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Abstract: Coresets are one of the central methods to facilitate the analysis of large data. We continue a
recent line of research applying the theory of coresets to logistic regression. First, we show the negative
result that no strongly sublinear sized coresets exist for logistic regression. To deal with intractable
worst-case instances we introduce a complexity measure µ(X), which quantiĄes the hardness of
compressing a data set for logistic regression. µ(X) has an intuitive statistical interpretation that
may be of independent interest. For data sets with bounded µ(X)-complexity, we show that a novel
sensitivity sampling scheme produces the Ąrst provably sublinear (1 ± ε)-coreset.
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1 Introduction

Scalability is one of the central challenges of modern data analysis and machine learning.
Algorithms with polynomial running time might be regarded as efficient in a conventional
sense, but nevertheless become intractable when facing massive data sets. As a result,
performing data reduction techniques in a preprocessing step to speed up a subsequent
optimization problem has received considerable attention. A natural approach is to sub-
sample the data according to a certain probability distribution. In this paper we focus on the
logistic regression problem which is an instance of a generalized linear model. We are given
data Z ∈ Rn×d , and labels Y ∈ {−1,1}n. The optimization task consists of minimizing the
negative log-likelihood

∑n
i=1 ln(1 + exp(−YiZiβ)) with respect to the parameter β ∈ Rd . To

tackle scalability issues for logistic regression via sub-sampling we choose a probability
distribution based on the sensitivity score of each point. Informally, the sensitivity of a point
corresponds to the worst-case contribution of the point to the objective function we wish
to minimize. If the total sensitivity, i.e., the sum of all sensitivity scores, is bounded by a
reasonably small value, there exists a small collection of input points known as a coreset
with very strong aggregation properties. For any solution β ∈ Rd, the objective function
evaluates on the coreset as on the original data up to a small multiplicative error [MS18].
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2 Our contributions

We show that logistic regression has no sublinear streaming algorithm. Due to a standard
reduction between coresets and streaming algorithms, this implies that logistic regression
admits no sublinear coresets or bounded sensitivity scores in general.

We investigate available sensitivity sampling distributions for logistic regression. For points
with large contribution, where −YiZiβ ≫ 0, the objective function increases by a term
almost linear in −YiZiβ. This motivates to use sensitivity scores designed for ℓ1-related
problems. To this end, we propose sampling from a mixture distribution with one component
proportional to the square root of the ℓ22 leverage scores. The other mixture component
is uniform sampling to deal with the remaining domain. Our experiments show that this
distribution outperforms uniform and k-means based sensitivity sampling by a wide margin
on real data sets. The algorithm is space efficient, and can be implemented in a variety
of models used to handle large data sets such as 2-pass streaming, and massively parallel
frameworks such as Hadoop and MapReduce, and can be implemented to work in input
sparsity time, i.e., proportional to the number of non-zero entries of the data [Wo14].

We analyze our sampling distribution for a parametrized class of instances we call µ-complex,
placing our work in the framework of beyond worst-case analysis [Ro19]. The parameter
µ roughly corresponds to the ratio between the log of correctly estimated odds and the
log of incorrectly estimated odds. The condition of small µ is justiĄed by the fact that for
instances with large µ, logistic regression exhibits methodological problems. We show that
the total sensitivity of logistic regression can be bounded in terms of µ. Moreover, if the
data is µ-complex for a small, not necessarily constant µ, then there exists a sampling and
reweighting scheme based on the sensitivity framework that produces a (1 ± ε)-coreset of
sublinear size O(ε−2µ

√
nd3/2 log2(µnd)) with high probability. A more involved recursive

sampling scheme produces a (1 ± ε)-coreset of size O(ε−4µ3d3 logO(1)(µnd)), which is
beneĄcial if the data is well-behaved and the input size is particularly large. These are the
Ąrst provably sublinear coreset constructions for logistic regression.
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