookings.requests ← requestConsultation(’pebbles’)
bookings.requests ← requestConsultation(’bam bam’)

} then bookings.requests <- next()

The state of LEAP components can be construc-

ted or visualised via a tree-browser and using

object diagrams. Terms are instances of classes

and associations such as those defined in Fig. 2.

Terms that are instances of classes are drawn as

objects with slots; terms that are instances of

associations are drawn as links. The object dia-

grams are a useful way of vizualising the struc-

ture of a component’s state.

Figure 5 shows an example object diagram that

visualises the state of the doctors component

after the allocatePatient messages have
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Figure 6: Bookings

been processed. Figure 6 shows an object dia-

gram that visualises the state of the bookings
component after all the consultation requests

have been processed and the simulation has been

started via the booking-rules. notice that field

references in Fig. 6 are shows as directed links

whereas association instances in Fig. 5 are shown

as undirected links.

4.5 GUI

LEAP provides a language for constructing simple

graphical user interfaces in order to interact with

a simulation. The language uses a term repres-

entation for a display defined as follows:

d ::=
Table([[d,...],...]) // tables of elements.

| Text(s) // text.
| Input(s,s) // a text input field.
| Button(s,f) // a button with a label.

where s is a string and f is a closure. Each

input field is named. When a button is pressed,

it is supplied with a table that contains all input

names with their associated values.

Figure 7 shows the LEAP tool running the case

study. The panel labelled LEAP shows a browser

view on all components loaded into the tool. The

panel labelled leapsrc shows a view onto the

file system containing leap source code, the file

surgery.cmp has been selected and its source

code is shown in the middle panel on the right.

The upper right panel shows the case study user

interface. The rest of this section describes how

the user interface is defined as a LEAP compon-

ent.

The surgery gui component makes use of a gen-

eral LEAP feature whereby a user-defined Java

class can be dynamically loaded into the sys-

tem and participate as a LEAP component. The

LEAP operator jcomponent loads a Java class.

The class must implement a predefined LEAP in-

terface that allows it to participate in message

passing. The GUI class provides an input port

in that can be send a display message. The

outline of gui is as follows:

component gui {
display = jcomponent(’frames.GUI’)
show() {
display.in ←
display(Table([[manage()],...]))

}
// definitions of ports and operations...

}

The definition of the manage operation shows

how user input is handled for adding a new GP:

manage() {
// Set up a table for managing the surgery
Table([[Text(’Manage’)],

[Table([manageDoctors(),
managePatients(),
manageBookings()])]])

}

manageDoctors() {
// Return a table row.
// Include dummy text for padding...
[Text(’Name’),
Input(’name’,’’),
Text(’’),
Text(’’),
// A button function has a single argument
// a table containing all input fields...
Button(’New GP’,fun(e) addGP(e.name))]

}

addGP(name) {
// The GUI keeps track of a GP’s state...
new GP(name,Free);
// Send messages to the other components...
doctorCommands ← addGP(name);
bookingCommands ← addGP(name);
// Update the display...
show()

}
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Figure 7: LEAP Showing Case Study Simulation

5 Semantics for Goal Models

We have shown how goal modelling can lead

to an architecture model using LEAP. The goals

are identified as informal, behavioural and non-

functional. Our approach is based on other goal-

driven approaches, most notably KAOS. How-

ever, whilst KAOS proposes LTL as a language for

expressing behavioural goals, it does not provide

a link to a language with operational semantics

and it does not define how non-functional goals

should be precisely expressed. our proposition

is that non-functional goals are predicates over

meta-properties of system models.

This section describes how LEAP goal models can

be given a precise semantics in terms of behavi-

oural and non-functional goals. We define the

LEAP value domain and outline the LEAP opera-

tional cycle in section 5.1. Section 5.2 describes

how reification is performed whereby LEAP val-

ues at the Java-level are translated automatically

into LEAP data at the user-level in order to sup-

port meta-constraints. Finally, behavioural goals

are written in a LTL that is defined in section 5.3

in terms of the value domain.

5.1 Values

Figure 8 shows the value model for LEAP. De-

velopers can use the LEAP tool to produce dia-

grams of type: goal; model; component; state;

state machine, or can develop their models using

the LEAP textual language and then transform

the models into diagrams for visualisation.

