Design and Implementation of a Coordination Model for
Distributed Simulations *

Rolf Hennicker, Matthias Ludwig

Institut fiir Informatik
Ludwig-Maximilians-Universitidt Miinchen
Oettingenstrasse 67
D-80538 Miinchen, Germany

Abstract: The coordination of time-dependent simulation models is an important
problem in environmental systems engineering. We propose a design model based
on a formal specification using the CSP-like language FSP of Magee and Kramer.
The heart of our design model is a global timecontroller which coordinates distributed
simulation models according to their local time scales. We show how a systematic
transition from the design model to a Java implementation can be derived from the
design model. The strong practical relevance of the approach is ensured by the fact
that our strategy is used to produce the kernel of the integrative simulation system
DANUBIA developed within the GLOWA-Danube project.

1 Introduction

In the last decade environmental systems engineering became an important application
area for information and software technology. Setting out from geographical informa-
tion systems and GIS-based expert systems nowadays one is particularly interested in the
development of integrative systems with a multilateral view of the world in order to un-
derstand better the mutual dependencies between environmental processes. Of particular
importance are water-related processes which have an impact on the global change of the
hydrological cycle with various consequences concerning water availability, water quality
and water risks like water pollution, water deficiency and floods.

There are several projects dealing with methods, techniques and tools to support a sustain-
able water resource management, for instance within the European research activity EESD
(Energy, Environment and Sustainable Development, cf. [3]) or within the German initia-
tive GLOWA (Global Change in the Hydrological Cycle; cf. [4]). Within the GLOWA
framework the project GLOWA-Danube [8] deals with the Upper Danube watershed as a
representative area for mountain-foreland regions. The principle objective of GLOWA-
Danube is to develop new techniques of coupled distributed simulations that allow to

*This work is partially supported by the GLOWA-Danube project (01LW0303A) sponsored by the German
Federal Ministry of Education and Research.

83

integrate simulation models of various disciplines in order to study water-related global
change scenarios. For this purpose the integrative simulation system DANUBIA is devel-
oped which is designed as an open, distributed network integrating the simulation models
of all socio-economic and natural science disciplines taking part in GLOWA-Danube. Ac-
tually seventeen simulation models, either implemented directly in Java or surrounded
by a Java wrapper, are integrated in the DANUBIA system, covering the disciplines of
meteorology, hydrology, remote sensing, ground- and surface water research, glaciology,
plant ecology, environmental psychology, environmental and agricultural economy, and
tourism. As a result of coupled simulations transdisciplinary effects of mutually depen-
dent processes can be analysed and evaluated. For example, the agricultural economy
model determines sowing and harvesting dates of different crops, while the plant ecology
model simulates growing of the plants, dependent on the precipitation provided by an at-
mosphere model. After the harvesting date the plant ecology model returns the crop yield
to the agricultural economy model, which in turn is used for future calculations of the
farmers.

An important characteristics of DANUBIA is the possibility to perform integrative simu-
lations where the single simulation models run concurrently and exchange information at
runtime. Since any integrative simulation models water-related processes over a specific
period of time (usually several years) and since each simulation model has an individual
local time step in which computations are periodically executed (ranging from hours, like
in meteorology, to months, like in social sciences) the distributed models must be coor-
dinated to work properly together. For this purpose it must be guaranteed that during the
simulation run

o all values accessed through model interfaces are in a stable state (which corresponds
to the usual read/write exclusion) and, moreover, that

e every simulation model is supplied with valid data, i.e. with data that fits to the local
model time of the importing simulation model.

This informal description of the coordination problem provides only an intuitive idea of the
requirements for integrative simulations. In [5] the authors have presented a formalization
of the coordination problem' and a formal design model which are both specified in terms
of the language FSP (Finite State Processes) introduced by Magee and Kramer [9]. In
particular, it has been shown by model checking techniques that the coordination require-
ments are satisfied by the design model. The basic idea of the design model is to introduce
a global timecontroller which stores the current status of all simulation models participat-
ing in an integrative simulation in order to coordinate them appropriately. Technically, the
timecontroller and the single simulation models are represented by FSP-processes and the
simulation system itself is represented by the parallel composition of the single processes
which are synchronized through appropriate shared actions.

