
New Perspectives on Working, 
Learning, and Collaborating 

and 
Computational Artifacts in Their Support 

Gerhard Fischer 

Center for Life-Long Learning and Design (L^D) 

Department of Computer Science and Institute of Cognitive Science 

University of Colorado at Boulder 

Abstract 

Human-computer interaction has refocused many research efforts within computer science from a 
technology-centered view to a user-centered view. Work-centered design transcends user-centered 
design by acknowledging that not only are most people novice or generic users of computer 
systems, but skilled workers in specific domains, as well. These efforts need to be augmented by a 
learner- and collaboration-centered design perspective that emphasizes the dynamic and collaborative, 
rather than the static and individualistic, nature of human knowledge and work. 

The current research efforts of reinventing and reengineering computational environments support 
the integration of working, learning, and collaboration. New conceptual frameworks and 
computational environments are also needed that will serve as "objects-to-think-with" to 
demonstrate, communicate, and open up for critiquing the emerging new understanding. In this 
paper, I explore how new perspectives transcend the dominant current understanding and discuss 
attempts to turn these perspectives into reality. 

1 Introduction 
Wisdom is not a product of schooling but the 

life-long attempt to acquire it. (A. Einstein) 

Learning is a new form of labor [34] and working is often (and needs to be) a 
collaborative effort among colleagues and peers. In the emerging knowledge society 
[4], an educated person will be someone who is willing to consider learning as a 
lifelong process. More and more knowledge, especially advanced knowledge, is 
acquired well past the age of formal schooling, and in many situations through 
educational processes that do not center on the traditional school. Seen in this 



22 G. Fischer 

context, working, learning, and collaboration become intimately intertwined rather 
than being three different and distinct activities. 

In our research in human-computer interaction (HCl) over the last fifteen years, we 
have created conceptual frameworks and innovative systems and have conducted 
assessment studies to address problems of working, learning, and collaboration with 
computational artifacts. The content domains of our work are design activities in 
which design is understood very broadly as the process of determining how things 
ought to be. Design can be seen as a fundamental activity within all professions [29]. 
Civil engineers design bridges, lawyers design strategies for cases, politicians design 
policies, educators design curricula and lessons, and software engineers design 
software. Design is a collaborative, argumentative process without optimal solutions 
but with trade-offs. It is impossible for design processes to account for every aspect 
that might affect the designed artifact. Therefore design must be treated as an 
evolutionary process in which all stakeholders continue to learn new information and 
insights as the process unfolds. 

The intertwining among learning, working, and collaboration becomes obvious in 
design, particularly in high-technology fields. Designers are constantly working, 
learning, and collaborating, which results from a growing recognition that in the 
information age, change is unavoidable and obsolescence is guaranteed. Learning 
can no longer be considered a process that occurs only in schools. We need to 
rethink, reinvent, and reengineer companies, universities, schools, and the 
relationship among them by exploring new relationships among learning, working, 
and collaboration. 

This article argues for three major issues: 

1.) Working, learning, and collaborating need to be integrated, which requires us 
to move beyond the current boundaries of HCl research perspectives and 
developments. 

2.) Representations are needed that support mutual understanding and allow 
design stakeholders to work, learn, and collaborate. The design of modern 
computational environments is characterized by a "symmetry of ignorance" of 
these stakeholders. None of those involved (e.g., software designer(s), 
domain designer(s), client(s), customer(s)) as individuals or as one group 
will have the knowledge necessary for the development of a computational 
environment. 

3.) HCl needs to be viewed as a design science. The HCl community should not 
be content with reflecting on and evaluating designs developed by other 
communities, but should itself invent and develop new conceptual 



New Perspectives on Working, Learning, and Collaborating ... 23 

frameworks and computational artifacts. To demonstrate our own adherence 
to this goal, short examples of our system-building efforts are included. 

2 Beyond Human-Computer Interaction 

In this section, I will briefly summarize some of the major shortcomings of current 
HCl research and development efforts with respect to the goal of intertwining 
working, learning, and collaborating (a detailed discussion of these arguments can be 
found in [9]). 