The execution semantics for LEAP continually

removes messages on the queue of component

input ports. The messages are matched against
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Figure 8: LEAP Values

closures bound by the component and handled

by calling the closure with the supplied argu-

ments in the message. The body of the closure

is performed and may send messages to the out-

put ports of the component. Messages sent to an

output port are transferred to the message queue

of any connected input ports. Rules continually

monitor the state in a component and when the

rule condition matches, the rule body fires.

5.2 Reification

Non-functional goals are predicates over meta-

data. LEAP provides access to meta-data using

two operators: reify and intern that are in-

verses of each other. The reify operator maps

any LEAP data value to a LEAP term and the

intern operator maps a suitably encoded term

into a LEAP value. A simple example is:

reify(10) → Int(’values’,10)
intern(Int(’values’,10)) → 10

In general, reification of a LEAP value produces

a term whose type name is the name of the un-

derlying Java class. The first data element in the

term is the name of the Java package containing

the class followed by the values of the Java fields

in a predefined order. The implementation of

reify and intern relies on underlying Java

reflection as described in the rest of this section.

In order for a Java class to participate in the

reification process it must provide a Java an-

notation of type Descriptor. A descriptor

names the fields that will be included as term-

data and names the Java methods to be used as

accessors and updaters for the fields. Crucially,

the descriptor places an order on the fields:

@Retention(RetentionPolicy.RUNTIME)
public @interface Descriptor {
String[] accessors();
String[] updaters();
String[] fields();

}

All LEAP value classes provide descriptors. The

following shows part of the Association class

and its descriptor annotation:

@Descriptor(fields={"name","ends"},
accessors={"getName","getEnds"},
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updaters={"setName","setEnds"})
class Association {
String name;
End[] ends;
public Association() {}
public String getName() { return name; }
public void setName(String n) { name = n; }
...

}

Mapping between different data representations

relies on three meta-operations: instantiation;

getContents; setContents.

Instantiation is directly supported by Java

through the newInstancemethod of a class and

is used by LEAP in a standard way by providing

a 0-arity constructor for each value-class. Ac-

cessing the contents of a Java object is achieved

through the accessors listed in the descriptor:

Object[] getContents() {
Class<?> c = getClass();
String[] names = getAccessors(c);
Object[] contents = new Object[names.length];
for (int i = 0; i < names.length; i++) {
String name = names[i];
Method accessor = c.getMethod(name);
contents[i] = accessor.invoke(this);

}
return contents;

}

The getAccessors method above transitively

retrieves the descriptor annotations of the re-

ceiver’s class and its super-classes and returns

the names of the accessors. Updating a Java ob-

ject is achieved through setContents:

void setContents(Object[] os) {
Class<?> c = getClass();
String[] U = getUpdaters(c);
for (int i = 0; i < U.length; i++) {
String u = updaterNames[i];
Method um = c.getMethod(a);
Object o = coerceValue(os[i], argType(um));
um.invoke(this, o);

}
}

The method coerceValue is used to ensure

that LEAP values are mapped to Java values, for

example LEAP lists are mapped to Java arrays or

vectors depending on the type of the field.

Having defined the meta-access machinery we

can now define the reification operations. the

reify method maps a Java object o to a LEAP

value. Note that the following code has been

simplified by omitting the machinery that deals

with cyclic data. The reify method has three

categories of mapping: objects whose class has a

descriptor; atomic values; collections. As shown

below, the atomic cases are dealt with by directly

translating to instances of Int, Bool and Str.

Value reify(Object o) {
Class<?> c = o.getClass();
else if(c.getAnnotation(Descriptor.class)!=null)
return reifyDescriptor(o);

else if(o instanceof Integer)
return new Int((Integer)o);

... // more atomic cases...
else if(c.isArray())
return reifyArray((Object[])o);

... // also deal with vector...
else error(...)

