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Abstract: Detecting malicious software used for covert ends is problematical because
skilled attackers invariably employ stealth mechanisms to conceal the injection and
subsequent activity of such software. As a result, the evidence of such incursions fre-
quently “disappears” once the attack has succeeded. In distributed environments, this
difficulty is compounded because of the inherent difficulties in observing the global
state of a computation.

We propose a novel approach to the detection of potentially malicious activity in
distributed environments. We select key data elements, which are chosen on the basis
that they are frequently subject to subversion during malicious attacks. We specify
their behavior as a partial order of sequences in state, accounting not only for legal
and illegal states, but also for less than normative behavior, whose occurrence may
indicate the presence of anomalous conditions.

We show how we overcome the difficulties of observing state in distributed envi-
ronments through employing a multiplicity of distinct and independent observer pro-
cesses and by making use of well-known algorithms to synchronize and order our
observations and we demonstrate that we are able to use the resulting data set to make
inferences about the presence (or not) of malicious software based on comparisons of
observed and expected behaviors.

1 Introduction

Malicious software activity used for covert purposes such as the exfiltration of data is
difficult to detect because it generally employs stealth and anti-forensics techniques — in-
cluding direct attacks on detection mechanisms. As a result, evidence of its activity may
only be momentarily available either during incursion or on subsequent activation (Sec-
tion 6). On distributed systems, this problem is compounded because the global state of
the system may not be observed directly, due to the computational unfeasibility (Section
2). This problem is an inherent feature of distributed systems and also applies to software

engineering issues, such as debugging and deadlock detection [MGO1].

We identify — for observation — data elements, which are frequently targeted for subversion
during an attack (Section 3). We show how the behavior of these data elements relates to
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the behavior of the distributed system as a whole (Sections 4.1, 4.2). We describe the
expected behavior of these data elements by modified state diagrams, using knowledge
of invariant behaviors in relation to causality, or system security policies (Section 4.3,
4.4). We create from combining these graphs, a “fuzzy” partial order over the combined
sequences of these states. From this, we may induce a resulting set of total orders and
associated probability values.(Section 4.5).

We implement a multi-pronged observation of these elements using a set of independent
and distinct observer processes and utilize well-known distributed algorithms to synchro-
nize these readings, to provide a logical time frame, and — from time to time - record the
global state of the observation as a whole (Section 4.6). We derive from this set of obser-
vations a second “fuzzy” partial order of observed states and induce a corresponding set
of linearizations. Since the predicted and observed sets are equivalent, by comparing these
sets, we may uncover anomalous behaviors. (Section 4.7).

The results are partial and probabilistic in nature, but the validity and integrity of the
data set is underscored by the multiplicity, distinctness and independence of the observers
(Section 4.8). The mechanism is also capable of self protection, since it is itself also a
distributed system which possesses key data elements which may be likewise observed as
part of the mechanism’s own working (Section 4.9).

We list some early results using a multiprocessor system to simulate some of the problems
of a distributed environment (Section 5). We discuss related work (Section 6) and conclude
with a summary of the advantages of our approach. We intend to explore its application
to several types of distributed and parallel processing environments and we list some early
results (Section7).

2 Detection of Malicious Behavior in Distributed Systems

A distributed system consists of a set /N of processes, which are physically, or logically,
remote from one another. Each process executes independently. They do not share mem-
ory and they exchange information using messages via agreed communication channels.
These messages may be subject to delay and arrive out of order. Processes do not share a
clock e.g. for time stamping messages or events [Gar(02].

From the point of view of an all-seeing observer with a physical clock, therefore, messages
and states associated with a run of a distributed computation would happen in a number of
different total orders (or linearizations) — which may or may not be valid. This environment
therefore poses a difficulty in determining — for example, for purposes of debugging — the
validity of a given computational run i.e. detecting whether a particular condition (referred
to as a global predicate) such as an “illegal state”, is true, or becomes true during a run
of a system. In particular, for unstable global predicates (conditions which become true
momentarily, but do not necessarily remain true, unlike a stable condition such as termi-
nation), this problem is known to be NP-complete [Gar02]. Malicious software detection
falls into this category (Section 6).