2.1 Human-Computer Interaction Is More than User Interfaces 
Applying the Macintosh style to poorly designed applications and 

machines is like trying to put Bearnaise sauce on a hotdog! (A. Kay) 

Human-computer interaction is more than "screen-deep." The interface is 
important—but if we change only interfaces and not the systems behind them we will 
only be able to scratch the surface. We should strive for "interfaceless systems" in 
which nothing stands between users and their tasks (and in which system objects 
become "ready-at-hand" in a Heideggerian sense). Human-computer interaction 
should be concerned with tasks, with shared understanding, with explanations, 
justifications, and argumentation about actions, and not just with interfaces. 
Although the usual concerns of interface designers (creating more legible types, 
designing better scroll bars, developing models of keystroke use) are all important, 
they are secondary considerations. The essential challenges lie in improving the ways 
people can use computers to work, think, communicate, learn, critique, explain, 
argue, debate, observe, decide, calculate, simulate, and design. In the future, the 
emphasis has to be on humans and their tasks—not on computers, interfaces, and 
tools. 

2.2 Make Systems Useful and Usable 
If ease of use was the only valid criterion, people would 

stick to tricycles and never try bicycles. (Engelbart) 

Useful computers that are not usable are of little help; but so are usable computers 
that are not useful [7]. One of the major goals of human-computer interaction 
research must be to achieve these two goals—usefulness and usability— 
simultaneously. The "versus" relationship between useful and usable can be turned 



24 G. Fischer 

into an "and" relationship (1) by using familiar representations (based on previous 
knowledge and analogous situations), (2) by exploiting the strengths of human 
information processing, (3) by integrating knowledge in the head with knowledge in 
the world, and (4) by designing "better" systems that take advantage of the unique 
possibilities of computational media (specifically by focusing on "on demand" 
notions, such as learning on demand, using on demand, and detail on demand). 

High-functionality computer systems (such as Unix, Word, Canvas, and 
Mathematica) illustrate the tension between usefulness and usablity by creating a 
"tool-mastery" burden that can outweigh the advantage of the broad functionality 
offered. Many approaches that have represented major advances in human-computer 
interaction, such as direct manipulation [18] (bridging the interface gulf by 
representing the world of the computer as a collection of objects that are directly 
analogous to objects in the real world), lose some of their power in high-
functionality systems in which the complex and abundant functionality can neither be 
represented explicitly on the screen nor be explored by browsing mechanisms. 

2.3 A Broader View of Communication and Collaboration Processes 

Intellectual teamwork [16] is an increasingly important part of knowledge workers' 
activities and innovative computational environments are needed that help 
communities of practice [19] to perform better. Communication and coordination 
processes provide a focus for a number of research efforts. A communication and 
coordination perspective illustrates the requirement to include support for 
communication with: 

• ourselves (e.g., capturing our thoughts of the past, allowing us to create 
personalized information environments that extend the knowledge we can 
keep in our head [1,21]), 

• our tools (e.g., knowing which tools exist, how they can be used, and how 
they can be tailored to our specific needs), 

• domain knowledge (e.g., knowing the major concepts and strategies of a 
particular domain), 

• our colleagues (e.g., supporting short-term as well as long-term, indirect 
collaboration [10]), 

• other humans (e.g., supporting interdisciplinary computer-supported 
cooperative work), and 

• our agents and critics (e.g., in the context of cooperative and distributed 
problem-solving systems). 



New Perspectives on Working, Learning, and Collaborating ... 25 

2.4 Support Human Problem-Domain Interaction 
Interfaces get into the way. I don't want to focus my energies 

on an interface. I want to focus on the job. (D. Norman) 

To bring tasks to the forefront, computers must become "invisible" [32,33]. If the 
most important role for computation in the future is to provide people with a 
powerful medium for expression, then the medium should support them in working 
on the task rather than require them to focus their intellectual resources on the 
medium itself. To achieve this goal, human-computer interaction needs to advance to 
human problem-domain interaction [11], requiring that the major abstractions of a 
given domain are modeled in the computer. This will enable users to describe things 
briefly because the systems allow them to interact with domain-oriented concepts. To 
achieve human problem-domain interaction, we have to sacrifice generality for the 
power of specialized interactions. The domain-oriented design of artifacts supports 
the grounding of interaction, creates representations for mutual understanding, and 
allows referential anchoring for working, learning, and collaborating. 

