Grid Resource Ontologies and Asymmetric
Resource-Correlation™

Mumtaz Siddiqui', Thomas Fahringer!, Jiirgen Hofer!, and Ioan Toma?

I Distributed and Parallel Systems Group (DPS), University of Innsbruck
Technikerstra3e 21a, 6020 Innsbruck, Austria
{mumtaz, tf, juergen} @dps.uibk.ac.at}

2 Digital Enterprise Research Institute (DERI), University of Innsbruck
Technikerstralle 21a, 6020 Innsbruck, Austria
{ioan.toma@deri.org}

Abstract:

Automatic Grid resource discovery and brokerage shields the Grid middleware
complexities from the Grid users and leads towards an invisible but simple and robust
Grid. Realizing this vision requires a machine understandable resource description
and powerful correlation ' mechanism. Semantic technologies like ontologies provide
vocabularies with explicitly defined, unambiguously understandable and automatically
machine-interpretable meanings which make the process of automatic resource broker-
age possible. We propose a fully Ontology-based resource description, discovery and
correlation mechanism. For the resource description model we have replaced the clas-
sical symmetric attribute based resource description model with an extensible asym-
metric resource description model. This model provides foundation to our flexible and
extensible discovery and correlation mechanism.

Keywords: Grid resource brokerage, Grid resource ontology, Grid resource allocation,
matchmaking, asymmetric resource matching.

1 Introduction

With the simultaneous emergence of the Grid computing and increase in the number of
Grid resources, an automatic resource management system gains importance. The au-
tomatic Grid resource management is a challenging task. It has to provide a mecha-
nism in which the Grid resources can be advertised by the resource providers and au-
tomatically discovered and allocated by the resource requester. The discovery and al-
location of resources is performed by Grid middleware components called resource bro-
ker [SFO5, CFK 98, CFFKO1]. Moreover, brokers often also provide negotiation mecha-
nism between resource provider and requester.

*The work described in this paper is partially supported by the Higher Education Commission of Pakistan.
Here ’correlation’ means Grid resource discovery and resource matching.

A Grid resource is a Grid entity that provides capabilities to a consumer. Different re-
sources can provide similar capabilities but with different quality of services. The resource
capabilities are required to be presented in such a way that a consumer can easily discover a
resource or a resource ensemble with needed capabilities. This requires some sophisticated
patterns of resource discovery and negotiation. A powerful discovery mechanism builds
on expressive description mechanisms. This means, it is necessary to explicitly, precisely
and unambiguously describe Grid resources and specify various constraints over resource
descriptions. The description should be automatically interpretable and understandable by
middleware components.

Attribute based resource description, used in most state-of-the-art Grid systems, has sev-
eral short comings. For example, they lack expressiveness, dynamicity and independence
between the resource provider and resource consumer. The mechanism of resource de-
scription is symmetric, i.e. both resource provider and consumer have to agree on a certain
syntax or schema.

We propose an ontology-based resource description, discovery and correlation mechanism.
Correlation is an automatic process of creating associations between resource requests, the
available resources, and their characteristics at a specific point in time. Correlation is re-
lated to resource matching in that matchmaking is a central part of it, however we use it
as a more general concept. An ontology provides vocabularies with explicitly defined and
machine understandable meanings. We propose Grid resource ontologies in the form of
Ontology Web Language (OWL) [SVHFJ '] classes and concepts for describing resources
in such a way that they can be unambiguously interpreted and automatically understood
by the correlation system. Our discovery mechanism is based on a simple but expres-
sive request-response mechanism in which clients express requests based on OWL Query
Language (OWL-QL) [FHHO3].

Resource ontologies are asymmetrically extensible so that resource providers can easily
augment them without loosing the semantic soundness. We do not have to agree on a
certain terminology while extending semantics of generic concepts. For example, a term
Intel defined as a class of Processor in our initial generic ontology of computing resources,
then one can asymmetrically extend the term Intel to Pentium and Pentium to Xeon. A
reasoner then can automatically and unambiguously infer that Xeon is a specialization of
Pentium as well as Intel.

The rest of this paper is organized as follows: In Section 2 we introduce innovations in
ontology languages. In Section 3 we discuss resource ontologies, requesting mechanism
and correlation framework. In Section 4 we demonstrate the effectiveness of our approach.
In Section 5 we review related work and compare it with our approach. In Section 6, we
summarize our proposal and future extensions of Grid resource ontologies and asymmetric
resource correlation.