We require to show that we can reduce this problem to a computationally feasible one
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that allows us to make valid observations and inferences about the global state of the
distributed computation. Given that a skillful and knowledgeable attacker will be aware
of our detection mechanism, we should also show that our approach is resilient to direct
attack upon it.

3 Concurrent Observation of Invariants

We focus our attention on a set X selected data elements, which are commonly attacked by
malicious agencies !. In addition, we select the data elements of X for the characteristic
of invariance - that is, under normal operating conditions, it is possible to specify their
behavior for all runs of a distributed computation. For example, they may be values which
enforce system security policies, such as privilege flags associated with a user login, they
may be measurements of systems activity such as the number of network connections, or
they may represent fundamental features of the systems operation such as kernel structures.
The selection is such that the features are unlikely to vary in operation over the lifetime
of the system, or their behavior is well-managed such that all variations are accounted for
during the lifetime of the system. It may, however, be necessary to add data elements to
the set where there is a significant change in attack behavior.

We represent this behavior of these data elements as a partially ordered set of transitions
in state with associated probability values for successor preference (section 4.3). By mod-
eling two or more elements € X, we may specify causal relations between the states of
these elements. Where the behavior of an element x € X replicates, these linearizations
may be represented as a bounded n-tuple of states. From this predictor set, we can induce
a set of all possible linearizations of the states of X.

This set of predicted sequences provides the probability space for transitions in state for
these elements. It is also isomorphic to a “fuzzy” set, in that each bounded tuple may
be present (as members) in the run of a distributed computation to a greater or lesser
degree. Moreover, it not only allows legal and illegal behavior to be distinguished, but
also provides a finely grained distinction between legal, but unlikely states, which may
be indicative of error conditions, and legal, and reasonably probable, states, indicative of
normal operation. It follows that if we are able to observe the states of the selected data
elements and place them in an an equivalent structure, we have a basis for determining the
existence of anomalous behavior, which may be a sign of malicious software activity.

We propose to observe the behavior of our selected data elements by using a multiplicity of
distinct observer processes assigned to each data element(section 4.6). Since our observers
also form a distributed system, we face the same constraints on process scheduling and
messaging as any such system. But by using well-known distributed computing techniques
for synchronizing and ordering the observations and for taking snapshots of state [Gar02],
we are able to induce a set of possible partial orders of the states of our elements, along
with associated probabilities.

I'based on a knowledge of evolution in attack behaviors
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Using our knowledge of system behavior, we may infer from this a set of possible partial
orders with varying degrees of membership with regard to the behavior of the system.
We compare bounded sequences from the set of total orders, which can be derived from
this, with the sequences of the predictor set, and report any mismatches, including low
probability conditions, as indicative of possible malicious activity.

We also outline how this approach provides a basis for self defence of the mechanism
by allowing it the ability to observe itself. In addition, the employment of numerous
independent processes provides a source of resilience and also acts as a deterrent to attack,
since even with full knowledge of our mechanism, the attacker finds himself in a position
where he is unable to observe, still less control, the operation of the mechanism. Thus, we
manipulate the disadvantages of the distributed environment to our advantage.

4 Model Description
4.1 Modeling a Distributed Computation

A distributed system consists of a set P of N processes, P = {Py, P,,...,Py}. Each
process P; , where 1 < 4 < N passes through a finite sequence m of local states
(s1,82,...,53) where m > 1.

Let S; be the sequence of local states in P;. Then S can be defined as

s=Js:

A distributed computation trace can be modeled as a tuple (S, Sa, ..., Sy,~), where ~»
indicates a state in S; logically preceding a state in S; (1 <4 < j < N). This structure
forms a decomposed partially ordered set (deposet).

A deposet, or run of a distributed program, defines a partial order (the “happened before”
relation — ) on the set of states. There exist many total orders (also known as linearizations
or global sequences) of this partial order which are sequences of global states where a
global state is a vector of local states [Gar(02].

We use the interleaving assumption for modeling states and events. That is, we do not
model simultaneous behavior, but assume for any two concurrent events, say e and f, that
e may follow f or f may follow e.

