
A Methodology for Model-Driven Development of Crisis
Management Applications using Solverational

Andreas Petter, Alexander Behring, Max Mühlhäuser

{a petter,behring,max}@tk.informatik.tu-darmstadt.de

Abstract: Efficient usage of applications often requires context-aware applications.
We assume that context-aware adaption can be useful in the case of crisis management
tools as well, where fast responses are crucial and can be supported by information
technology. A small user study performed with a crisis response team mostly com-
posed of fireman supports our assumptions for the important case of role-aware mes-
saging applications. We demonstrate our way to develop context-aware user interfaces
using our model-to-model transformation language with constraint solving and apply
it to the case of a crisis management system.

1 Introduction

Crisis management applications provide new, more efficient means to fight crisis and there-
fore have much potential to save many lives during the crisis when used efficiently. One
important factor for efficiency is usability, because higher usability potentially shortens
the time to complete the task of the crisis management team members and furthermore can
reduce the error rate.

Context-aware applications are being used to provide applications which adapt to the needs
of specific users or situations. Therefore, they potentially can provide user interfaces which
have higher usability and shorter times to complete tasks for specific users. E.g. our
scenario involves the use of context as to adapt to the role of the user as well as of the
display resolution.

We therefore investigate the development of context-aware applications for crisis manage-
ment. We focus on the development of user interfaces, but our concepts may be used for
other context adaptions as well - using different transformations and models. Most benefit
can be gained by supporting users by their tasks most frequently performed - which is mes-
saging in our case. Our scenario is based on messaging applications for crisis management
teams.

This paper provides the following contributions:

• A user study involving real firemen to support our assumptions about to the appli-
cation of context-aware adaption to the software used by crisis management teams

• A methodology to develop models and applications based on our model-to-model



transformation language called “Solverational”

• Developing context-aware applications using Solverational

• The application of the methodology to the development of crisis management tools

1.1 Motivating User Study

German crisis management teams of fire brigades manage crisis in the event, that the con-
trol center is overloaded by a huge amount of small incidents or a several huge incidents
which require greater attention. The crisis management team is usually based on 4 or 6
“S-role” team members, who have different responsibilities, e.g. decide on tasks and ac-
tions to take, manage the map, organize meals for firemen, or organize reinforcements.
The “communication center” communicates with fireman not situated at the current loca-
tion. The “information manager” gets all messages and distributes them under the staff
members. Since he gets all messages, he will be overloaded, when many messages arrive
within a small time frame.

To motivate our investigations on context aware computing for crisis management teams
we report on a user study performed with 14 users, most of them were firemen trained
in the field of crisis management and messaging. Each of the participants performed the
study once.

Messaging is an important information channel for the crisis management team. Currently,
the team of investigation is using Microsoft Outlook to transfer messages. The firemen
believed that it is the right choice for the task of messaging, because most firemen know
Outlook. However, we believed that this could be different for the role of the information
manager, who was announced to be the “bottleneck” in case many messages arrive within
a small time frame. His task is to select recipients for messages from the staff members.
Due to provisions of national laws, all messages must pass the information manager and
he therefore must be very fast in selecting recipients to circumvent delays in message
transfers.

We presented several different user interfaces (see figure 1) for a messaging application
and asked the firemen to perform the task of the information manager. Each interface is
composed of a list of messages, a message containing the contents of the message, and a
panel full of buttons with roles of the recipients. Although the user interfaces in figure 1 are
rather small, the figures show a version similar to the interface known from Outlook (list
of messages on the left side), a horizontally flipped version (list of messages to the right),
and a vertically flipped one (list of messages to the bottom). The time to complete the task
and the time to click on a button were recorded. The firemen had to perform 99 tasks with
different versions of the user interfaces. In an effort to reduce learning effects these were
displayed in random order, though the numbers of the interfaces remained constant over
the group of participants.

Results are shown in figure 2. The firemen performed best with the horizontally flipped
version. We believe that this is a result from the combination of the reading direction



Figure 1: User interfaces of the messaging application.