In this work we demonstrate how the formal design model can be systematically trans-
formed into a UML implementation model which can be directly realized by a Java pro-
gram. For this purpose we first classify the given FSP-processes such that all processes

! An alternative formalization on a meta level using purely mathematical notations is given in [2].

84

representing simulation models are considered as active objects and the timecontroller is
considered as a reactive object. The shared actions used in the FSP-model for synchroniza-
tion are translated into synchronized methods offered by the timecontroller which must be
called by a simulation model whenever the model wants to get data from other models
or to provide data for other models. Hence the timecontroller is realized by a Java mon-
itor object and the single simulation models are realized by concurrently executing Java
threads. In order to abstract from concrete computations that a simulation model performs
and which are not relevant for the coordination we develop an appropriate system architec-
ture such that the developer of a concrete DANUBIA simulation model must only extend
an appropriate abstract model class provided by the DANUBIA framework.

The paper is organized as follows: We start, in section 2, with a brief introduction to FSP.
In section 3, we describe the coordination problem and, in section 4, we provide a solution
in terms of a formal design model represented by FSP processes. In section 5 the design
model is transformed into a Java implementation that leads to a flexible system architecture
for the kernel of the DANUBIA system.

2 A Brief Introduction to FSP

The language FSP has been introduced by Magee and Kramer as a formalism for modeling
concurrent processes. An elaborated description of the syntax and semantics of FSP can
be found in [9]. Syntactically FSP resembles CSP [6]. Essential constructs for building
FSP processes are

STOP process termination

(a — P) action prefix

(a — P | when (cond) b — Q) choice (involving a guarded action)
P+{ay,...,an} alphabet extension
P/{new;/oldy,...,new,/old,} action relabeling

(PllQ) parallel composition
P\{ay,...,an} hiding

PQ{ay,...,a,} interface definition

Each process P has an alphabet, denoted by aP, consisting of those actions in which
the process can be engaged. For instance, a process (¢ — P) obtained by action prefix
first engages in the action a and then behaves like the process P. If we build the parallel
composition (P||Q) then actions that are shared by P and @ (i.e., belong to a.P and Q)
must be performed simultaneously. For the non-shared actions interleaving semantics of
parallel processes is used. The hiding operator allows to hide certain actions which are
then invisible and represented by 7. The construction of an interface is the complement of
hiding.

Processes can be defined by process declarations of the form P = E or, in the case of
parallel processes, by ||P = (F||F). A (non-parallel) process declaration can be recursive

85

and can involve local, indexed processes of the form

P = Q[value],
Qli:T]=E.

where T is a (finite) type and ¢ is an index variable of type 7.

Often we will use indexed actions of the form a[é]. A shorthand notation for a choice over a
finite set of indexed actions is (a[T'] — P), which is equivalent to (a[z] — P |...|a[y] —
P), where range T = x..y. We will also use labeled actions of the form [label].a and
choice over a finite set of labeled actions [T].a with T' as above. To obtain several copies
of a process P we use process labeling [label] : P which denotes a process that behaves
like P with all actions labeled by [label] .

The semantics of a process is given by a finite labeled transition system (LTS) which
can be pictorially represented by a directed graph whose nodes are the process states and
whose edges are the state transitions labeled with actions. Since FSP is restricted to a finite
number of states one can automatically check safety and progress properties of processes
with the LTSA tool [7].

The following example shows an FSP model of a simple producer/consumer system with a
bounded buffer. The bounded buffer is modeled by a parameterized FSP process BUFFER
whose formal parameter MAX has the default value 1. The definition of the BUFFER
process uses local, indexed processes BUFIi].

PRODUCER
CONSUMER

(put -> PRODUCER).
(get -> CONSUMER).