}

An object whose class has a descriptor is mapped

using reifyDescriptor defined below. The

value is encoded as a LEAP term and the fields, as

defined by the descriptor, are recursively reified:

Value reifyDescriptor(Object o) {
String type = o.getClass().getName();
int dot = type.lastIndexOf(’.’);
String packageName = type.substring(0,dot);
String typeName = type.substring(dot+1);
Object[] contents = value.getContents();
Value[] subTs=new Value[contents.length+1];
subTs[0] = new Str(packageName);
for (int i = 1; i < contents.length; i++)
subTs[i + 1] = reify(contents[i]);

return new Term(TERMCLASS, typeName, subTs);
}

An array is reified to become a LEAP list as fol-

lows (vectors are treated in the same way):

List<Value> liftArray(Object[] objects) {
List<Value> list = new Nil<Value>();
for (int i = objects.length - 1; i >= 0; i--)
list = list.cons(reify(objects[i]));

return list;
}

The intern method performs the inverse map-

ping. Like reify is has three categories of trans-

lation: terms, atoms and lists:

Object intern(Value value, Class<?> type) {
if (value instanceof Term)
return internTerm((Term) value, type);

else if (value instanceof Int)
return ((Int) value).getValue();

... // more atomic cases
else if (value instanceof List<?>)
return internList((List<Value>)value,type);

else eror(...)
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p ::= behavioural constraint
always { p }

| eventually { p }
| next { p }
| before(n) { p }
| forall t { p }
| p implies p
| not(p)
| p and p
| t

t ::= term patterns
N(t*)

| k
| t:t
| v

Figure 9: Behavioural Constraints

Translation of terms is shown below. The name

of the Java class to be instantiated is encoded

as a class name and package name in the term.

These are extracted and a new Java instance is

created. The other data elements in the term

are extracted and recursively translated before

setting the values in the new Java object using

setContents:

Value internTerm(Term term, Class<?> type) {
String typeName = term.getName();
Object[] contents = term.getContents();
Str str = (Str) contents[0];
String pname = str.getValue()+"."+typeName;
Class<?> c = getClass().forName(pname);
Value v = (Value) c.newInstance();
Object[] vs = new Object[contents.length-1];
Class<?>[] ts = v.getTypes();
for (int i = 0; i < types.length; i++)
vs[i]=intern((Value)contents[i+1],ts[i]);
v.setContents(vs);
return v;

}

5.3 Behavioural Goals

Behavioural goals are written in a formal lan-

guage that is based on Linear Temporal Logic

(LTL). The syntax of LEAP LTL is shown in Fig. 9

where N denotes a term name, k is an atomic

constant, and v is a variable. The semantics of

a behavioural goal are defined with respect to

system executions. A system execution is a se-

quence of states where a state is a set of terms as

defined by Fig. 8. Although the state of a LEAP

model involves multiple components, ports, mes-

sages and terms, it is possible to simplify this

by equating messages (which are just terms any-

way) with states and by flattening the structure

of the components (renaming consistently where

necessary).

A LEAP system state is a set of terms s. A sys-

tem execution is a sequence of states [s1, . . . , sn].
At any given time the system is in a particular

state i and has a history [s1, . . . , si−1] and a future
[si+1, . . . , sn].

A term pattern t contains variables. Variables are
bound to LEAP values in an environment θ. An
environment is applied to a term pattern θ(t) to
produce a term by substituting the variables in

the pattern for values. A pattern t occurs in a

state s when there is a substitution θ such that

θ(t) ∈ s. Note that a pattern may occur more

than once in a state if there is more than one

substitution.

A LTL formula p holds at a given point i in a

system execution [s1, . . . , sn] when the follow-

ing relationship holds: [s1, . . . , sn], i |= p. The

relationship is defined in Fig. 10. The definitions

are as follows: (1) defines that P always holds

when it holds for all future states; (2) defines that

p eventually becomes true when there is a fu-

ture state for which is true; (3) defines when p is

true in the next state; (4) states that before(n){p}
holds when p is true in the past by skipping back

n states into the history; (5) requires that p must

hold for all possible elements in the current state

that matches t; (6) states that if p holds in the cur-

rent state then q must also hold; (7) defined that

if not(p) holds then p must not hold; (8) states

that for p and q to hold then p and q must both

holds in the current state; (9) allows the variables

in a term pattern to be existentially qualified in

the current state.