4.2 Modeling Data States

Let X be a selected set of data elements in a distributed computation. For our purposes,
the elements of X are selected on the basis that they behave consistently (i.e. are invariant)
under normal operating conditions, but behave arbitrarily under abnormal conditions such
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as the incursion of malicious software 2.

Each element = € X passes through a sequence of states S, during a run of a distributed
computation. Let

Sx =] Sa

zeX

It follows that if we are able to induce a partial order over Sx as before, then Sx will form
a deposet.

We may model the behavior of P in terms of the behavior of X. That is, since each data
element x € X is associated with a process P; € P, it follows that there is a monomor-
phism between .S, and .S;, in that for each state in .S, there are one or more state transitions
of S;. There exists, therefore, a mapping between the global states of Sx and the global
states S.

Clearly, the model of behavior derived will be less finely grained than if we had direct
access to the actual states of P, but we have the advantage of having a smaller set of
behaviors to consider. Moreover, the model proposed allows us to consider behavior more
directly relevant to the purposes of intrusion detection.

Thus, we argue that if we record the states of Sx we may feasibly compare the resulting
set of global sequences (or parts thereof) with an equivalent set of predicted sequences and
use our findings to uncover the presence of malicious software.

4.3 Specifying the Behavior of a Single Data Element

We may specify the legal states and permitted transitions of an z € X, denoted z; — x;,
using a modified state diagram, which we call an expected behavior graph 3. Where a
choice of possible transitions exists, we may also, based on a knowledge of the system,
label the edges to show the probability that a given transition will occur #. For convenience,
we may choose to represent a replicated state as a new node and indicate this using an
asterisk. See Figure 1 for an example.

This graph is useful as it enables us not only to distinguish between legal and illegal be-
havior, but also to identify low probability behavior which may be indicative of anomalous
conditions. In effect, the specification serves not only as a description of the probability
space € of the behavior of x, but also as a “fuzzy” partial order for the relation “preferred
successor state” which expresses what behaviors are more likely that others to belong to a
set of normal behaviors for the computation.

Clearly, it is infeasible for the graph to express a complete set of global sequences (or even
one), which might occur during an extended run of the computation. Rather we designate

2Clearly, the selection criteria may be altered for different applications of the method illustrated in this paper.

3We do not use loops as we assume a data element remains constant unless acted on and we make some
additional changes which are explained in the text.

4Similar to the concept of “likely” and “unlikely” in Linux kernel programs used to deal with error conditions.
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Figure 1: Expected Behavior Graph Showing Legal States and Transitions of x

the initial condition, the maximum state (or maximal, if it is repeated), any subsequent state
which is replicated with its initial conditions, a sub-maximal state, and any terminal state
as the minimum state, or minimal states if there is more than one. A set of global sequences
may be modeled by chaining these bounded sequences together in various combinations.
However, this is not necessary for our purposes.

4.4 Specifying the Behavior of Multiple Elements

We may extend this approach to specify the behavior of more than one data element con-
currently, showing each data element as distinct components of the same expected behav-
ior graph. This is meaningful where causal relations exist between the states of different
elements. We formally define three such relations — conditional dependency , strong causal
dependency and weak causal dependency.

These relations may be used to specify where the relation “potentially causes” (—,) must
occur in our model, allowing us to induce a partial order over the predicted states of Sx,
and hence deduce a set of corresponding global sequences, or rather parts thereof, which
is consistent with the “happened before” relation [Gar02].

Where a data element € X may only achieve a given state, say x;, concurrent with a
state of another element y € X ,say yy, x; is said to be conditionally dependent on yj.

Definition(Conditional Dependency)

Let x,y € X be data elements. Let x;,x; € S, be states of v and yi, € Sy be a state of y
respectively. If x; may not transition to x; unless y is in yy,, we say that x; is conditionally
dependent on yy,.

We show this relation as a directed edge, which is dashed, on our expected behavior graph
from y,, to z;. y; is called the permitting node of x;. x; is called the dependent node
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of yi. A joint dependency may also exist, shown by linking co-permitting nodes with an
undirected dashed edge. This is called a permitting component. Clearly, a permitting node
is also a permitting component (see Figure 2).