BUFFER (MAX=1) = BUF[0],
BUF[i:0..MAX] =
(when (i<MAX) put -> BUF[i+1]
|when (i>0) get -> BUF[i-1]).

| |SYS = (PRODUCER| |CONSUMER | |BUFFER(3)).

Note that in the composite process SYS the formal parameter of the BUFFER process is
instantiated by 3. Hence, the semantics of the composite process is given by the following
LTS:

3 The Coordination Problem of Integrative Simulations

A simulation model simulates a physical or social process for a finite period of time which
we call simulation time. Typically a simulation model does not work on a continuous but

86

on a discrete time scale. Thus the simulation period is represented by a strictly ordered,
discrete set of points in time (denoted by natural numbers), at which data is provided by
a simulation model. Each model has an individual time step (the distance between two
subsequent simulation points) which depends on the simulated process. We assume that
the time step of a model remains fixed during the whole simulation. Abstraction from the
concrete simulated process of a simulation model leads us to the following common life
cycle of each model within an integrative simulation:

After a simulation model has been started it provides first some initial data. Then it per-
forms periodically the following steps until the end of the simulation is reached:

1. Get required data from other models.
2. Compute new data which are valid at the next simulation point.
3. Provide the newly computed data.

We can model this behavior by the following (generic) FSP process which is parameterized
w.r.t. the individual time step of a simulation model. Note that in the process definition
we provide a default time step (e.g. step=1) which is necessary according to the finite
states assumption of FSP. For the same reason it is necessary to model the simulation start
and the simulation end by some predefined constants.

const simStart = 0
const simEnd = 6
range Time = simStart..simEnd

MODEL(step=1) = (start -> INIT),
INIT = (enterProv[simStart] -> prov[simStart] ->
exitProv[simStart] -> M[simStart]),
M[t:Time] =
if (t+step <= simEnd)
then (enterGet[t] -> get[t] -> exitGet[t] ->
compute[t] -> enterProv[t+step] ->
prov[t+step] -> exitProv[t+step] -> M[t+step])
else STOP.

In the above process description the (indexed) actions prov[x] represent providing of
export data which are valid at time x, the actions get[x] represent getting of import
data which are valid at time x and the actions compute[x] represent the computation
of new data based on import data which are valid at time x. The actions get[x] and
prov[x] are enclosed by corresponding enter and exit actions which are needed for
the coordination of concurrently running simulation models.

To represent a particular instance of a simulation model we have to provide a model name
(model identifier) and the particular time step of the model under consideration. For spec-
ifying model identifiers we use process labels (cf. Section 2) and the time step of a model
is determined by an actual parameter. For instance, the FSP processes [1] : MODEL(2)
and [2] : MODEL(3) represent two simulation models, one with number 1 and time step
2 and the other one with number 2 and time step 3, respectively.

In an integrative simulation several simulation models are coupled in the sense that they
mutually exchange data among each other at runtime. Data exchange is performed via a

87

port which holds data that is valid at a particular point in time. Since in each time step a
huge amount of data is produced previous values will be overwritten in each computation
cycle. Hence the different models must be coordinated such that the following conditions
are satisfied:

(C1) Whenever simulation models exchange data, the values must be in a stable state.

(C2) Every simulation model must be supplied with valid data, i. e. with data that fit to
the local model time of the importing simulation model.

Condition (C1) corresponds to the well-known read/write exclusion which in our context
means that get and prov actions must be mutually exclusive. The critical condition is
(C2) which becomes quite complex if we consider arbitrarily many simulation models.
We can, however, simplify the problem, if we consider only two simulation models at a
time and, moreover, if we consider each of the two models only under one particular role,
either as a provider or as a user of information. In the following let U denote a user model
and let P denote a provider model. From the user’s point of view we obtain the following
requirement (R1), from the provider’s point of view we obtain requirement (R2).

(R1) U gets data expected to be valid at time ¢;; only if the following holds:
The next data that P provides is valid at time ¢ p with ty < tp.