2 Ontology Languages

A commonly used definition of ontologies is that they are formal explicit specifications
of a shared conceptualization [Gru93]. The level of formality used in prehending these

206

descriptions can be quite variable, ranging from natural language to logical formalisms,
but increased formality and regularity clearly facilitates machine processing. The Web
Ontology Language [SVHFJ] is a formal standard language for representing ontologies in
the Semantic Web. In OWL, an ontology is a set of definitions of classes and properties
and the constraints on the way those classes and properties are employed. OWL has three
variants OWL-Lite, OWL-DL and OWL-full with different levels of expressiveness.

In order to provide a powerful expressiveness and fact stating ability, OWL inherits fea-
tures from RDF [RDF98] and RDF Schema [DRO3] and extends them by providing new
and powerful constructs. OWL can declare classes and organize them in a subsumption
hierarchy, also the classes can be expressed as a logical combination of other classes. Prop-
erties can also be organized in a sub-property hierarchy. OWL provides different kinds of
restrictions on classes and properties which are also considered as specialized concepts or
classes.

In the domain of the Semantic Web, ontologies play an important role in automating pro-
cesses to access information. For this, ontologies provide structured and extensible vo-
cabularies that demonstrate the relationships between different terms allowing intelligent
agents to flexibly and unambiguously interpret their semantics. For example, a computing
resource ontology might include the information that the terms Pentium and Celeron are
kind of Intel Processors, that Intel is not a kind of the AMD or SPARC, and that an Intel
system is one whose processor is Pentium or Celeron. This information allows the term
”Computer with Pentium or Celeron Processor” to be unambiguously interpreted (e.g. by
aresource broker) as a specialization of the term “Intel System”. In the Description Logics,
the fundamental reasoning of concept expression is subsumption [MTTKO2], which checks
whether one concept is a subset (or superset) of an other concept.

OWL-QL is a formal language and protocol for a query-answering dialog between intelli-
gent agents using knowledge represented by the OWL Knowledge Base. It precisely spec-
ifies the semantic relationships among a query, a query answer and the Knowledge Base
used to produce the answer. An OWL-QL query can specify which of the URIs referred
to in the query pattern are to be interpreted as variables. Variables come in three forms:
must-bind, may-bind, and don’t-bind. Answers are required to provide bindings for all the
must-bind variables, may provide bindings for any of the may-bind variables, and are not to
provide bindings for any of the don’t-bind variable. OWL-QL uses the standard notion of
logical entailment: query answers can be seen as logically entailed sentences (OWL facts
and Axioms) of the queried knowledge base.

3 Resource to Request Correlation

The correlation of a resource request to available resources depends on their proper and
accurate description. Different languages, based on different logical formalism, could be
use to write resource descriptions. One can use Description Logics [BCMT03], Logical
Programming and First order Logic, as a logical formalism. Since in our case it is enough
to check class-subclass relations between classes from resource and request descriptions
we have considered a Description Logics based language namely OWL [SVHFJ™]. OWL

207

provides a rich set of modelling primitives which provides enough expressivity for our
requirements. By employing OWL, we attain the following:

e Grid resource management systems make a large step towards compatibility within
the Semantic Web and Grid resources descriptions become web-understandable.

e The resource provider can have maximum freedom to describe resources with differ-
ent levels of complexity and completeness.

e XML-schema datatypes can be exploited for resource description.
e Complex resource matching is possible based on subsumption relationships.

e A more natural conceptual definition of resources based on the restriction over the
resource attributes is possible, and a semantics level of agreement between resource
provider and consumer can be achieved.

e After having a conceptual and flexible resource description, a resource broker can
catagorize the resource ensembles and devise alternative options.

e Most promisingly, clients can express complex requests in a simple-human as well as
machine-understandable format. Also, the system can fulfil more resource requests.
For example, in a system without ontology language, a request for a Unix system
fails if the term Unix is not specified. However, using an ontology this might be
successfull.

e Spelling or typing errors in descriptions and requests are prevented by using a con-
trolled vocabulary.

Another reason of selecting OWL for our solution it is the good tool support for creation
and manipulation of ontologies and the availability of reasoners such as Pellet 2.