Two other forms of dependency may also exist where a transition in one component man-
dates a transition in the other. We graph this by showing a graph with both the “master”
and “slave” components and directing an edge from the “master” component to the “slave”
component (again, see Figure 2).

Definition(Strong Causal Dependency)

Let x;,x; € Sy and y, € Sy be states of x,y € X. If the transition to yy, forces x; to
transition to x;, and the transition to x; only occurs due to yy, we say that yy, strongly
causes x;, and we call this a strong causal dependency.

The definition for weak causal dependency is similar, but removes the condition of unique-
ness.

Definition(Weak Causal Dependency)

Let xy,x; € Sy and y, € Sy be states of x,y € X. If the transition to yy, forces x; to
transition to x j, and the transition to x; may also occur as a result of other conditions, we
say that yi, weakly causes x ;, and we call this a weak causal dependency.

In some cases, a two-way dependency may exist. For example, if two processes are in
communication, either process may end the conversation, forcing the other process to do
the same.

4.5 Inducing a Partial Order Over Predicted States

Clearly, therefore, we are capable of inducing a partial order over a predicted set of states
which when combined will allow us to model the possible global sequences of Sx. We
denote this the predictor set Rx. This will consist of a set of tuples (R, Ry, ...,~p) —
where ~~, indicates the relation (remotely) “potentially causes”, which is consistent with
the “happened before” relation [Gar(02].

For example. Let (. ..) indicate an ordered, bounded n-tuple of states. Let [. . .] indicate a
permutation of states. Let ((...), (w;)) be an ordered pair which indicates the probability
of an ordered tuple. Let L indicate process termination. Let * indicate a replication of
maximal states. Let X = {red, blue} be two distinct data elements with causal relations
between their respective states.

From Figure 2, the set of expected orders of red and blue > are —

red = {{(a,b,d, L), (0.03)),
{(a,b,e,ax),(0.27)),
((a, c,e,ax), (0.28)),

Sshown as white and gray respectively

61



Figure 2: Expected Behavior Graph with Dependencies

((a,c, f,ax),(0.42))}

blue = {((g,h, j, g*), (0.3)),
((g,1,3,9%),(0.35)),
((g,1,k,g%),(0.35))}

while the set of partial orders for X, based on the causal relations which exist between
these sets of sequences, consists of

Rx ={X1,Xa,..., X6}

@
S,
=
=
S,
*'*
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((lagl, i, ¢, [fK], ), (0.21))}.

Taking the element of Rx, in the order shown as an example, using the interleaving as-
sumption, the set of linearized sequences would be

RXl = {(a,g,h,b,e,j, *)7 (gaaahabaeajv*)a (a,g,h,b,j,e, *)7 <gaaa ha b,j,e,*)}

b}

each of which may occur with p = 0.675. The boundary states are the maxmimals a and
¢ and the minimals d and [, respectively. The information provided is sufficient to model
a global sequence, if required.

4.6 Observing Data Element Behavior

We show that we can observe the states of X in an order which closely approximates
the logical order in which they occurred. To do so, we create a set of observer processes
and assign to each data element a partition (or ensemble) of these processes, which takes
periodic measurements of its state.

We weakly synchronize our observations by requiring that each observer in an ensemble
exchange messages post-observation with every associated observer before proceeding to
the next round of observations [Gar02]. This forces the condition that each set of observa-
tions must be temporally distinct from each previous round of observations since any pro-
cess having completed its observation and messaging must wait until it has received from
every other process a message concerning their observations before continuing. Hence all
observations must have taken place in that round (as there cannot be a message about an
observation which has not taken place) before the next round of observations commences.

Messages concerning observations enable us to uncover mismatches in state as the result
of each observation is compared by every observer process with its own measurement. We
assume that a mismatch indicates a change in state between two distinct observations. This
means we avoid the need to log the values from every round of observations and need only
log each mismatch in observations.

Observations are not continuous but by using a multiplicity of observers decrease the prob-
ability of missing a transition (section 4.8). The order in which transitions are observed
and reported within a round for a single data element is not necessarily sequential. How-
ever, the order in which transitions are logged across rounds is necessarily sequential for
the reasons already discussed in this section.