(R2) P provides data valid at time ¢p only if the following holds:
The next data that U gets is expected to be valid at time ¢y with ¢ty > tp.

(R1) ensures that a user does not get obsolete data, (R2) guarantees that a provider does
not overwrite data which is still needed. An execution trace w of an integrative simu-
lation with an arbitrary number of simulation models [1] : MODEL(Step;),...,[n] :
MODEL(Step,,) is called legal, if w meets the above requirements (R1) and (R2) for all
pairwise combinations of models considered as users and as providers.

4 Formal Design Model for Integrative Simulations

In this section we present a solution of the coordination problem by providing a formal de-
sign model in terms of FSP processes. The basic idea is to introduce a global timecontroller
that coordinates appropriately all simulation models participating in an integrative simu-
lation. More precisely, we want to design an FSP process, called TIMECONTROLLER,
such that for n simulation models the composite process

[ISYS = ([1] : MODEL(Step1)||...]||[n] : MODEL(Step,,)||
TIMECONTROLLER(Stepy, . .., Step,))/{start/[Models].start }

with range Models = 1..n restricts the execution traces of the uncontrolled simulation
models to the legal ones. The relabeling clause /{start/[Models].start} ensures

88

that the processes synchronize on the start action. The composite process SYS is then
considered as the design model for the simulation system. The (static) structure of SYS is
represented by the diagram in figure 1 which indicates the required communication links.

[1]:MODEL(Step,) [n]:MODEL(Stepn)
[1].EnterExits [n].EnterExits

TIMECONTROLLER(Stepy, ..., Step,,)

start

Figure 1: Structure diagram of the design model

The communication links show that each simulation model m communicates with the
timecontroller via the shared enter and exit actions in the (labeled) set [m] . Enter—
Exits, where

set EnterExits =
{{enterGet,exitGet,enterProv,exitProv}[Time]}.

This means that the simulation models synchronize with the timecontroller on actions of
the form [m] .enterGet[t] etc., where m € Models and ¢ € Time. It is then the task
of the timecontroller to guarantee that synchronization can only occur if the constraints for
integrative simulations described in Section 3 are satisfied. For this purpose the enter
actions of the timecontroller are guarded by appropriate conditions which monitor the
validity of the constraints. To express the necessary conditions in FSP the timecontroller
is equipped with a local state (modeled by index variables) which records the execution
status of all simulation models to be coordinated. More precisely, the timecontroller stores
for each model the time for which it gets the next import data (represented by the index
nextGet) and the time for which the model will provide the next export data (represented
by the index nextProv).

The following timecontroller definition is formulated for the case of two simulation models
where the time steps of the two models are given by parameters (with default value 1). It
is obvious that this description provides a general pattern which can be easily applied to
an arbitrary number of simulation models. For a timecontroller definition which is generic
w.r.t. the number of simulation models one would need array types which are not available
in FSP (but will, of course, be used in the Java implementation). Let us still remark that
the guards of the enterGet actions are inferred from requirement (R1) by considering
each model as a potential provider and the guards of the enterProv actions are inferred
from requirement (R2) by considering each model as a potential user.

89

const nrModels = 2
range Models = 1l..nrModels

TIMECONTROLLER (modelStepl=1,modelStep2=1) =
(start -> TC[simStart][simStart][simStart][simStart]),

TC[nextGetl:Time][nextProvl:Time]
[nextGet2:Time][nextProv2:Time] =
(dummy[t:Time] ->

//enterGet

(when (t<nextProvl & t<nextProv2)
[Models].enterGet[t] ->
TC[nextGetl][nextProvl][nextGet2][nextProv2]

//exitGet

[[1].exitGet[t] ->
TC[t+modelStepl][nextProvl][nextGet2][nextProv2]

[[2].exitGet[t] ->
TC[nextGetl][nextProvl][t+modelStep2][nextProv2]

//enterProv

|when (nextGetl>=t & nextGet2>=t)
[Models].enterProv[t] ->
TC[nextGetl][nextProvl][nextGet2][nextProv2]