3.1 Resource Ontology

We propose a resource correlation mechanism based on physical resource ontologies, logi-
cal resource ensemble ontologies and policy ontologies defined in OWL-DL. GridElement
is a common superclass for each concept as shown in the Figure 1. The physical resource
ontology describes physical resources, whereas logical resource ontologies represent logi-
cal ensembles inferred by the resource broker based on the physical resources ontologies.
For example, specific purpose resource ensembles etc. Resource providers and requester
will use these ontologies to annotate their resources and to described their requests in an
ontological form. Furthermore, the correlation mechanism will use these ontologies in
checking if a resource can correlated with a specific request.

Zhttp://www.mindswap.org/2003/pellet/index.shtml

208

= Inheritance i
i i 18 -
GridElement PolicyElement ——ensi=t=or™ ConsistsOf

hasProfile
hasProseccor

A | — |
— -
LogicalElement PhysicalElement hasArchitecture hasSoftware
c

hasMemor:

| putingEtement | | T
NetworkElement hasSystemSoftware
StorageElement ~ hasFilesystem

hasOperatingSystem

—
GigabitEthernet

—

FastEthernet

=~
H — MacOos
i H OperatingSystem a—‘

| Policy | Architecture | Processor

| OfferedQos | Usage ‘}I | Intelj | AMDj | SPARC ‘j | Linux ‘}l | Solaris‘j

Figure 1: An incomplete class and property (top right) hierarchy of different concepts of the Grid
elements and sub-elements. Solid lines show inheritance whereas dotted lines represents aggregation.

T H

1

| Application H
i

1

Physical Resource Ontology

This provides a rich vocabulary which enables resource providers to describe their re-
source(s) in a more expressive way. In this layer, a basic ontology model for the physical
resources is provided which can be used or inherited to add more domain specific concepts
while describing a resource.

The model: We propose to represent the concepts related to the Grid resources as OWL
classes in a hierarchical way. The resource description is defined as the boolean combina-
tion of a set of constraints over the resource concepts and properties. The constraints can
be expressed either through OWL restrictions or XML schema restrictions. The resources
can be described by using different classes and properties and also by importing domain
specific ontologies. In order to use the ontology model more effectively, a request for a
resource or a set of resources could also be considered as a resource, which is subsummed
in the latest model of the resource ontology available at the time of the request.

The key top-level ontology of the physical resources consists of classes and properties that
describe Network, Storage and Computing elements like Cluster, SubCluster and Node.
These classes includes Profile, Policy, Processor, OperatingSystem, Architecture, Filesys-
tem, Memory, State, etc. A Profile of a resource consists of concepts like resource Info,
State, Jobs and Policy. Each class defines the most general properties of the concept that it
models. In order to achieve this model using OWL, each class is defined to be a subclass of
a set of anonymous classes and each class restricts some of its properties. For example, the
Node class shown in the Figure 1 is defined as subclass of several anonymous classes that
each of which restricts one of the class properties such as hasFileSystem, hasArchitecture,
hasNetworkAdapter, etc.

209

The vocabularies are extensible. A user can extend them asymmetrically without loos-
ing their semantics. For example we can add a new term NetGear as a specialization of
GigabitEthernet which is not compatible with Solaris Operating System.

The new term added independently by a user can be inferred by a reasoner that it is-a
NetworkAdaptor. Also integrity of requests can be verified by the reasoner by using request
satisfiability check. For example if someone requests that:

"I need a Computing resource with Solaris 0S
and with NetGear Ethernet adapter".

The reasoner can easily identify that this request cannot be fulfilled since NetGear is in-
compatible with the Solaris OS.

Resource Ensemble Ontology

It deals with the conceptual grouping of Grid resources. Based on the concepts and restric-
tions given under the physical resource ontology, a broker bequeathes different resource
ensembles. The resources in a resource ensemble share some common features, or provide
collectively a new and complex capability.

A resource ensemble ontology may also group resources to ensembles in which enclosed
nodes collectively achieve a certain minimum number of Mflops as part of the ensemble. In
this way a resource ensemble provides a required number of MFlops which is otherwise not
possible by an individual node. This kind of resource ontology enables a resource broker
to accept requests in a form more generic and closer to the natural language. Also, a cache
of logical concepts available to other distributed discovery services can be maintained as a
logical resource ensemble entity referring to the other discovery services. Figure 4 shows
a sample resource ensemble ontology.

Policy Ontologies

include vocabularies for the description of different conventions and agreements on re-
source usage, user’s requirements, community authorization etc. For example, we can
describe that a specific SMP-node will only execute MPI application. A resource provider
and/or a middleware authorization service can specify which community users or groups
can (or cannot) access specific resources. Also a resource provider and user can specify
offered and required quality of service, respectively.