We use a vector clock [SC02] to logically time stamp messages in accordance with the
“happened before” relation [TG98], so that communications regarding observations may
be ordered. We use the “pulse” index of a synchronizer algorithm [Gar02] to allow us —
if necessary — to identify messages arriving ahead of order to be buffered for future pro-
cessing. From time to time, we also employ a snapshot algorithm [HS97] to synchronize
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the vector clocks between ensembles as part of logically ordering interactions between the
states of distinct data elements, using the “happened before” relation.

Hence, for each data element, the results of observation rounds are logged in order, while
a partial order of events may be established between the measurement rounds of distinct
ensembles, using snapshots in state in combination with vector clock values.

4.7 Inferring Data Element Behavior and the Presence of Malicious Software

The partially ordered set of observed values which we denote T’y is only an approximation
of the set Sy which we are able to create from our predictor set R x for several reasons —

1. Several transitions may take place during a single round of observations, for which
we have no basis in observation for determining the order in which they occurred
(Section 4.6)

2. There exists a probability we may miss one, or more, transitions in state (Section
4.8)

3. Data may also be missing, or inaccurate, due to the failure of channels or processes,
possibly as the result of deliberate action by the attacker, or as the result of spoofing

4. The partial order induced by the “happened before” relation using the vector clock in
conjunction with snapshots of state does not map directly to the “potentially causes”
relation we identified for Rx

We, therefore, need an approach which deals systematically with these issues and allows
us to use the sequences derived from Rx in conjunction with the observed values of T'x
to uncover malicious activity.

We deal with reducing the probability of failure, malicious attack and spoofing in section
4.9. In this section, we concentrate on using our knowledge of predicted behavior to make
inferences about observed behavior and give some simple examples of how this can be
used to uncover evidence of malicious activity. We also demonstrate that our approach is
computationally feasible.

To do so, we use both the boundaries we have defined for our sequences and the relations
we have identified earlier in creating the predictor set Rx — the “preferred successor”
relation, conditional dependency, weak and strong causal dependency — as a lens through
which to view the data set Tx. We give examples of various forms of reasoning which
may be applied as a result.

Using the maximal, sub-maximal and minimal states we have defined in Rx, we can
identify bounded n-tuples of states for single elements. Using the “preferred successor”
relation, we may examine the transitions of each element individually. Where a transition
is missing, that is, there is no observation of any valid preferred successor, we may infer
from Rx a set of probable transitions — which may be presented graphically as a tree
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(see Figure 3) — and test these for consistency with subsequent observations, reporting
any contradictions, or pruning invalid branches. Additionally, given that the probability of
missing transitions will be low, if several appeared to be missing, we would report this as
indicative of possible failure in the mechanism, or other anomalous condition.

0.5
0.5

@@ @@

Figure 3: Part of a Hypothesis Tree (for missing observations of j and k) for red and blue

Similarly, where we observed several transitions during a single round, we may order
these in accordance with the “preferred successor” relation, again presenting the results in
a hypothesis tree, checking both that no two transitions lead to contradictory paths and,
once again, against subsequent transitions in state for consistency. Once more, it may be
possible to prune the number of combinations of transitions as a result of these consistency
checks.

When we come to a joint consideration of causally related data elements, we are primarily
checking for a consistency in the ordering of these causal relations, that is, that they are
congruent with the “happened before” relation which is induced by the vector clock.

Taking strong causal dependency as an example (similar reasoning may be applied to the
other relations), we assume that any “slave” state must be preceded by a “master” state .
Hence for any two data elements — considering the states of each in order of observation —
where we find an initial “slave”, we look for an initial “master” state, which may be either
observed, or, if missing from the set of observations, inferred — so long as its existence is
consistent with the subsequent set of transitions in its associated data element. Similarly,
where we find a “master” state, we may look for the “slave” state which is its consequence.