//exitProv

|[1].exitProv[t] ->
if (t+modelStepl<=simEnd)
then TC[nextGetl][t+modelStepl][nextGet2][nextProv2]
else TC[simStart][simStart][simStart][simStart]

|[2].exitProv[t] ->
if (t+modelStep2<=simEnd)
then TC[nextGetl][nextProvl][nextGet2][t+modelStep2]
else TC[simStart][simStart][simStart][simStart]

| dummy[t] ->
TC[nextGetl][nextProvl][nextGet2][nextProv2])

)\ {dummy [Time]}.

Let us still mention that the actions dummy [t :Time] are only introduced for technical
reasons, such that the index variable ¢ is known where necessary. The dummy actions are
finally made invisible by applying the hiding operator.

As an example, the design model of a distributed simulation with two simulation models
with time steps 2 and 3 resp. is given by the following composite process SYS where the
formal paramaters of the single, parallel processes are instantiated appropriately.

2
3

const stepModell
const stepModel2
| |sys =
([1]:MODEL(stepModell) | |[2]:MODEL(stepModel2) | |
TIMECONTROLLER(stepModell,stepModel2))
/{start/[Models].start}.

90

We cannot visualize the labeled transition system of the process SYS because it has too
many states and transitions. However, for an analysis of the behavior of the design model
we can consider different views on the system which can be formally defined by means of
the FSP interface operator. For instance, if we want to focus only on the get and prov
actions executed by the system we can build the process SYS@{[Models].GetProvs}
where the set GetProvs is defined as set GetProvs = {{get,prov}[Time]}.
The corresponding LTS, after minimalization w.r.t. invisible actions, is shown in the fol-
lowing diagram.

[1].prov[0] [Zm [1].get[0] [2].get[0]
[2].prov([0]
@ [1].prov[0]

[1].prov([6] [2].prov[6]

@

[2].prov[6]

In [5] we have formalized the coordination requirements (R1) and (R2) by so-called prop-
erty processes of FSP and we have shown by model checking with the LTSA tool that the
timecontroller-based design model is a correct solution of the coordination problem.

[2].getf0] [1]-get[0]

[1].getl4] [11prov[4]
[1].prov([6]

5 Implementation

In this section we will show how to derive in a systematic way a Java implementation
from the timecontroller-based design model. In principle, many steps of the translation
procedure, which follows the pragmatic ideas of [9], could be automated if the FSP model
would be enhanced by additional information, saying, for instance, which processes are
considered as active or passive objects and which actions are considered as input or output
actions.

5.1 Static Structure

Let us first consider the static structure of the implementation model which is given by the
UML class diagram in figure 2. In the following we will explain how this diagram evolved
from the design model.

At first the processes TIMECONTROLLER, MODEL and SYS give rise to the classes
Timecontroller, Model and Sys respectively. As the process MODEL runs through

91

Sys

main(args:String[])

<<interface>>
TimecontrollerInterface

exitGet(id:Integer, t:Integer)
enterProv(id:Integer, t:Integer)
exitProv(id:Integer, t:Integer)

Model

|
I
|
|
|
|
| enterGet(id:Integer, t:Integer)
|
I
I
|
I
|

¥ i

Timecontroller

nrModels:Integer
modelStep:Integer(]
simStart:Integer
simEnd:Integer
nextGet:Integer[]
nextProv:Integer(]

id:Integer
simStart:Integer
simEnd:Integer
step:Integer

1

ll/m

AbstractModel

Model(id:Integer,
step:Integer,

simstart:Integer,
SimEnd:Integer)
run()
init()

get(t:Integer)
compute(t:Integer)
prov(t:Integer)

Timecontroller(ntModels:Integer,
modelStep:Integer|],
simStart:Integer,
simEnd:Integer)

start()

enterGet(id:Integer, t:Integer)

exitGet(id:Integer, t:Integer)

enterProv(id:Integer, t:Integer)