3.2 Querying on the Grid

We propose OWL-QL querying mechanism for requesting Grid resources. OWL-QL can
be used to describe a resource request in a simple and very expressive format by using a
collection of OWL facts and axioms. An OWL-QL query includes a query pattern that is a
collection of OWL sentences, a list of must-bind, may-bind and don’t-bind variables. These

210

kinds of variable bindings distinguish OWL-QL from other query languages and help in
accessing alternative or close matches. Also, a query optionally includes a query premise,
an answer pattern and a reference to Answer Knowledge Base (AKB). For example a client
can request for nodes providing the following query pattern:

Query: ("Which node has 64bit Solaris operating system?")
Query Pattern: {(hasOperatingSystem ?node ?o0s)
(type ?o0s Solaris)
(forArchitecture ?os 64bit)}
Must-Bind Variables List: (?node)
May-bind Varables List : ()
Don’t-bind Variable List: ()
Answer Pattern: {(?node)}
Answer: ("mulle.dps.uibk.ac.at" "quirl.dps.uibk.ac.at")
Answer pattern instance: {("mulle.dps..." ...)}

OWL-QL is designed for answering queries of the form ”"What URIrefs and literals from
the AKB and OWL denote objects that make the query pattern true?” [FHHO3]. A query
premise can be added as shown in the example below:

Query: "if Node mulle.dps.uibk.ac.at has Solaris
operating system and DpsNFS filesystem is
mounted on it then what is the available
Disk space on DpsNFS?"

Premise: {(type mulle.dps.uibk.ac.at Node)
(hasFileSystem mulle.dps.uibk.ac.at DpsNFS)}
Query pattern: {(available DpsNFS ?size)}

Must-bind Variable List: (?size)

Answer: (mulle.dps.uibk.ac.at has 32GB available disk on
DpsNFS filesystem)

In OWL-QL queries URLs of answering servers and references to answer knowledge bases
can be specified. We propose to exploit this in making a distributed resource correlation
framework. For example we can install resource ontology and usage policy KB, on different
nodes and a requester can specify them dynamically while making a request.

The use of human readable surface syntax for queries and answers are very useful in a
Semantic Grid context. It would be possible to devise a translation mechanism in which a
simple request in the form of a formal natural language syntax could be translated into an
OWL-QL query pattern. For instance in the first example the modal verbs can be replaced
with a must-bind variable (which node with ?node), objects with OWL classes, etc.

3.3 Correlation Mechanism

Resource correlation is based on the subsumption mechanism of concepts and roles repre-
sented by the Description Logics formalisms. Description Logics techniques are employed
to classify the Grid resource descriptions. Resource descriptions are maintained in a hi-
erarchy of concepts or classes. Classes are linked through roles established by using the
restrictions on classes and properties. Each resource description is embedded in the hierar-
chy persistently once it is satisfied. A request for the resource(s) could also be made similar
to the resource description and subsummed in the taxonomy.

211

(Client / Grid Resource Broker)

Collector

Reasoner

%
2
)
S
[
=
o

(Grid Resources / GIS)

Figure 2: The Correlation Framework.

This mechanism enables the Grid resource broker to calculate an exact or a close match.
Based on the subsumption of the request in the resource taxonomy, the broker service can
easily suggest or offer the requester some other possible options that can be exercised if an
exact match can not be found. This kind of offering is not possible without an ontological
model. The resource subsumption in the taxonomy and request correlation is performed by
considering the matching concepts based on the following propositions:

e Request T Resource| Request = Resource: This shows that a request concept is
a sub concept or an equivalent concept of the resource classes, which means an exact
and preferable match satisfying all necessary and sufficient conditions.

e Request J Resource: Represents request as a super concept of the resource. Re-
sources belonging to the super-concept do not fully fulfil all constraints set by the
request, but are considered as the best closest match and used as an alternative.

e —(Request M Resource C L): Intersection of both resource and request concepts
is satisfiable and considered as a least suitable option as an alternative.

e (Request M Resource C L): This means that no match is found.

These concept matching propositions clearly organize the relationships in a well defined
discrete scale. This provides a solid ground for a Description Logics reasoner to be used for
the classification of Request to compute its subsumption relationship against all registered
resources.

3.4 Framework

The resource correlation mechanism is part of the discovery service of the Askalon’s Grid
resource management system [Fah]. It consists of a Correlator, a resource information
collector, a reasoner and ontology model or knowledge base(s). The architecture is shown
in the Figure 2.