This analysis enables us to associate bounded n-tuples (i.e. sequences) of distinct data
elements using “potential causality”. We may proceed to check if this relation is consistent
with the “happened before” relation over T'x by using vector clock values to link subsets of
bounded sequences in a partial order. Where there is an apparent contradiction between the
order induced by vector clock values and the order observed or inferred for our “potentially
causes” relations, we log this as an anomaly.
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In addition, we may also apply the “pigeon-hole” principle i.e. if there are, for example,
more “slave” states than “master” states, this is also inconsistent with our predictor set.

It should be noted that, on occasions, establishing the partial order “potentially causes”
will enable us to prune back on hypotheses concerning missing data, or multiple transitions
in rounds, as the inference of a causal condition or of a permitted, or “slave”, state may
clarify what transitions have occurred. This is one of the advantages of our approach since
it permits us to look at transitions in state from multiple points of view.

So from an initial set Tx of observations, making use of our knowledge of invariant be-
havior within the system in relation to transitions in state and causal relations between the
values of data elements, we are able to infer a “fuzzy” partially ordered set of states of
data elements, which we denote T’ )/(, whose sequences and ordering may be checked for
consistency against our predictor set Rx and for internal consistency. This gives us a basis
for uncovering anomalies which are potentially the result of malicious activity.

As a final step, we may also give consideration to the overall state of the data set in the
context of our analysis. We have already stated that low probability — that is, abnormal —
conditions may result in an alert and that we might equally raise an alert where several sets
of transitions appeared to be missing. In addition, we should also consider where various
negative conditions — such as missing data, evidence of failed processes or low probability
states - combine and establish a threshold of significance for the quality of the data set.
Although this is an approximate concept, we hold that multiple caused failures in the data
set may also be considered anomalous and used to trigger an alert.

The computational feasibility of our approach is demonstrated by the fact that we are using
well-defined behaviors for our analysis; these behaviors may be considered in the context
of bounded, replicating sequences and we can present the results graphically as a tree,
therefore, making it possible to avail of well-known graph traversal algorithms to build
linear sequences from our observations for analysis and comparison with the set of linear
sequences derived from our predictor set Rx.

4.8 Observational Probabilities

There is a probability that one or more states of x € X may be unobserved. As we have
seen, this adds to the complexity of drawing inferences from the data set. At the same time,
the use of a multiplicity of observers significantly lowers the probability of this occurring.

Let L be an arbitrary length of time. We observe x using n observers where n > 2. Let
there be a transition in . We assume this transition § takes zero time from the point of
view of the observers ® and may happen at any point during L. Let the probability of an
observer in the round taking an observation of = before § be p. Let the probability of taking
an observation after d be g. Let T be the event of observing a transition. If all observations
in a round occur before ¢ or, equivalently, after it, no mismatch in observations occurs.
Hence no mismatch in states is reported by the ensemble; this is equivalent to not observing

%i.e. either the observation is of state z, or of state z’, as any interim state is undefined
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it, and we see that 1 — P(T") = p™ + ¢". Hence,

This argument may be extended to the observation of further transitions of « during a sin-
gle round, but it should be clear that where a multiplicity of observers exist, the probability
of not observing a transition is much reduced. This reduces the number of possibilities we
need to consider when making inferences about our observations.

4.9 Resilience and Self Defence

The multiplicity, independence and distinctness of the observers clearly provides a degree
of resilience for the observer mechanism, although performance and messaging overheads
need to be taken into account in setting the number of observers. In addition, if poor com-
munications are an issue then some adjustments would need to be made to the synchroniser
algorithm to take account of undue latency or communications failure, for example, a con-
trolled time out on message waiting periods.

Considering the possibility of direct attack on the mechanism [Szo05], the major advantage
of our approach is that the independence of the observer processes enables us to instan-
tiate a subset of these processes to observe data elements associated with the observation
mechanism itself. This enables periodic tests of the integrity of the mechanism. Combined
with the possession of a multiplicity of independent observers, this acts as a deterrent to
attack by requiring that the capability to simultaneously subvert a set of processes which
may not even share the same logical or physical platform, or be functionally equivalent —
even if observing the same data element.