Modell

mlInfo:M1Type F--
m2Info:M2Type

Modell()
get(t:Integer)
compute(t:Integer)
prov(t:Integer)

<<interface>>

Model2

—_

ModellToModel2
getM1Info():M1Type

1
=

m2Info:M2Type
mlInfo:M1Type

<<interface>>
Model2ToModell

getM2Info():M1Type

getM1Info():M1Type

Model2()
get(t:Integer)
compute(t:Integer)

| prov(t:Integer)

getM2Info():M1Type

exitProv(id:Integer, t:Integer)
checkGet (t:Integer)
checkProv(t:Integer)

Figure 2: Class diagram of the implementation model

the model’s life cycle, the class Model is an active class and inherits from the Java class
Thread. All actions of the MODEL process are considered as output actions which cor-
respond to method calls on a Timecontroller object on the one hand (enterGet,
exitGet, enterProv, exitProv) and on a concrete simulation model object on
the other hand (get, compute, prov). These methods are extracted to the interface
TimecontrollerInterface and the abstract class AbstractModel respectively.
A Model instance communicates with the Timecontroller via synchronous method
calls which are specified by the interface TimecontrollerInterface. Note that
one Timecontroller instance controls arbitrarily many Model instances which is de-
noted by the multiplicities 1 and * at the respective ends of the (directed) association to
TimecontrollerInterface.

Let us briefly explain how a concrete simulation model is integrated into the DANUBIA
system. DANUBIA provides a core system that is divided into a common runtime envi-
ronment on the one hand, and a framework containing classes to be used by individual
model developers on the other hand (the so-called developer framework). For example the
implementation of a model’s life cycle in the class Model is part of the runtime environ-
ment, while the class AbstractModel is part of the developer framework (cf. figure 3).
To integrate a concrete model its developer has to build a subclass of AbstractModel
and to implement the abstract methods get, compute, prov, the so called plug points. E.g.

92

danubia core

developer framework runtime environment
base classes coordination

AbstractModel

Figure 3: Components of the DANUBIA core system (extract)

the plug point compute allows to realize the concrete computation algorithm of a model.
Besides the plug points depicted in figure 2 there are some further plug points (e.g. for
simulation recovery) which are out of the scope of this paper. Let us now consider the
attributes of the classes Timecontroller and Model. The attribute nrModels of the
class Timecontroller corresponds to the constant nrModels of the FSP process.
The array modelStep contains the individual time steps of the models involved in the
simulation. It complies with the parameters of the TIMECONTROLLER process. The
attributes nextGet and nextProv correspond to the indices of the local processes TC.
For the class Model the attributes result as follows. While step derives from the pa-
rameter of the process MODEL and simStart and simEnd are derived from global
constants of the FSP model, the model identifier id represents the process label in the
composite process SYS.

Data exchange between distributed simulation models is performed by corresponding
import and export ports. These ports are realized by interfaces (ModellToModel2,
Model2ToModell) on the one hand and by attributes (m1Info, m2Info) which store
a spatial set of data (a so-called data table) on the other hand. Let us consider this from
the viewpoint of the class Modell. The interface Model1ToModel2 acts as an ex-
port interface and Model2ToModell as an import interface for Model1l. The attribute
mlInfo is the corresponding export table which is updated with new data each time
the method prov is called and returned when the method getM1Info is invoked (by
Model2). Vice versa the attribute m2Info is an import table that is updated within the
get method by invoking getM2Info on the import interface. Network communication
between distributed simulation models is realized by the Java Remote Method Invoca-
tion (RMI) technology and hidden from the model developer by appropriate classes in the
runtime environment.

