
On Continuous Detection of Design Flaws in Evolving
Object-Oriented Programs using Incremental
Multi-Pattern Matching

Sven Peldszus1, Géza Kulcsár2, Malte Lochau2, Sandro Schulze3

Abstract: This work has been initially presented at the International Conference on Automated
Software Engineering (ASE) 2016 [Pe16]. Design Ćaws in object-oriented programs may seriously
corrupt code quality thus increasing the risk for introducing subtle errors. Most recent approaches
identify design Ćaws in an ad-hoc manner, either focusing on software metrics, locally restricted
code smells, or on coarse-grained architectural anti-patterns. In our work, we utilize an abstract
program model capturing high-level object-oriented code entities, further augmented with qualitative
and quantitative design-related information. Based on this model, we propose a comprehensive
methodology for specifying object-oriented design Ćaws by means of compound rules integrating code
metrics, code smells and anti-patterns in a modular way. This approach allows for eicient, automated
design-Ćaw detection, by facilitating systematic information reuse among multiple detection rules as
well as between subsequent detection runs on continuously evolving programs.

Summary

Object-oriented programming ofers software developers rich concepts for structuring initial
program designs. As software systems tend to become more and more long-living, their
initial code bases have to be continuously maintained, improved and extended. In practice,
corresponding evolution steps are frequently conducted in an ad-hoc manner. As a result, the
initial program design may be prone to continuous erosion, eventually leading to structural
decay whith negative side-efects such as increasing the risk for introducing subtle errors.

Object-oriented refactorings have been proposed as efective counter-measure against design
Ćaws. In fact, a manual identiĄcation of problematic code structures to be removed by
applying appropriate refactorings is tedious, error-prone, or even impossible for larger-scaled
software projects. Various approaches have been recently proposed to assist and/or automate
the identiĄcation of design Ćaws. The diferent attempts may be roughly categorized into
three kinds of symptoms, potentially indicating object-oriented design Ćaws [Mo10].

• Software metrics assess quality problems in program designs by means of quantiĄed
measures on structural code entities (e.g. low cohesion of classes).

1 University of Koblenz-Landau, Germany speldszus@uni-koblenz.de
2 TU Darmstadt, Germany geza.kulcsar@es.tu-darmstadt.de, malte.lochau@es.tu-darmstadt.de
3 OVGU Magdeburg, Germany sandro.schulze@iti.cs.uni-magdeburg.de

cbe

M. Tichy, E. Bodden, M. Kuhrmann, S. Wagner, J.-P. Steghöfer (Hrsg.): SE 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 143

https://creativecommons.org/licenses/by-nc/3.0/
speldszus@uni-koblenz.de
geza.kulcsar@es.tu-darmstadt.de
malte.lochau@es.tu-darmstadt.de
sandro.schulze@iti.cs.uni-magdeburg.de
https://creativecommons.org/licenses/by-nc/3.0/


• Code smells qualify problematic, locally restricted code structures and anomalies
in-the-small, at class- or member-level (e.g., large classes).

• Anti-patterns qualify architectural decay in-the-large, usually involving several classes
spread over the entire program (e.g., God Classes) [Br98].

Based on this taxonomy, a precise and reliable identiĄcation of actual occurrences of design
Ćaws requires arbitrary combinations of software metrics with adjustable thresholds, as well
as code smells and anti-patterns into compound detection rules [Mo10]. However, most
existing approaches lack a comprehensive formal foundation and a uniform, yet modular
representation of such design-Ćaw detection rules. Instead, speciĄcally tailored detection
routines are applied for every design Ćaw individually, and being re-evaluated from scratch
for every program version anew during software evolution.

In our work, we present a comprehensive methodology for specifying and automatically
detecting design Ćaws in object-oriented programs. The approach utilizes a uniĄed abstract
program model comprising those high-level object-oriented code entities being relevant for
a concise speciĄcation of well-known design Ćaws. Based on this model, compound design-
Ćaw detection rules integrate software metrics, code smells and anti-patterns, and allow for
arbitrary combinations thereof. The modular nature of the rule language allows for sharing
similar symptoms among multiple rules. The corresponding pattern-matching routines
derived from those rules incrementally augment the underlying abstract program model
with qualitative and quantitative design-related information. This technique builds the basis
for eicient design-Ćaw detection by systematically facilitating reuse of information among
multiple detection rules, as well as between subsequent detection runs on continuously
evolving programs.

Please note that our tool implementation as well as all experimental data sets are available
on our GitHub site (https://github.com/GRaViTY-Tool/).

Acknowledgements

This work has been supported by the DFG in the Priority Programme SPP 1593: Design
For Future Ű Managed Software Evolution (LO 2198/2-1, JU 2734/2-1).

Literaturverzeichnis
[Br98] Brown, William J.; Malveau, Raphael C.; McCormick, Hays W. ŞSkipŤ; Mowbray, Thomas J.:

AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis. Wiley, 1998.

[Mo10] Moha, Naouel; Guéhéneuc, Yann-Gaël; Duchien, Laurence; Le Meur, Anne-Francoise:
DECOR: A Method for the SpeciĄcation and Detection of Code and Design Smells. TSE,
36(1):20Ű36, 2010.

[Pe16] Peldszus, Sven; Kulcsár, Géza; Lochau, Malte; Schulze, Sandro: Continuous Detection
of Design Flaws in Evolving Object-Oriented Programs using Incremental Multi-pattern
Matching. In: ASE. 2016.

144 Sven Peldszus, Géza Kulcsár, Malte Lochau, Sandro Schulze

https://github.com/GRaViTY-Tool/