Collector or Observer: This component interacts directly with the physical resources and
Grid Information Services like MDS [CFFKO01], collects resource data, optionally performs
translation and updates the resource ontology. Before including a resource description in
the underlying knowledge base, the satisfaction of all concepts is checked, realization of
a non satisfiable resource is not possible. When the resource description is accepted it
becomes a set of new concepts within the subsumption tree. A concept within the tree

212

under an ontology resource model like Node represents the whole resource advertisement.
The collector component can collect resource description directly from the resource or it
can collect aggregated resource descriptions from a Grid information service.

Reasoner: Different Description Logics reasoners such as RACER [VRO1] are available
which perform validation of concepts, check integrity of ontologies, classify the taxonomy,
check entailment and answer OWL-QL queries. Some open-source OWL DL reasoners
can be used in conjunction with OWL API libraries and other ontology frameworks for
building semantic applications.

Correlator: The Correlator is the heart of the resource correlation framework. It accepts re-
quests from the client and optionally transforms into the required format by using resource
ontology model. It checks satisfiability of the concepts in the request and subsumption of
the request in the resource ontology. Based on the subsumption created by the reasoner, the
Correlator performs resource matching using propositions as described in Section 3.3.

4 Examples

In this section we demonstrate the effectiveness of the proposed resource ontology and
correlation mechanism for the Grid resources. We have created a subset of Grid Resource
Ontology by using Protege Ontology Editor with OWL plugin®. We have used OWQL
Server* to query for resources, and RACER reasoner” to see the classification of a resource
request in the Grid resource KB. The subsumption of resource requests in the model proves
propositions given in Section 3.3 and matches with OWL-QL query result. The follow-
ing example contains a query to search for nodes with Solaris operating system and with
network file system called as ZidNFS.

Query: ("Which node has Solaris OperatingSystem with
ZidNFS FileSystem?")
Query Pattern: {(hasOperatingSystem ?node ?o0s)

(type ?o0s Solaris)
(hasFileSystem ?node ZidNFS) }

Must-Bind Variables List: (?node)
May-bind Varables List : (?08)
Don’t-bind Variable List: ()
Answer Pattern: {(?node)}

Answer: ("Node4, Node5, Nodel")

This query is performed at the time when the resource ontology model as shown in the Fig-
ure 3 with solid lines was available. The may-bind ?os variable indicates that the answering
agent or server can return not only the exact match but close matches as well. As a result
node4, node5 and Nodel are returned. The sequence indicates that the Node4 could be an
exact match whereas Nodel could be a close match or an alternative option.

The example ontology shown in the Figure 3 explains how the resource correlation is
achieved. At the time of request we have a subtree of the main subsumption tree in the

3http://protege.stanford.edu/plugins/owl/
“http://onto.stanford.edu:8080/owql/FrontEnd/
Shttp://www.sts.tu-harburg.de/ r.f.moeller/racer/

213

SubCluster

UibkCluster

................ PR SRR
” v hasOS Linux

V hasArch ISA32
hasMemory RAM256|

Hd hasFS DpsNFS

N\ I'IV hasOS Solari3

'! ¢ hasFS ZidNFS
— == -

request !

s

/% ¥ hasArchISA
, .V hasOS Solari
. 9 hasFS DpsN]

4 hasES ZidNHS
v hasOS Solari
H hasFS DpsNFS [Node4

P goy
V hasProfile ZidProfile
V hasMemory RAMS512
H hasFilesystem ZidNFS

Figure 3: Subsumption of a Request in the existing resource taxonomy.

system with seven Grid resources. Resources are shown in a hierarchy in which resource
description in each lower layer is a specialization of the resource concept given in the upper

layers. We added the request to the KB as follows:

<owl:Class rdf:ID="Query">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Solaris"/>
<owl:onProperty>
<owl:0bjectProperty
rdf :about="#hasOperatingSystem" />
</owl:onProperty>
</owl:Restriction>
<owl:Restriction>
<owl:someValuesFrom rdf:resource="#ZidNFS"/>
<owl:onProperty>

<owl:0bjectProperty
rdf:about="#hasFileSystem"/>

</owl:onProperty>

</owl:Restriction>
<owl:Class rdf:about="#Node"/>

</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>

The request is then classified in the subsumption tree by the RACER reasoner. This request
is shown in the subsumption tree as Request surrounded by the dotted rectangle and its
relation with other nodes as dotted lines. It is shown that nodes Node4 and Node5 are
specialized concepts of the Request and as such are marked as exact matches. There is

no equivalent concept. If we look for the super concepts of the Request up to the root,