5.2 Dynamic Behavior

Let us now consider the dynamic behavior of the single entities. Since Model is an active
class we have to implement its run method. For this purpose we translate the actions
of the MODEL process into appropriate method calls. The while loop corresponds to
the conditional recursive call of the local FSP process M. The actions of the local process

93

INIT are extracted to a private method init. To make the code better readable we abstain
from a proper exception handling here.

public void run() {
init();
int t=0;
while (t+step<=simEnd) {
try {
tc.enterGet(id, t);
} catch (InterruptedException e) {}
m.get(t);
tc.exitGet(id, t);
m.compute(t);
try {
tc.enterProv(id, t+step);
} catch (InterruptedException e) {}
m.prov(t+step);
tc.exitProv(id, t+step);
t = t+step; } }

private void init() {

try {
tc.enterProv(id, 0);

} catch (InterruptedException {}
prov(0);
tc.exitProv(id, 0); }

The TIMECONTROLLER process is implemented as a passive entity that reacts on method
calls. The class Timecontroller acts as a monitor whose (relevant) state is determined
by the values of the array attributes nextGet and nextProv which store the informa-
tion about the current progress of the models involved in the simulation. These attributes
are initialized within the method start, such that each array entry is set to simStart.
The remaining fields of the timecontroller are initialized within the constructor of the
class Timecontroller. All public methods of the class Timecontroller offered
by its interface are synchronized methods which are implemented according to the behav-
ior specified in the TIMECONTROLLER process. For the implementation of the guarded
enter and exit actions we apply a transformation rule provided in [9] which translates an
FSP expression of the form

when (cond) op -> MONITOR[nextState]
with some condition cond and action op into the following Java code:
public synchronized void op()
throws InterruptedException {
while (!cond) wait();

... // monitor state = nextState
notifyAll(); }

94

The action op is implemented by the synchronized method op. If the condition cond is
not satisfied, the calling thread will be blocked by wait. If the condition is satisfied the
thread may enter the critical region and change the monitor state. After that it releases all
waiting threads by notifyAll. Note that the while loop ensures that the condition is
checked again after a thread has been released. We demonstrate the application of this rule
with the enterGet action. The action enterProv is implemented analogously. The
TIMECONTROLLER specification reads

when (t<nextProvl & t<nextProv2)
[Models].enterGet[t] ->
TC[nextGetl][nextProvl][nextGet2][nextProv2]

This results in the following implementation:

public synchronized void enterGet(int id, int t)
throws InterruptedException {
while (!checkProv(t)) wait(); }

Note that a call of notifyAll is not necessary here, since the monitor state is not
changed in this method. Note also that the action label in Models which denote the
model identifiers and the index t denoting the model time are translated into method pa-
rameters. For reasons of better readability the implementation of the guard condition is
outsourced to the private auxiliary method checkProv.

private boolean checkProv(int t) {
boolean b = true;
for (int i = 0; i < nrModels; i++) {
b = (b && (t < nextProv[i])); }
return b; }

In contrast to the enter actions, for the exit actions exitGet and exitProv no guard
is provided, but the timecontroller changes its state. As an example, let us translate the
exitGet action. Since FSP does not allow arrays we had to specify the effect of the
action for each model separately:

[[1].exitGet[t] ->
TC[t+modelStepl][nextProvl][nextGet2][nextProv2]

[[2].exitGet[t] ->
TC[nextGetl][nextProvl][t+modelStep2][nextProv2]

By taking advantage of arrays the two lines are subsumed by
public synchronized void exitGet(int id, int t) {
nextGet[id-1]=nextGet[id-1]+modelStep[id-1];
notifyAll(); }

Note that we must subtract 1 from the array index to match the correct model identifier.

95

Finally let us consider the class Sys which represents the composite process SYS.

const stepModell 2
const stepModel2 3
| |ISYS = ([1]:MODEL(stepModell) | |[2]:MODEL(stepModel2) ||
TIMECONTROLLER(stepModell, stepModel2))
/{start/[Models].start}.

