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Abstract: The focus of this contribution is put on the blind localization of mobile
terminals in urban scenarios. The proposed localization method exploits multipath
propagation, which is typical of urban terrain. It is assumed that each multipath com-
ponent is characterized by its direction of arrival (DoA) and relative time of arrival
(RToA) parameter. In essence the developed method compares the multipath parame-
ters predicted by the ray tracing algorithm with those measured by the single observing
station. In this context inevitably occur a multipath order problem, which is tackled in
detail within a proposed likelihood function definition. The latter follows an approach
known from the robust statistics. Its intention is to provide a robust and reliable posi-
tion estimate having at hand minimum a priori information about system parameters.

1 Introduction

There is a rapid growth of wireless applications that require the knowledge of the mobile
terminal’s location [KHO6]. In most cases the cooperative position estimation methods
[GGO5] can be used. In this contribution, however, we concentrate on the blind mobile
localization (BML), which presumes no cooperation of the mobile terminal referred to
as mobile station (MS) with the observing station (OS). This problem is typical of non-
subscribed user localization, e.g. in emergency, security, and safety applications [KSTO06].

In the preceding paper [ADKTO08] we formulated the boundary conditions and proposed a
possible solution of the BML task. Its goal is to develop a method for geo locating of a MS
in a non-cooperative mode, i.e. solely from the signals radiated by the MS, implying that
neither MS nor the cellular infrastructure are involved in the positioning process. The idea
of the proposed BML method implies a correlation of measured direction of arrival (DoA)
and relative time of arrival (RToA) parameters with data pre-calculated by the ray tracing
(RT) analysis [Mau05]. Formulation of an appropriate correlation criterion is a key task
of the underlying likelihood function and turns into a challenge in the noisy case. Since
the measurement process induces missing detections of the true propagation paths or con-
versely produces the false multipaths. That is, the number of true multipaths as well as the
corresponding multipath parameter are distorted, which makes the unique mapping impos-
sible. In particular, the multipath model order problem, i.e. a need to compare hypothetical
positions with different number of predicted multipaths, requires careful consideration. In
[ADKTO08] the probabilistically motivated likelihood function was proposed. It relies on
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the known error statistics, i.e. false alarm rate and detection probability. The likelihood
definition presented in this work does not need a priori knowledge about clutter parameter,
which is a more realistic assumption when working with real-life data. Furthermore, it is
able to cope with the multipath model order problem.

The remainder of the paper is organized as follows. In section 2 we present the measure-
ment error model and in section 3 the robust version of the likelihood function for the
BML is introduced.

2 Measurement model

We start with introduction of frequently used symbols. Let &, denote the known OS
position. The MS position £,, is unknown and must be estimated. For this purpose we in-
troduce some hypothetical MS position &, which can be arbitrarily chosen in the particular
scenario. All positions are specified in a 2D Cartesian space as follows:

éozliyZ:l’ £:|:y:|7 EM:|:y:j:| (1)

Leth (&, &) be the function, which represents the result of the RT analysis. For particular
transmitter position £ and receiver poisition £, function h gives, i.e. RT analysis predicts,
a set of multipath parameters consisting of M, multipath components:

h (éoaé) = {hm (£Oﬂ€)}717\/1[$:1 . (2)

h™ (&, &) contains parameters describing the m-th multipath. Subscript £ in M indi-
cates that the number of predicted multipaths can be different for different hypothetical
MS positions. For the sake of notation simplicity we use M instead of Mg whenever there
is no danger of ambiguity. For the same reason an explicit specification of OS location
can be ignored, i.e. in the sequel we use hy" instead of h™ (£, §). hy" has the following
structure:

I 3)
i.e. each multipath component is specified by its relative path length and azimuth DoA.
Azimuth DoA is in general bounded by:

Om € [-7,7]. 4)

I is a meter valued parameter, which relates to (the actually observable) relative or excess
delay by:

lm = Tm * CLight- (5)

cLight denotes the speed of light. We use l,,, instead of 7, since it is more illustrative and
convenient to use a meter valued parameter, while characterizing position estimate. The
relative path length [,, is obtained from the complete path length I, by:

bn = Uy —min (', 2, ..., U'nr) - 6)
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In this way [,,,’s are calculated from I’,,,’s also within RT analysis, since latter provides
full multipath lengths. With definitions made above [,,, is bounded by:

U € [0, lmax] , (7

where [y = max (I1,1ls, ..., 1l ) relates to total excess delay Tpax. Let us now define
the measured multipath set z consisting of K multipath components:

z= {Zk}szl ‘ ®)

Each measured multipath component z* is characterized by its DoA and RToA parame-
ter in the same manner as in the case of predicted multipath from (3). The measurement
process incorporates different types of errors, which are introduced in detail in [Algl10]
and will be briefly recapitulated here. On the one hand, there are false alarms and miss-
ing detections of true multipaths. That is, even if we would know the true MS position
&\, the number of measured multipaths K and predicted multipaths M , will be in gen-
eral different. On the other hand, there is additive Gaussian distortion, which can lead
to misassociations especially when the multipaths are closely spaced. All those errors
can significantly deteriorate the localization accuracy or may result in completely wrong
coordinates. Therefore, a careful choice of an underlying likelihood function is essential.