214

GrldEle@L..\ PhysicalElement
LogicalElement T——ResourceEnsemble

TightlyCoupledEnsemble UnixEnsemble ~ . hasNode
~ Node
LinuxEnsemble SolarisEnsemble
hasLinuxNode '

1
LinuxNode - - 1asOperatingSystem

Top nodel
\1, hasNod< \

linuxEnsembl node6 similarWith

hasLinuxNode
nodel ane6

hasOperatingSystem hasOperatingSystem

linux

Figure 4: ResourceEnsemble class hierarchy (above) and graph of the instances relationships (be-
low).

then sub clusters DpsCluster and DpsNode would be marked as a match. By employing
the third proposition as specified in Section 3.3, node Nodel is found compatible with the
request. All other nodes are declared inconsistent as the restrictions over the properties are
not consistent.

Resource ensemble ontologies can provide provisioning of aggregated power of available
resources. For example, a resource ensemble with aggregated compute power of processors
of a set of nodes.

The following request returns a Linux Resource Ensemble with Linux Nodes as given in the
ontology of LinuxEnsemble in Figure 4.

Query: ("What resource ensamble consists of Linux Nodes?")
Query Pattern: {(consistsOf ?ensemble ?node)
(type ?node Node)
(hasOperatingSystem ?node Zos)
(type ?o0s Linux)}
Must-Bind Variables List: (?ensemble, ?node)
May-bind Varables List : ()
Don’t-bind Variable List: ()
Answer Pattern: {(?ensemble with nodes ?node)}
Answer: ("linuxResourceEnsemble with nodes Nodel, Node6")

We can demonstrate that a request for a node with Windows OS and with SPARC architec-
ture cannot be fulfilled as both Windows OS and SPARC are described as incompatible in
the underlying resource ontology.

Query: ("Which node has Windows OS and SPARC architecture?")
Query Pattern: {(hasOperatingSystem ?node Windows)
(hasPlatform ?node SPARC)
Must-Bind Variables List: (?node)
May-bind Varables List : ()
Don’t-bind Variable List: ()
Answer: ("Incompatible")

215

In another example we can show how a requester can set preferences for the response by
specifying different variable bindings.

Query: ("Which resource ensemble has at least 8 processors
with 64bit architecture and Intel platform?")
Query Pattern: {(consistsOf ?ensemble ?node)

(type ?nodes Node)

(hasProcessor ?node ?processor)

(type ?processor Processor)

(hasArchitecture ?processor ?arch)

(hasPlatform ?processor ?platform)

(type ?arch ISA64) (type ?platform Intel)}
Must-Bind Variables List: (?node, ?platform)

May-bind Varables List : (?arch)
Don’t-bind Variable List: (?processor, ?Zensemble)
Answer: ("... ...")

This query example describes that the answering agent should return names of nodes in an
ensemble. The ensemble should have processors with Intel platform and preferably with
64bit architecture. The Grid resource ontology terms and concepts used in the examples
are extensible as shown in Figure 1. No coordination between resource requesters and
providers is required for this purpose.

5 Related Work

The most prominent information systems approaches in the Grid and Web communities are
the Meta-computing Directory Service (MDS) [CFFKO1] and UDDI [OAS]. They support
a simple query language for the resource and service selection but lack expressive descrip-
tion capabilities. Thereby, there is no sophisticated resource correlation mechanism avail-
able. In the traditional Grid resource management systems, different symmetric, attributed-
based resource matching mechanisms are used. These mechanisms provide expressiveness
to some extent but the drawback is that they still require symmetric attribute-based descrip-
tions and constraint mechanisms.