A partial subversion of the mechanism is likely to fail because even if a subset of observers
are subverted, or have their communications spoofed, this will appear to as a series of con-
tinual transitions in state whose permutations are unlikely to be equivalent to the expected
behaviors of our selected data elements. If instead we consider an attack en masse where
the attacker seeks to take advantage of a single vulnerability across an ensemble (or more
than one) of observers, we find that this possibility is closed to them. Even within a single
ensemble because the same data is observed from different points of view (representing
either different APIs or different logical or physical platforms) requiring the use of distinct
functionality, the likelihood that a single exploitable vulnerability will result in the mass
compromise of the observer processes is low. The use of different platforms also implies
that coding or systems operation details may be distinct, further adding to the attacker’s
difficulties.

Thus, the probabilistic nature of our mechanism acts as a deterrent to attackers since they
may not easily predict where and when any actions of theirs may be observed, nor is it
computationally feasible for them to seek to control multiple observers which work at
different points in process time and space and which possess distinct functionality.

67



In other words, the constraints which we face in detecting malicious activity are redoubled
for the attacker considering the subversion of a distributed computation which is guarded
by our mechanism, even with full knowledge of the mechanism. Effectively, we have
turned the attacker’s apparent strength in being difficult to detect in a distributed environ-
ment “jiu jutsu”-like against him’

5 Experimental Justification

We summarize findings from an early “proof of concept” of our approach. We analyzed
the action of several root kits on a Linux system and identified key invariants in the data
structures which were altered by these examples of malicious software in order to subvert
the system. A common example were pointers to system functions on the system call table,
but more sophisticated attacks targeted other kernel structures such the VFS sub-system,
or the Interrupt Descriptor Table (IDT). We used some of these example attacks to build
a root kit simulator, which did not perform any malicious actions, but merely sought to
conceal file-based information, such as might be disguised by malicious software.

We subsequently designed and implemented a kernel module application, based on a dis-
tributed computing architecture, called KRAKEN which made use of multiple observer
processors to examine our selected data element from different points of view, that is,
using different APIs for the purposes of measurement.

The application was based on a symmetric multiprocessing (SMP) system. Observer pro-
cesses were assigned to different CPUs on instantiation, which not only ensured indepen-
dence between observational viewpoints, but also introduced a non-deterministic element
into process scheduling which we argue, similar to the model proposed here, would make
evasion of the action of the anomaly detector problematical. The observations themselves
were stateless, but each observer exchanged messages with its peers to compare results
and reported any mismatches in state. The mechanism made use of the “synchronizer”
algorithm, logical time-values and snapshots in state similar to the approach described in
this paper (Section 4.6).

Several experiments were carried out using the root kit simulator to mimic different meth-
ods of concealment used by attackers. KRAKEN demonstrated particular success (p ~ 1)
in dealing with root kits when observations were made at both high and low level APIs
concurrently and the subversion method relied on concealing the true state of the data
element at an interim level as the continuous contradiction between the observed values
made detection inevitable. But even where the subversion method attacked a lower level
API than any measured, there remained a significant probability of detecting the anoma-
lies, with some dependence on the frequency of measurement (as high as p =~ 0.6 under
realistic performance constraints).

Although there are some differences between the more tightly bounded environment of a
SMP system and larger scale, more loosely structured distributed systems, this early work

7If the reader prefers Chinese martial arts, then he should consider the example of Choy Li Fut, where the
student is trained to consider all objects in the local environment as weapons in the fight against his opponent.
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demonstrated that the use of concurrent and distributed observations of data elements as
an approach to ID justifies exploration.

6 Related Work

The difficulty of detecting an unstable global predicate in a distributed system is known to
be NP-complete [Gar02]. Malicious activity may be so characterized since, on incursion,
the attacker rapidly deploys stealth techniques, including the subversion of ID mechanisms
[Szo05, HBOS, Skl07, NWO06], which conceal signs of its presence. For example, an email
may be intercepted and malformed so as to inject malicious software onto a system and —
as a first act of such software — the email will be restored to its original state®.