3 M-type likelihood function

As already mentioned in the introduction we wish to develop a likelihood criterion, which,
firstly, requires minor statistical information about the clutter and, secondly, is able to
cope with the multipath order problem. Let us demonstrate the problems arising, when
the classical definition of the likelihood function is straightforwardly applied to the single
observation:

K
L&) =J[N(z":hf,C). ©)

k=1

Hereby C* denotes the measurement covariance matrix of the k-th multipath. With noise
variances U?k , oik corresponding to relative path length and DoA respectively, C* is de-
fined as follows:

C* = diag [0}, 02, ] - (10)

The values of the noise variances are known and depend on the array configuration, system
bandwidth, SNR. They are typically different for every measured multipath. However, for
the sake of simplicity, we assume equal variances for all multipaths.

According to the maximum likelihood estimation principle the location maximizing £ (£)
is the most likely to be the correct MS position estimation, i.e. the corresponding maximum
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likelihood estimator (MLE) is expressed as follows:

Eﬁui argmax (HN z" hg,Ck)>

k=1
K

o argénin (Z % (hi - Zk)T(Ck)*l(h’g - zk:))
fE (-2 o) K & (uf)
~ argmin 222( ¢ 100 ) = argpin ZZ( )

k=11=1

, (1D

where R denotes the number of parameters describing a single multipath. In our case

R = 2, however, it changes if further parameters e.g. elevation DoA or Doppler shift

are considered. C* (i,4) addresses the i-th diagonal element, i.e. the variance of the i-th

multipath parameter characterizing the k-th multipath component, while h’g (7) addresses
. ks ks

the i-th entry of the vector h’g. ulg” = 015(2%:“(;)) is the i-th normalized residual of the

k-th multipath component for the hypothesized MS position &.

The aim is to find position £ u So that the corresponding multipath parameters hA gener-
ated via RT yield the best match with the measured parameters z. However, the llkellhood
function from (9), i.e. the estimator from (11), shows some deficiency in practical use.
Firstly, the predicted multipath parameters must be associated with the measured ones,
since the relation between them is unknown. Secondly, (9) is inapplicable if the number
of predicted multipaths My at the particular position £ is not equal to the number of mea-
sured multipaths K. Whereas in the case with K < M simply the subset of predicted
multipaths with the highest weight can be chosen, the opposite case with K > M is
more crucial. Typically, the joint weight £ (£) diminishes with the number of factors con-
sidered, since the individual weights are mostly smaller than 1. Such behavior inevitably
causes a higher joint weight for positions with smaller M penalizing those with higher
My values. However, this fact counteracts the idea that the position with the highest num-
ber of associations is most likely to be the correct one. Thirdly, the product structure of
L (&) makes it very sensitive to small values of the individual weights. Hence a single
outlier with the vanishing individual weight decreases drastically the joint weight even if
the remaining individual weights are significant.

The first point addressed as data association problem can be seen as an independent task
and is not discussed in this contribution. The interested reader is referred to [Alg10]. In-
stead we concentrate in the following on the remaining two points and define the modified
likelihood criterion inspired by the concepts of robust statistics.

Classical statistical methods rely heavily on model assumptions which are often not met
in practice. E.g. if there are outliers in the data or if the assumption of the noise sig-
nal distribution (typically Gaussian) is violated, classical methods often have very poor
performance. Robust statistics seeks to provide concepts which describe the behavior of
statistical procedures not only under strict parametric models, but also in neighborhoods of
such models, see [Hub81]. M-estimator ("M” stands for "maximum likelihood-type”) is a
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Table 1: Two possible p-functions for M-estimators.

Name o (u)
Least squares u?/2
Welsh ca/2(1—exp(— (u/ca)Q))

popular robust technique, which generalizes maximum likelihood estimation from (11) to:

N argmin (ZZ ( )) . (12)

k=11=1

where p is a symmetric, positive-definite function, i.e. p (u) > 0 for all v accept 0, with a
unique minimum at zero, i.e. p (0) = 0. The idea is to choose p in such a way to provide
the estimator desirable properties in terms of bias and efficiency. There is a wide choice of
underlying functions, see [Rey83]. Figure 1 and table 1 present two possible alternatives
for one dimensional case. The first candidate in table 1 is the least squares estimator,
which corresponds to the maximum likelihood case from (11). Note, that the p-function of
a least squares estimator is not bounded and residuals cause its quadratic increase, which
explains the strong effect of outliers, see figure 1(a).
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Figure 1: Shapes of p-functions.

The second candidate is the Welsh function, which is the Gaussian-like curve turned upside
down, thus ensuring absolute suppression of outliers lying far from zero, see figure 1(b).
This attractive property represents a decisive factor by the choice of an appropriate p-
function in the context of BML problem. It allows, furthermore, to compare MS locations
with different number of detected multipaths.

Using the Welsh function and applying standard statistical calculation the M-type likeli-
hood function can be expressed as follows:

K R eXp( ( ’H)) min(K,Mg) 2 ul”
HH 2nCE (1) H exp Zexp _<Ca> . (13)

k=1i=1
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The tuning constant c,, used in the definition of Welsh function allows to adapt the under-
lying M-estimator, i.e. make it either more robust or more efficient. Further details and
the derivation of (13) are presented in the full paper.

4 Conclusions

We presented the robust likelihood function for the blind mobile localization task. The
likelihood function provides a non-linear mapping between the observation and the state
space exploiting the knowledge of specific sensor properties combined with RT prediction,
thus giving an answer to the fundamental question, how likely a particular hypothetical MS
location is to produce an observed set of multipath components. In essence, the underlying
likelihood function evaluates the proximity of the measured and predicted multipath com-
ponents. A special feature of the developed likelihood criterion is that it is able to tackle
the multipath order problem inevitably arising when positions with different number of
multipath components are compared. Furthermore, it provides a robust and reliable posi-
tion estimate having at hand minimum a priori information about the clutter parameters.
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