The Condor [Tea] system is one example in which a symmetric attribute based match-
making is performed for the resource allocation in a distributed Grid infrastructure. For
this purpose a classified advertisement-like matchmaking framework is developed. In this
framework, resources and requests are described in the form of attribute name-value pairs
and resource consumers and providers specify their matching constraints. These constraints
are then evaluated to determine a match for each request with available resources. This
matchmaking works only if both request and resource use the same attribute names and
agree upon attribute values. A Request ClassAd example is shown below:

Request JobClassAd:
[Type = "Job"; Owner="mumtaz"; Constraint = type == "Machine" &&
Arch == "Intel" && Disk >= 20000; OpSys == "Linux260";]

This example shows a request for a machine with Infel architecture, Linux operating system
and at least 20GB disk space. Resource ClassAds are described in the same way by using

216

Pentium
Celeron

Figure 5: Class hierarchy of Processor.

the same syntax. The constraint clause of request classAd is matched with the constraint
clauses of resource classAds to find the match. The disadvantage of this system is that
both the resource provider and the requester have to agree on the same syntax and they
cannot extend the terms or concepts without coordination with each other. This kind of
asymmetric extension of concepts is possible in our proposed system. For example, as
shown in Figure 5, the term Intel can be extended to Pentium and Xeon without coordination
between parties, and the correlation system automatically understands the semantics of the
new terms.

The work described in this paper [TDKO03] is the first effort for ontology-based Grid re-
source matching devised based on semantic web technology. In this paper an asymmetric
description of resources and requests are modelled and described separately. Instead of a
syntax-based resource matching, a semantics based matchmaking is proposed. Due to the
asymmetric description, no coordination between resource providers and consumers is re-
quired before a new description vocabulary is added. A simple example for Job Request is
given below:

JobRequest .Name "requestl"

JobRequest .Owner "mumtaz"

JobRequest.JobType "MPI"

JobRequest .RequestResource.ResourceType "ComputerSystem"

JobRequest .RequestResource.Required0S.0SType "Unix"

Based on domain background knowledge and rules specified in TRIPLE [FHHT02], the
matchmaker concludes that Linux and SunOS can be used as a Unix operating system,
and the requested MPI job can run on any tightly-coupled machine like Linux cluster or
a shared memory system. The system is based on RDF-Schema for ontology description.
Domain background knowledge and matching rules described in the TRIPLE rule language
are explicitly required to perform resource matching. TRIPLE rules are first compiled into
XSB rules, which are then further compiled into instructions for XSB virtual machine.
TRIPLE/XSB evaluates rules and finds the best match for the request with the help of
background knowledge and ontologies. The disadvantage of this system is the overhead
of explicit rules definition when the semantics vocabulary increases. Also the recursive
rules and two phase compilation is time consuming. The underlying ontology language of
this system i.e. RDFS, supports a smaller set of semantics vocabulary as compared to the
OWL which is the language of our proposed system. An extension to the standard RDFS
is possible but it leads to the requirement of a non-standard specialized reasoner and query
constructs. Our proposed system has no such non-standard requirements.

217

6 Conclusion

In this paper we have proposed an ontology-based resource description, discovery and cor-
relation mechanism which is required for an automatic brokerage service of the Grid re-
source management system. We described the prowess of OWL and showed that it is a
powerful language that quite well suits our needs. We have also demonstrated that OWL-
QL can be used as the request response mechanism to discover exact or close matches. The
proposed correlation mechanism can be used to describe resources asymmetrically. We
demonstrated the effectiveness and highlighted the advantages of the proposed system by
providing several examples.

We plan to integrate this correlation mechanism in our previous work about Grid resource
management and brokerage (GridARM) [SF05]. This will make the process more so-
phisticated and will allow the broker to perform resource allocation by semantically in-
teracting with other middleware services. Furthermore, we plan to extend ontologies to
cover logical Grid resources and integrate correlation framework in our work about on-
demand provision of software components and services, that is GLARE [SVHFO05] and
Otho toolkit [HVSFO05].

The resource ontology that we proposed will be further refined and developed in the future.
Based on real resource matching scenarios tested in Grid environments we will decide if
the expressivity of OWL [SVHFJ*], the language we currently use, is sufficient for our
needs. A possible future candidate for the ontology language that we will consider is
WSML [FB02, dBLK*05]. WSML is a family of language representations for ontologies
and services which address the shortcomings of OWL [dBPLFO05]. A thorough analysis of
WSML will reveal whether it fits our particular needs compared to OWL.

References

[BCMT03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook. Cambridge University
Press, 2003.

[CFFKO1] K. Czajkowski, S. Fitzgerald, 1. Foster, and C. Kesselman. Grid Information Services
for Distributed Resource Sharing. In Tenth IEEE International Symposium on High-
Performance Distributed Computing(HPDC-10). IEEE Press, 2001.

[CFK198] Karl Czajkowski, Ian Foster, Nick Karonis, Stuart Martin, Warren Smith, and Steven
Tuecke. A Resource Management Architecture for Metacomputing Systems. In Dror G.
Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Parallel Processing,
pages 62—82. Springer Verlag, 1998. Lect. Notes Comput. Sci. vol. 1459.