Within its sole method main(String[] args) the global constants simStart and
simEnd give rise to local variables with the same names. Furthermore a local array
variable modelStep is filled with the time steps of the participating simulation models,
where the array indices correspond to the model identifiers. The essential task of the main
method is to create and start a Timecontroller object and a number of Model objects
with appropriate actual parameters. The call of the start method on each created object
corresponds to the synchronization of the start actions in the FSP process which is
expressed by the relabelling clause /{start/[Models].start}.

public static void main(String[] args) {
int simStart = 0;
int simEnd = 6;
int nrModels = 2;
int[] modelStep = new int[] { 2, 3 };
Timecontroller tc =
new Timecontroller (nrModels, modelStep, simStart, simEnd);
tc.start();
new Model(1l, 2, simStart, simEnd, tc,
new Modell()).start();
new Model(2, 3, simStart, simEnd, tc,
new Model2()).start(); }

6 Conclusion

We have shown how to construct an implementation of a formal design model for time-
dependent integrative simulations. For this purpose we have applied a general translation
scheme which transforms simulation models represented by FSP processes into concur-
rently executing threads and the global timecontroller process into a monitor object with
appropriately synchronized methods. In order to hide the coordination problem from the
developers of concrete simulation models we have proposed a system architecture which
allows to plug in a specific simulation model by implementing particular plug points pro-
vided by the DANUBIA developer framework.

The strategy proposed here to coordinate coupled simulations is different from the ap-
proach pursued in the OpenMI Standard [10] where single simulation models do not fol-
low a global time control but act autonomously by requesting data from other models
whenever needed. Then, if no data for the respective point in time is yet available, it will
be estimated by inter- or extrapolation.

96

Our approach can be applied to all kinds of systems where concurrently executing compo-
nents must be coordinated in accordance with some discrete order. Within the GLOWA-
Danube project the approach is of high practical relevance for the development of the
DANUBIA system because integrative simulations are the heart of all current and future
features of DANUBIA and hence the reliability of the whole system depends on the cor-
rectness of the coordination implementation.

Acknowledgement

We are grateful to anonymous referees of this paper for helpful comments and suggestions.

References

(1]

(2]

(3]
(4]
(5]

(6]
(7]
(8]

(9]

(10]

Barth M., Hennicker R., Kraus A., Ludwig M.: DANUBIA: An Integrative Simulation Sys-
tem for Global Research in the Upper Danube Basin. Cybernetics and Systems, Vol. 35,
Nr. 7-8, pages 639-666, 2004.

Barth M., Knapp A.: A Coordination Architecture for Time-Dependent Components. Proc.
22nd Int. Multi-Conf. Applied Informatics. Software Engineering (IASTED SE’04), pages
6-11, 2004.

EESD, http://www.cordis.lu/eesd (last visited 2006/02/17)
GLOWA, http://www.glowa.org (last visited 2006/02/17)

Hennicker R., Ludwig, M.: Property-Driven Development of a Coordination Model for Dis-
tributed Simulations. Proceedings of the 7th IFIP International Conference on Formal Meth-
ods for Open Object-Based Distributed Systems (FMOODS 2005), LNCS 3535, pp. 290-
305. Springer, 2005.

Hoare, C. A. R.: Communicating Sequential Processes, Prentice-Hall, 1985.
LTSA, http://www-dse.doc.ic.ac.uk/concurrency/ (last visited 2006/02/17)

Ludwig R., Mauser W., Niemeyer S., Colgan A., Stolz, R., Escher-Vetter H., Kuhn M., Reich-
stein M., Tenhunen J., Kraus A., Ludwig M., Barth M., Hennicker R.: Web-based Modeling
of Water, Energy and Matter Fluxes to Support Decision Making in Mesoscale Catchments —
the Integrative Perspective of GLOWA-Danube. Physics and Chemistry of the Earth, Vol. 28,
pages 621-634, 2003.

Magee J., Kramer J.: Concurrency — State Models and Java Programs, John Wiley & Sons,
1999.

Moore R., Tindall I., Fortune D.: Update on the Harmonit Project — The OpenMI Standard
for Model Linking. Proceedings of the 6th International Conference on Hydroinformatics,
Vol. 2, pages 1811-1818, 2004.

97