(left-to-right and top-to-bottom) and the importance of the list of messages. The list of
messages is not important for the information manager, because he has to pass every mes-
sage, anyways. Therefore he performs better when the list of messages does not gain his
attention and can be left aside. The horizontally flipped version shows the list of messages
on the right side, and the firemen were able to ignore it.

However, it is important to note that this is only the case for the information manager. Most
other staff members use the list of messages to organize their messages and will therefore
first look at the list instead of the message content itself. The applications is therefore
used in two different contexts with different tasks, although both handle messaging. We
conclude that the context of use is important for efficient use of messaging in crisis man-
agement applications. Still, the user study can only be seen as a hint for the problem given
and not as a formal evaluation.

1.2 Paper Outline

Section 2 demonstrates our model-driven methodology used in combination with a model-
to-model transformation language called “Solverational” to develop context aware user
interfaces for a more general setup, while section 3 specializes our methodology to crisis
management. Section 4 summarizes the state of the art of developing user interfaces using
model driven development. Section 5 discusses our findings and section 6 summarizes the
conclusions of the work being presented.



Standard Horizontal Flip Vertical Flip
1850

1900

1950

2000

2050

2100

[ms/Button]

type

tim
e

Figure 2: Results of the user study.

2 General Methodology

We present a methodology to develop context-aware applications. The next section spe-
cializes this methodology to the development of context-aware crisis management appli-
cations.

2.1 Model Driven Architecture

Model driven architecture (MDA) is an approach proposed by the OMG [OMG03] to de-
velop systems and applications using a model driven approach. The OMG outlines that in
model driven development there are abstract models (called “platform independent mod-
els”, PIM) which are to be refined into concrete models (called “platform specific models”,
PSM) through the use of intermediate models (called “platform models”). Furthermore
this refinement process can be performed using transformations. It is not specified how
this transformation process should look like exactly, but of course, it is highly desirable to
use automatic means to support developers developing platform specific models.

This automatism can be provided using a model-to-model transformation language. These
languages specialize on the transformation of PIMs to PSMs. The PM (“platform model”)
may either be specified in the transformation itself, or provided using another input model
(or will be left out, if it is not needed).



2.2 Transformation Language

For that reason the OMG specified the QVT standard [OMG07]. QVT is a standard for
model-to-model transformation composed of three different languages. The most interest-
ing, because it is a highly declarative one (declarativity is a property desirable for model-
to-model transformation) [JK06], is the QVT Relations language, which is a model-to-
model transformation language based on relations between model elements. Therefore, de-
velopers do not specify the way the model-to-model transformation process is performed,
but the way the result of the transformation should look like. The algorithm to perform the
transformation is inferred by the transformation engine.

A QVT Relation transformation is composed of a set of relations. These relations are the
transformation rules which specify the result of the transformation. Every relation consists
of a set of domains, which specify the types (classes) of model elements to be used by the
relation. By specifying the input and output models of a transformation the domains get
bound to model elements of the selected types (classes). Because QVT Relations requires
that each model element of each domain in each relation is exactly represented once in the
other domains of the relation, this results in a relational approach to programming model-
to-model transformations. Each domain is composed of several templates, most notably
PropertyTemplateItems. PropertyTemplateItems are equations, which require properties
of model elements to have or get values assigned by a value expression given in a language
called OCL [OMG06].

2.2.1 Solverational

Our model-to-model transformation language called “Solverational” is based on the QVT
Relations standard, but adds constraint solving to it [PBM09]. In fact many QVT Relations
transformations can be executed using our implementation of the Solverational transfor-
mation engine. The approach presented here could probably be used with classical, less
expressive QVT Relations transformations as well, if the application of the methodology
presented in section 3 would not require the expressiveness of constraint programming.

Transformations written in Solverational are very similar to the ones written in QVT Re-
lations. However, since QVT Relations does not support constraints (other than equalities,
which could arguably be called constraints), Solverational is more expressive, although
only minor changes to the language were needed. In fact, only the definition of the Prop-
ertyTemplateItems had to be changed, such that they handle also inequalities instead of
equalities. Additionally, these PropertyTemplateItems may be used several times on the
same property using different inequality constraints (this does not make sense in the case
of equalities, because the property value is already perfectly specified after the first equal-
ity).