[dBLK™05] Jos de Bruijn, Holger Lausen, Reto Krummenacher, Axel Polleres, Livia Predoiu,
Michael Kifer, and Dieter Fensel. The WSML Family of Representation Languages.
Working draft, Digital Enterprise Research Insitute (DERI), March 2005. Available
from http://www.wsmo.org/TR/d16/d16.1/v0.2/.

[dBPLFO5] Jos de Bruijn, Axel Polleres, Rubén Lara, and Dieter Fensel. OWL-. Work-
ing draft, Digital Enterprise Research Insitute (DERI), May 2005. Available from
http://www.wsmo.org/2004/d20/d20.1/v0.2/.

218

[DRO3]

[Fah]

[FB02]

[FHHT02]

[FHHO3]

[Gru93]

[HVSFO5]

[MTTKO2]

[OAS]
[RDF98]

[SFO5]

[SVHFO5]

[SVHFI]

[TDKO3]

[Tea]
[VRO1]

Brickley D. and Guha R.V. RDF vocabulary description language 1.0. W3C Proposed
Recommendation. Available from http://www.w3.org/TR/rdf-schema/.,
December 2003.

Thomas. Fahringer. ASKALON - A Programming Environment and Tool Set for Clus-
ter and Grid Computing. Available from http://dps.uibk.ac.at/askalon,
Institute for Computer Science, University of Innsbruck.

Dieter Fensel and Christoph Bussler. The Web Service Modeling Framework WSMF.
Electronic Commerce Research and Applications, 1(2):113-137, 2002.

Richard Fikes, Patrick Hayes, Ian Horrocks, Stefan Decker, and Michael Sintek. Triple
- a query, inference, and transformation language for the semantic web. In /3th Int.
Semantic Web Conf. (ISWC 2002), number 3342, 2002.

Richard Fikes, Pat Hayes, and Ian Horrocks. OWL-QL- A Language for Deductive
Query Answering on the Semantic Web. Technical report ksl 03-14, stanford university,
stanford, ca., 2003.

T. R. Gruber. A translation approach to portable ontology specifications. Knowledge
Agquisition, 1993, pages 199-220, 5:199-220, 1993.

Juergen Hofer, Alex Villazon, Mumtaz Siddiqui, and Thomas Fahringer. The Otho
Toolkit: Generating Tailor-made Scientific Grid Application Wrappers. In Proceed-
ings of 2nd International Conference on Grid Service Engineering and Management
(GSEM’05), Erfurt, Germany, September 19-22 2005.

Paolucci M., Kawamura T., Payne T., and Sycara K. Semantic matching of web services
capabilities. In /st International Semantic Web Conference (ISWC 2002), pages 333—
347. Springer, 2002.

OASIS. UDDI: The Universal Description, Discovery and Integration. Avaibalbe from
http://www.uddi.org/about.html.

Resource Description Framework. http://www.w3.0org/TR/WD-rdf-syntax,
1998.

Mumtaz Siddiqui and Thomas Fahringer. Grid ARM: Askalon’s Grid Resource Manage-
ment System. In European Grid Conference (EGC 2005), Lecture Notes in Computer
Science. Springer Verlag, February 2005.

Mumtaz Siddiqui, Alex Villazon, Juergen Hofer, and Thomas Fahringer. GLARE: A
Grid Activity Registration, deployment and provisioning framework. In Proceedings of
the International Conference for High Performance Computing, Networking and Stor-
age (Supercomputing 2005), Washington, USA, November 12-18 2005.

Bechhofer S., van Harmelen F., Hendler J., Horrocks I., McGuinness D.L., Patel-
Schneider PF., and Stein L.A. OWL web ontology language 1.0 reference, W3C Pro-
posed Recommendation. Available from http://www.w3.0org/TR/owl-ref/.

H. Tangmunarunkit, S. Decker, and C. Kesselman. Ontology-based Resource Matching
in the Grid—The Grid meets the Semantic Web. In Second International Semantic Web
Conference, Sanibel-Captiva Islands, Florida. October 2003.

The Condor Team. http://www.cs.wisc.edu/condor/.

Haarslev V. and Moller R. RACER system description. In Int. Joint Conf. on Auto-
mated Reasoning (IJCAROI), volume 2083, pages 701-705. Lecture Notes in Artificial
Intelligence, 2001.

219