6 Related Work

This section provides an overview of related work

in the provision of modelling languages and

frameworks that have attempted to address the

early stages of requirements engineering.
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(1) [s1, . . . , sn], i |= always { p } when [s1, . . . , sn], j |= p holds ∀ j ≥ i
(2) [s1, . . . , sn], i |= eventually { p } when [s1, . . . , sn], j |= p holds ∃ j ≥ i
(3) [s1, . . . , sn], i |= next { p } when [s1, . . . , sn], i + 1 |= p holds
(4) [s1, . . . , sn], i |= before(n) { p } when [s1, . . . , sn], i − n |= p holds
(5) [s1, . . . , sn], i |= forall t { p } when ∀θ.θ(t) ∈ si =⇒ [s1, . . . , sn], i |= θ(p)
(6) [s1, . . . , sn], i |= p implies q whenever [s1, . . . , sn], i |= p then [s1, . . . , sn], i |= q
(7) [s1, . . . , sn], i |= not(p) when [s1, . . . , sn], i �|= p
(8) [s1, . . . , sn], i |= p and q when [s1, . . . , sn], i |= p and [s1, . . . , sn], i |= q
(9) [s1, . . . , sn], i |= t when ∃θ.θ(t) ∈ si

Figure 10: LTL Semantics

Requirements modelling is an intrinsic and im-

portant element of the processes by which sys-

tem architectures are designed, implemented and

managed. However, architecture modelling ap-

proaches and techniques, such as design-by-con-

tract, have until recently focused on what a sys-

tem should do and how it can be achieved. Scant

attention has been paid to the “why”, the motiva-

tions in terms of goals, requirements, rationales.

In (Wagter et al. 2012) Wagter et al make an in-

teresting distinction between ’blueprint’ styles

exemplified by the engineering based approaches

such as Zachman (Zachman 1999), TOGAF (Spen-

cer et al. 2004) and Archimate (Lankhorst 2009)

and argue that such a blueprint style does not

suffice as interests such as stakeholders, informal

power structures and other hard-to-quantify

factors cannot be easily represented in such an

engineering style. They propose instead, that a

yellow-print style (as noted by De Caluwe and

Vermaak 2003) is necessary.

Efforts to standardise on the motivational or in-

tentional aspects of enterprise architecture have

been consolidated in the OMG Business Motiv-

ational Model (BMM) (Group et al. 2005) which

provides a structure for representing concepts

for developing, communicating and managing

business plans such that they can be used to

model those factors that motivate a busines plan,

the elements making up the business plan and

the relationship between these factors and ele-

ments. The BMM provides a focus for motivation

such that activities delivering a business plan are

defined by why specific activities are performed.

Concepts in the BMM include:

Ends: the aspirations of the enterprise expressed

as Vision, Goals and Objectives.

Means: the mechanism by which Ends are real-

ised and expressed as Mission in terms of Stra-

tegy and Tactics; and Directives such as busi-

ness policy and business rules.

Influencers: how ends and means can influence

each other in either positive or negative ways.

The BMM provides a meta model (syntax only)

expressed as a UML model that shows these con-

cepts, their subtyping and their relationships.

The model recognises that the complexity of the

relationship between BMM model elements and

process modelling is not fully developed and pro-

poses that a related standard the Business Process

Modelling Notation (BPMN) (BPMN 2.0. Notation

2009) should be used as an additional technology.

This raises questions about model integration,

consistency and shared semantics issues.

The foundational work for BMM can be traced

back to goal oriented requirements engineering

(GORE) techniques (Mylopoulos et al. 1999) such

as i* (Yu 1997; Yu and Mylopoulos 1994) and

KAOS (Dardenne et al. 1993; Letier and Van Lam-

sweerde 2004; Van Lamsweerde 2008). GORE

bases techniques present a variety of options for

analysis such as providing a more formal basis of

how goals realise other goals, conflict between

goals and the positive and negative contributions

goals make to other goals. Further, the relation-

ship between the proposed solution and actual
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need is more clearly delineated. So organisa-

tions can more easily and in a systemised man-

ner, articulate choices between alternative con-

figurations of architectures or explore new pos-

sible configurations (Halleux et al. 2009; Jonkers

et al. 2004). GORE techniques also have poten-

tial in that they can be readily combined with

viewpoints oriented requirements engineering

approaches such as (Finkelstein et al. 1991; Som-

merville and Sawyer 1997).

The Reference Model for Open Distributed Pro-

cessing (RM-ODP) is a comprehensive frame-

work for open systems specification. It is an

ISO/ITU Standard (ITU, 1996) that defines a frame-

work for architecture specification of large dis-

tributed systems using viewpoints on a system

and its environment: enterprise, information,

computation, engineering and technology. The

theoretical basis of the RM-ODP model resides

in object oriented principles and service oriented

specification and the mapping of the levels to im-

plementation objects (Raymond 1995). RM-ODP

addresses the motivation or intention aspects by

the “enterprise viewpoint” and the inclusion of a

concept of “Objective” in its enterprise language.