Considerable research has gone into the observation of both stable and unstable global
predicates on distributed systems, primarily motivated by software engineering require-
ments such as debugging [VD95] [MGO1]. This research has led to the identification of
various categories of observable predicates. It has established sophisticated and subtle
means of identifying temporal, or causal, relations amongst them. This work has been
accompanied by the creation of suitable algorithms, which are implemented from within
the observed computation [MG95] [CKO05] [Ksh96].

We distinguish our approach to observing a distributed environment by proposing a set
of independent observers (processes) distinct from the observed system (Section 3) to
take measurements of key parts of that system. Using well-known algorithms [HS97]
[SCO02] [Gar02] to determine the state of these observations and, from there — based on
our knowledge of the system — to make inferences about the global state of the system.

Intrusion detection systems may be classified as host-based or network-based [FHLO7].
They may use signature-based identification or heuristics [LPR0O7]. They may depend on
statistical analysis for anomaly detection [KGO03], or specify acceptable system behaviors,
thus identifying unwanted behaviors [KoOO]. There has been an emphasis on switching
analysis from examining usage anomalies to process anomaly detection - see [HFS98] for
an early example. Our work carries similarities to this approach, but we distinguish it by
focusing on the computational outcomes of processes rather than their operation and thus
we abstract away from architectural considerations.

We also focus on the identification of causality between independent processes. Although
previous work in this area appears to make implicit assumptions [KMLCO05] which we do
not believe are justified. The timestamps of events or its order are generally assumed to be
correct, whereas we recognize that, even on small-scale networks and distributed systems,
there are issues with understanding the timing and sequence of events and that too much
may be made of the reliability of timestamps [GC06]. We use logical orderings of events
to address these issues in line with recognized distributed computing paradigms [Gar(02].

Moreover, much ID research focuses on attacks which are large-scale manifestations of
malicious activity such as worm infections [KMLCO05], rather than low-level covert infor-

8private communication
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mation gathering — which over the lifetime of a system may be ultimately more damaging
[LPKSO05] [Emi06]. We believe our approach is uniquely suited to uncovering evidence of
the latter, since even momentary misbehaviors in systems may become significant where
“invariant” characteristics are violated and it is possible at a higher level of abstraction to
link these breaches into a semantically meaningful pattern which may be used for attack
identification, or forensics analysis and subsequent development of countermeasures.

7 Conclusion and Future Work

We have shown that by employing a multi-pronged observation mechanism and employing
well-known algorithms from distributed computing, we may from a knowledge of the ex-
pected and observed states of key data elements, make inferences concerning the presence
or absence of malicious software. Although the observation is inherently partial and the
inferences may be considered probabilistic and approximate, the multiplicity of the ob-
servers underpins the validity of our approach. This last aspect also makes the mechanism
difficult of subversion. The approach modeled also has the potential to detect direct attack
upon it through self observation.

We consider the probabilistic nature of our mechanism (see Section 4.8) to be a deterrent
since, while we assume the attacker has knowledge of our mechanism, such knowledge
does not help him as he is not able to either predict or control the process of observation,
and hence set himself to pass unobserved.

There are limitations on the currently proposed model. We currently require that the ob-
servers exchange a complete set of messages with each other during each round of obser-
vation. Clearly, where a large number of observers exist, or where communication is low
bandwidth this could cause performance issues. This would need to be addressed through
adjusting the synchroniser algorithm. Moreover, similar adjustments would be required to
cope with poor communications (possibly due to malicious action) leading to messages be-
ing dropped. Nor have we formally addressed the observation of mobile processes, where
new processes may be created, processes may terminate and channels similarly be created
or destroyed.

The system would also require some mechanism for distinguishing genuine communica-
tions from spoofed messages. On high performance systems, this could be achieved using
encryption mechanisms, but on low bandwidth or low powered systems this would not be
feasible. Another approach is hinted at in section 4.9 where we show that the multiplicity
of observers employed provides a basis for detecting contradictory messages and logging
these as anomalous. As modern platforms migrate toward increased use of multiple pro-
cessors on a single base, this justifies our approach.

We summarize some early results from a ‘proof of concept’ version in a multiprocessor
system, which we are currently using to simulate some of the problems of working in
parallel and distributed environments, and we intend to extend this work to similar larger-
scale environments in future.
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