In addition to the ability to process constraints, the Solverational transformation engine
is able to perform mathematical optimization during the transformation process. This
is useful in the case of several solutions (i.e. the system is under-specified) where an
optimal solution is required by the transformation developer. This may result in very hard



Target Model
Instance

Solverational Transformation Engine

OCL EMFT Plugin

EMF / Ecore

Solverational
Transformation

Metamodels

Choco

PROLOG
ECLiPSe
Transformation

ECLiPSe
Term
Model

Model
Instances

EMF
To

ECLiPSe
Mapping

ECLiPSe

Eclipse

Solverational to
ECLiPSe Mapping

Figure 3: Architecture of the transformation engine.

computational problems called “constraint optimization problems”.

2.2.2 Separation of Concerns using the Solverational Transformation Engine

Figure 3 (which was taken from [PBM09]) illustrates the architecture of our transformation
engine for Solverational.

Developing applications using Solverational typically involves three different roles of de-
velopment. If separation of concerns (SOC) is maximized these roles can be fulfilled by
different developers (e.g. a big company has experts for all concerns), but may as well be
fulfilled by a single person.

Meta-model developers develop the meta-models used for specifying the models and the
transformation definition. Depending on the number of meta-models involved this
may be done by several “meta-modelers”. If domain specific languages need to be
developed, the meta-modelers will talk to customers about the terminology used
by them or people with domain knowledge (e.g. firemen in our case) to derive the
meta-models. In addition to the model elements and associations they will also pay
attention to constraints commonly used in the languages to support the transforma-
tion developers to write the constraint programs.

Model developers develop the models needed during the development process to develop
new applications. They carefully talk to customers and developers and retrieve the



specific models which should finally be implemented by the application. In addition
to the model elements and associations they will also pay attention to constraints im-
plied by the models to support the transformation developers to write the constraint
programs.

Transformation developers develop transformations using Solverational. They spec-
ify the transformation. In addition to knowledge needed by common transforma-
tion languages developers should have basic knowledge in the field of constraint
programming to prevent over/under-specification and unnecessary long runtimes.
Transformation developers will carefully listen to the requirements provided by the
model developers to automate their development processes. In Solverational the
transformation description will most often be used as the platform model, because
many platform specific aspects can be encoded using Solverational constraints.

After having developed the meta-models and the transformation definition the transfor-
mation engine will transformation these artifacts into an ECLiPSe program (Eclipse Con-
straint Logic Programming System [AW07]; not to be confused with the Eclispe Java
IDE), which can then be used by the modelers.

The modelers, whose work has been automated using the transformation, will then use
the models (PIMs) and the transformation and feed them into the ECLiPSe program. The
program will return a target model (PSM).

2.3 Context-awareness

“Context” encompasses all data used by the application which is not directly used for input.
A “situation” is a set of values of “context variables” and may be values of functions which
are computed to get “higher context information” or may be directly measured. Then,
context is a set of situations. Each situation is part of at least one specific context.

Reacting to a new “context” is composed of three steps:

1. detecting the context,

2. calculating a reaction to the context, and

3. executing the reaction

Context detection can be done using constraints on values of context variables. The con-
straints then define the range or the domain for which the situation being measured may
still be assumed to be within the context. Therefore, the description of context may best
be done using a set of constraints (in our case, which is probably a subset of all possible
cases). If, at some time during application runtime, the constraints will be violated, the
context will be switched to a context with constraints which can all be satisfied (context
change event). To compute higher context information the constraints may also contain
complex mathematical functions over the context variables.



In the case of constraint programming, calculating a reaction to the newly detected context
can be done by solving constraints. Therefore, a context not only is associated with a set
of constraints for context detection, but also with a set of constraints, which are used to
compute a reaction to it. In case of constraint programming usually a constraint solver will
calculate the solution (and therefore the reaction).

The execution of the reaction then is simply the application of the values gained from the
constraint solver to the application itself - and therefore is highly application specific.

2.4 Developing Context-Aware Applications using Solverational

Integrating context-awareness into the models used for application development is called
“context-aware modelling”. There are several ways to integrate the development of context-
aware modelling with a model-driven approach using transformations.