The concept is then related to key elements of the

enterprise viewpoint including “community” and

the objects belonging to the community such as

policy, role and process definition. As Almeida

et al point out: “In a nutshell, communities are

defined to achieve certain objectives. These ob-

jectives influence the definition of the policies

and roles in the community, which affect the be-

haviour of the enterprise objects to favour the

satisfaction of community objectives” (Almeida

et al. 2010). In the same paper, RM-ODP con-

cepts are interpreted using the Unified Founda-

tion Ontology (Guizzardi et al. 2008) to provide a

basis for communication and consensus particu-

larly to address the social behaviour dimension of

how the use and change of enterprise objects can

strive towards motivation and intentions behind

business goals.

The i* framework provides a set of concepts for

modelling and analysis addressing the early re-

quirements phase, namely, that focusing on the

“why” of underlying systems requirements (Yu

and Mylopoulos 1994). Key concepts in the frame-

work are centred around the notion of the inten-

tional actor that possesses intentional properties

such as a belief or ability. Actors collaborate and

depend upon each other and collectively perform

tasks and in the process of doing so, consume

resources. Actors will acknowledge and adapt

so that opportunities and threats are addressed

in line with the intentional beliefs. Actors are

thus part of an agent-oriented system. The i*

framework has a provision for two types of mod-

els. Firstly, a Strategic Dependency model that

is effectively an Actor diagram that is used to

model agreements between actors to fulfil a goal,

perform a task or to use a resource. Types of

goal - hard and soft (for which there is no clear

criteria to be fulfilled) can be represented. The

Strategic Rationale model is a means of express-

ing stakeholder interests and concerns and their

relationship to various configurations of an en-

terprise architecture. The model is effectively

a drill down of the SD model and describes the

actors’ goals and rationales in order to justify

the actors’ relationships and their adoption of

particular plans. Related and directly derived

from i* is the Tropos methodology (Bresciani et

al. 2004; Susi et al. 2005) which adopts the same

concepts for the early requirements stage. The

ARIS methodology (Scheer 2000) is an approach

that is widely used in industry for business pro-

cess modelling and also includes a high level set

of goal-related concepts that include such ele-

ments as Objective, Participant, Critical Factor

and Function as a means of modelling intentions.

Objectives are used to represent a notion of a goal

and Functions can be seen as operations applied

to objectives for the purpose of supporting goals.

Relationships between goals are also supported.

The Critical Factor concept represents aspects

which need to be considered in the meeting of

a particular objective. The limitations of ARIS

with respect to the richness of the modelling lan-

guage for goals and the lack of process modelling

capabilities within Tropos and it’s parent i* has
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been identified as a requirement for some form

of integration between the two approaches and

Cardosa et al propose a semantics based integ-

ration between goals and process modelling as

one such approach for provisioning that require-

ments (Cardoso et al. 2010).

One major strand of research in goal modelling

is KAOS methodology (Dardenne et al. 1993) and

subsequently elaborated further by Letier, Van

Lamsweerde and others (Letier and Van Lam-

sweerde 2004; Van Lamsweerde 2000, 2008; Van

Lamsweerde et al. 1998). Consistent with the

technologies described previously, KAOS is also

an agent oriented methodology for requirements

engineering. The key concept is a goal as a “a

prescriptive statement of intent that the system

should satisfy through cooperation of its agents”.

Goals are defined at varying levels of abstraction

through refinement relationships. Goals are spe-

cifically satisfied by a system component and are

termed a requirement, however there is support

for a partial satisfaction via an expection relation-

ship. These are not enforceable via automated

processing. KAOS, like i* and others supports the

notion of conflict modelling by obstruction and

resolution by other goals. Perhaps different from

others, KAOS allows the modelling of domain

hypotheses represented by domain invariants -

properties (and values) that are always hold.