A major difference to the ideas presented in section 2.3 is that context aware adaption is not
performed at runtime, but precomputed at design time. This reduces the runtime needed to
compute the reaction, but the model-to-code transformation needs to be aware of selecting
the right contexts and contexts, which were not foreseeable at design time cannot be used
at runtime. However, we believe it is the best choice for model-driven development of
applications where all contexts are known in advance and runtime or space is an issue
(which we believe is true for the vast majority of applications).

The first way to implement ideas from section 2.3 in model-to-model transformations is
to use constraints for the selection of the context. The constraints can be used to select
the context by writing them into the pattern matching part of the transformation rules.
Each context then gets a set of transformation rules which all contain the constraints for
selection of the context in the pattern matching part. The correct transformation rules for
the situation are therefore activated by using pattern matching with the constraints from
the context. Computing the reaction is as easy as using the constraints for computing the
reaction in the domain which should be enforced. The transformation engine will then
solve the constraints and therefore compute the reaction.

The second way to implement the context-aware modelling in model transformations is
to use a different transformation for each context. The context then is selected at runtime
and will select the code and data produced by a subsequent step of the model-to-model
transformation process. Computing the reaction is similar to the one presented above.

As the Solverational transformation engine is capable of performing constraint solving in
target models and select model elements using constraints it is perfectly suited to imple-
ment both ways.

The work presented here is similar to the work presented in [PBS06] and somehow may
be seen as an implementation. However, the transformation is not performed at runtime,
but at design time. Therefore, the duration of the transformation step is not as important
as it would be in the case of [PBS06].



AUI

Model-to-model 
transformations,
one for each context

Programmer

Modeller

Crisis
Management

Team

Transformation
developer

Model-to-code 
transformation

models talks

develops

usesCUICUI

executes

informs

produces

uses

Context-aware
application

all CUI
models

Figure 4: Application of the methodology to crisis management.

3 Application to Crisis Management

The application to developing applications for crisis management is straight forward. As
has been motivated by our user study context-awareness is an issue for crisis management
messaging applications.

Adhering to the second way presented in the previous section a team of developers will
use appropriate model-to-model transformations. For example, our messaging scenario
adapts to different screen sizes. Therefore, we develop a model-to-model transformation
using Solverational that sets attribute values according to an optimization function based
on Fitt’s law and the keystroke level model (KLM).

The transformation transforms an abstract user interface model (PIM) into a concrete user
interface model (PSM). Abstract user interface models (AUI) abstract from the specific di-
mensions of the screens used and therefore only define that the application needs a specific
set of input variables filled in by the user. The concrete user interface model (CUI) already
has all information needed for positions and sizes of the components. The model elements
representing the interaction components are organized in a hierarchy that is finally used to
display the model on the screen.

The information set by the transformation Fitt’s Law relates the positions of user interface
components to their sizes. Therefore the transformation pre-computes position and sizes
for user interface components (designed to be an implementation of our concepts pre-
sented in [PBZ+08]). The KLM defines the time needed to interact with the user interface
component.

Currently our implementation lacks the ability to take into account both, screen sizes and
roles. In fact the transformations are still very simple (see [PBM09]). Currently we are



working on a transformation that includes roles into the transformation, such that it not
only adapts to platform context, but also to role based contexts. However, the methodology
is still valid.

3.1 Process

Figure 4 presents an overview of the methodology. The modeller talks to the crises man-
agement team to derive terms to be used and user interfaces. He informs the transfor-
mation developer (if the transformation has not been developed, yet) that he would like
to have context-aware adaptation in model-to-model transformations and provides some
constraints. Then, he models the user interface and maybe the rest of the application logic.
The transformation developer develops the model-to-model transformations necessary to
transform the models into their context-dependent versions. These models are used by
the programmer who produces the context-aware application using a model-to-code trans-
formation or an interpreter to interpret the models. The application is tested by the crisis
management team to give feedback to all involved software developers, resulting in an
iterative process until the final application can be deployed.

4 Related Work

Several methodologies (which may have been explicitly or implicitly given in the literature
describing them) for developing context-aware user interfaces exist.

Quentin Limbourg provides a set of models and a methodology to develop multimodal ap-
plication using model driven development [Lim04]. His methodology is based on UsiXML,
which is a language to describe user interfaces and does not use constraint solving.

Mori and Paterno provide a methodology to develop user interfaces with model-driven
development starting from a task model [MP05]. Their approach has been extended to
adaptive user interfaces and uses model-to-model transformations, but does not use con-
straint solving and does not use a model-to-model transformation language.

Serco uses model-to-model transformation and constraint solving to transform a set of
user interface and task models into concrete user interface models [FBSA08]. They do not
use a model-to-model transformation language, but provide a tool to edit the constraints
instead. However, the methodology is based on the assumption that the model transforma-
tion process is performed at runtime, which is not the case for our scenario.

Banavar et. al provide a methodology which is able to distinguish between developing a
single language and a set of platform specific languages [BBG+04]. Their approach does
not use constraint solving.

MASTERMIND was an user interface management project at the advent of model based
user interface technologies and provides a code generation approach based on models
[BDR+97]. The methodology behind MASTERMIND focuses on the generation of code



and does not directly address constraint solving and does not use a model-to-model trans-
formation language.

SUPPLE uses mathematical optimization and constraint solving to develop user interfaces
[GW04]. It is not based on model-to-model transformation but is directly implemented in
JAVA.

Cassowary is a constraint solver specifically designed for mathematical user interface
models [Bad00]. However, it does not use models from software engineering, nor does
it use model-to-model transformations.

Thevinin presents ArtStudio, which is an approach based on model-to-model transforma-
tion, which uses a simple rule based language to transform the models [The01]. After the
transformation process constraints are solved using the Cassowary constraint solver and
therefore constraint solving is excluded from the model-to-model transformation process.

Most of the methodologies have different methodologies to develop user interfaces based
on model-driven development. Some of them can easily be extended or can be used with
adaptive user interfaces. As none of the approaches is using a model-to-model transfor-
mation language with constraint solving, the methodologies can not be used for using the
promising features of Solverational. Therefore, our methodology focuses on the aspects
of using constraint solving and mathematical optimization in the model-to-model transfor-
mation process and the language.

5 Discussion

Our methodology is based on MDA and specializes it for our purposes which are threefold:

1. A methodology for model-driven development using Solverational

2. A methodology for model-driven development of context-aware applications

3. A specialization to develop context-aware applications for crisis management using
Solverational

Since our methodology is just a specialization of MDA with add-ons for constraint solv-
ing, we believe that it is as least as good as developing applications with MDA. Still, the
changes to MDA are significant, as MDA is not concerned with constraint solving or math-
ematical optimization. We therefore believe that our methodology provides a speedup as
soon as constraint solving or mathematical optimization can be used within transforma-
tions. Since the development of context-aware applications can be perfectly done using
constraint solving (see section 2.3) the methodology will very likely provide a speedup.

To perform quantitative analysis of methodologies many projects of appropriate sizes need
to be finished to evaluate the effectiveness. Therefore, lacking enough projects of appro-
priate size our evaluation can only be qualitative.

However, our methodology will be applied to the development of context-aware applica-
tions in the SoKNOS project. It focuses on the development of a larger crisis management



system. While we only use our methodology to develop messaging applications it is a start
for further evaluation of the methodology in the future.

The user study provided in section 1 motivates the use of context-aware adaptation for
roles. Our current transformation (see section 3) can only handle user interface adapta-
tion for platform context (screen and window resolutions). However, we think that our
methodology is valid for role based adaption, also. By applying our methodology in the
SoKNOS project and extending the transformation to include role based adaptation, we
will further investigate if the methodology has to be changed to support role based adapta-
tion. Furthermore we think that our user study indicates that the team members work faster
with adapted user interfaces, probably not only with role based ones. Therefore, any user
interface adaptation that provides a better user interface may have produced such a result.
As we will improve the usability by using our platform context adaptation we still believe
to be partially motivated by the user study, even without having a role-based adaptation
mechanism, yet.

6 Conclusions and Future Work

A user study motivated the use of context-aware computing for crisis management appli-
cations. Our study involved real firemen, which are usually hard to convince to test new
software. As a result messaging applications should adapt to the roles of their users.