Quartel et al (Quartel et al. 2009) provide a useful

overview of some of the technologies described

here and also make the observations: that BMM

cannot be considered a true requirements model-

ling language; i* while providing a rich express-

ive language presents on overhead in learning

and using the language; KAOS lacks some of the

richness of expressivity but counters that short-

coming in its simplicity. In considering these

observations they propose a language called AR-

MOR which provides a goal/intentional model-

ling capability to the Archimate language and

is thus similar to our proposal outlined in this

paper. We argue that ARMOR provides both

an abstract and concrete syntax but relies on

the limited semantics provided by Archimate. In

contrast our integrated offering of goal model-

ling support within the LEAP language provides

intentional modelling with semantics. The lan-

guage offered here as part of LEAP has a similar

expressive power in that most of the pertinent

aspects of i* are available. We have also tried

to optimise the usability available in KAOS and

provide the more advanced facilities of a simu-

lation environment. The semantics offered by

the use of LTL further enhances the capability of

the language. As Cardosa et al have pointed out,

semantics based integration between goals and

process modelling (the integration of the why

and how) are a necessary step. LEAP and its goal

modelling element provides that capability.

7 Conclusion

The motivation or goal behind why a particular

requirement manifests itself as system function

and the traceability of the relationship that ex-

plores the why remains an area of relative neg-

lect in the system and enterprise architecture

domains. Technologies originating as character-

isations of goal oriented requirements engineer-

ing such as KAOS and i* could perhaps have had

limited impact on architecture modelling because

of issues such as: complexity leading to usabil-

ity, lack of semantics and a traceable rigour from

goals through to system functions. In particu-

lar, non-functional requirements present specific

difficulties. In this paper we have proposed a

technology LEAP that attempts to address some

of these issues. This contribution exists at several

levels. Firstly we have provided a formal model

for goal modelling that is supported by a techno-

logy that allows goals to be checked during execu-

tion. Secondly, the executability of requirements

presents an opportunity to provide semantics for

goal model executability by the use of LTL. Fi-

nally by provisioning a tight meta model based

integration between concepts that reside at the

early stages of requirements analysis with those

that are focussed on the engineering aspects of

architecture we provide a route from goal mod-

els to architecture models that is supported by a

prototype modelling and execution environment.
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The LEAP approach is based on the hypothesis

that architecture design and analysis should use

a small and orthogonal set of concepts based

around higher-order components. A component-

based language can be used to represent both

logical and physical elements of a system. We

have demonstrated success with this approach

in terms of intentional modelling, goal and IT

alignment, architecture simulation, representa-

tion of both event-driven and service-oriented

approaches to architecture, refinement, and ar-

chitecture refactoring.

However, there are limitations with the current

LEAP technology that we have not yet addressed.

It cannot represent low-level architectural designs

such as those required by embedded and real-

time systems. We acknowledge that the cur-

rent support in LEAP for specifying behaviour

in terms of invariants, pre and post-conditions

and LTL expressions is insufficient to express

complex component interactions involving time

and/or concurrency.

LEAP has been implemented and therefore has

an operational semantics given by its implement-

ation, our next steps will include an abstract se-

mantic description of LEAP that integrates with

the LTL semantics given in this article that will

allow us to study issues such as the complexity

of execution and therefore the limitations on the

sise of LEAP models. The usability aspects of

LEAP tooling, including debugging complex con-

figurations of higher-order components, has yet

to be addressed. Part of the strength of LEAP

is that it is based on a relatively small number

of orthogonal concepts and provides a richly ex-

pressive language through higher-order features.

However, in order to be usable it is necessary

for developers to be able to make distinctions

between different categories of elements, for ex-

ample goals that apply to the system and those

that apply to the actors that use the system. A

form of domain-specific syntactic sugar may be

a suitable way to support these distinctions.

Another area that we feel will be fruitful, is using

LEAP as a migration tool from an as-is archi-

tecture to a to-be architecture by using the Java

interfaces of LEAP to simulate the to-be architec-

ture in terms of the as-is architecture and thereby

providing a basis for incrementally replacing the

LEAP simulation with new components.

Our proposal for goal modelling has been evalu-

ated with an experiment using a restrictive but

representative case study example. We note the

limitations of such experiment and as a conse-

quence further research will continue to validate

our approach as we attempt to use our tools to

evaluate new case studies from both existing lit-

erature and from industrial practitioners. We

are now engaged in a relationship with leading

technology research lab from the commercial sec-

tor who will be using LEAP as part of their re-

search activity. We expect this relationship to

provide new evaluatory data to support the pro-

posal presented in this article.
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