We developed a methodology, which uses a model-to-model transformation language with
constraint solving at its heart. The methodology provides a way to develop models and
applications based on our model-to-model transformation language called Solverational
and guides developers in developing context-aware applications.

We applied the methodology to the development of crisis management applications. In
the future we will integrate several adaptations into the transformation, most notably role
based adaptation, as directly motivated by the user study. However, we believe that the
user study also motivates more general adaptions which improve usability.

Acknoledgements The work presented is financed by the German Ministry of Education
and Research, BMBF. It is part of the SoKNOS project.

References

[AW07] Krzysztof R. Apt and Mark Wallace. Constraint Logic Programming using Eclipse.
Cambridge University Press, New York, NY, USA, 2007.

[Bad00] Gregory Joseph Badros. Extending Interactive Graphical Applications with Constraints.
PhD thesis, University of Washington, 2000.



[BBG+04] Guruduth Banavar, Lawrence D. Berman, Yves Gaeremynck, Danny Soroker, and
Jeremy Sussman. Tooling and system support for authoring multi-device appliations.
Systems and Software, 69(3):227–242, December 2004.

[BDR+97] Thomas Browne, David Davila, Spencer Rugaber, , and Kurt Stirewalt. Formal Methods
in Human Computer Interaction, chapter Using Declarative Descriptions to Model User
Interfaces with MASTERMIND. Springer, 1997.

[FBSA08] Sebastian Feuerstack, Marco Blumendorf, Veit Schwartze, and Sahin Albayrak. Model-
based layout generation. In AVI ’08: Proceedings of the working conference on Ad-
vanced visual interfaces, pages 217–224, New York, NY, USA, 2008. ACM.

[GW04] Krzysztof Gajos and Daniel S. Weld. SUPPLE: automatically generating user inter-
faces. In IUI ’04: Proceedings of the 9th international conference on Intelligent user
interfaces, pages 93–100, New York, NY, USA, 2004. ACM Press.

[JK06] Fréderic Jouault and Ivan Kurtev. On the Architectural Alignment of ATL and QVT.
In SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing, pages
1188–1195, New York, NY, USA, 2006. ACM Press.

[Lim04] Quentin Limbourg. Multi-Path Development of Multimodal Applications. PhD thesis,
Université Catolique de Louvin, 2004.

[MP05] Giulio Mori and Fabio Paternó. Automatic semantic platform-dependent redesign. In
sOc-EUSAI ’05: Proceedings of the 2005 joint conference on Smart objects and ambient
intelligence, pages 177–182, New York, NY, USA, 2005. ACM Press.

[OMG03] J. Mukerji OMG, J. Miller. MDA Guide Version 1.0.1. OMG, June 2003. document
number: omg/2003-06-01.

[OMG06] OMG. Object Constraint Language OMG Available Specification Version 2.0. OMG,
May 2006.

[OMG07] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.
OMG, July 2007. ptc/07-07-07.

[PBM09] Andreas Petter, Alexander Behring, and Max Mühlhäuser. Constraint Solving in Model
Transformations. In Richard F. Paige, editor, International Conference on Model Trans-
formation, ICMT 2009. Springer, 2009. to appear.

[PBS06] Andreas Petter, Alexander Behring, and Joachim Steinmetz. Efficient Modelling of
Highly Adaptive UbiComp Applications. In G. Kortuem, editor, Workshop on Software
Engineering Challenges for Ubiquitous Computing, pages 47–48, June 2006.

[PBZ+08] Andreas Petter, Alexander Behring, Miroslav Zlatkov, Joachim Steinmetz, and Max
Mühlhäuser. Modeling Usability in Model-Transformations. In Marko Bo?kovic, Dra-
gan Ga?evic, Claus Pahl, and Bernhard Schätz, editors, Proceedings of the 1st Inter-
national Workshop on Non-functional System Properties in Domain Specific Modeling
Languages, NFPinDSML-2008, volume 394. CEUR, September 2008. ISSN 1613-
0073.

[The01] David Thevenin. Adaptation en Interaction Homme-Machine : le cas de la Plasticité.
PhD thesis, Université de Grenoble, 2001.