Human problem-domain interaction puts owners in charge by allowing them to 
communicate with the systems at a level that is situated within their own world [30]. 
By supporting representations for mutual understanding [5], such as prototypes, 
mock-ups, scenarios, images, or visions of the future, human problem-domain 
interaction makes it easier for owners of problems to participate in the design process 
because the representations of the evolving artifacts are less abstract and less 
alienated from practical-use situations. By keeping owners in the loop, human 
problem-domain interaction supports the integration of problem framing and problem 
solving [25,26] and allows the ongoing evolution of computational environments. 
By making information relevant to the task at hand [14], systems are able to deliver 
relevant knowledge, in the context of a problem or a service, at appropriate moments 
for consideration by human professionals. 

3 Working, Learning, and Collaborating 

3.1 Integration of Working and Learning 

Learning is part of living, a natural consequence of being alive and in touch with the 
world, and not a process separate from the rest of life. What learners need, therefore, 
is not only instruction but access to the world (in order to connect the knowledge in 
their head with the knowledge in the world [21]) and a chance to play a meaningful 
part in it. Education should be a distributed lifelong process by which one learns 



26 G. Fischer 

material as one needs it. School learning and workplace learning [27] need to be 
integrated. We refer to workplace learning not as it is currently practiced (i.e., 
companies imitating school learning by sending their employees to decontextualized 
classrooms), but as it could be or should be. Examples include apprenticeship-style 
relationships, such as internships for doctors and Ph.D. students. In such learning 
situations, problems are not given, but need to be framed. Collaboration is critical 
and learning is firmly integrated with working. Figure 1 compares school and 
workplace learning along a number of dimensions. 

EMPHASIS ON: 

POTENTIAL 
DRAWBACKS: 

PROBLEMS ARE: 

1 NEW TOPICS: 

1 STRUCTURE: 

1 ROLES: 

1 TEACHERS/ 
TRAINERS: 

1 MODE: 

Schools 

"basic" skills 

decontextualized, not situated 

given 

defined by curricula 

pedagogic or "logical" 
structure 

expert-novice model 

expound subject matter 

instructionism 
(knowledge absorption) 

Workplace 

education embedded in 
ongoing work activities 

important concepts are not 
encountered 

constructed 

arise accidentally from work 
situations 

work activity 

reciprocal learning 

engage in work practice 

constructionism 
(knowledge construction) 

Figure 1: A comparison of school and workplace learning 

3.2 Motivation 

One of the benefits of integrating working and learning is the potential increase in 
motivation. Motivation to learn new things is critically influenced by optimal flow, a 
continual feeling of challenge, direct engagement, the right tools for the job, and a 
focus on the task [3]. Users are willing and motivated to learn when the following 
conditions hold: (1) they actively desire and control learning, (2) they are successful 
in finding and using new information, (3) they can see the immediate benefit of 
learning something new to their current working situation, and (4) their 



New Perspectives on Working, Learning, and Collaborating ... 27 

environments are intrinsically motivating and allow them to achieve interesting 
results with a reasonably small effort. 

3.3 Collaboration 

Many collaboration technologies (e.g., most CSCW systems) employ the computer 
as a medium with few interpretable components. Future computational environments 
need to integrate humans and computational resources more creatively. 
Computational environments that can interpret objects, actions, and artifacts (not 
only from a tool perspective, but from a domain perspective) can make information 
and resources available at the bidding of the user, whereas persons become a skill 
resource only when they consent to do so and they can also restrict time, place, and 
methods as they choose. The big expectation of the National Information 
Infrastructure, namely that Nobel Prize winners will be accessible by every school 
child, ignores the fact that most Nobel Prize winners will have anything but time to 
respond to every question directed their way. 

To increase the computational support of collaborative environments, a limited 
shared context must be established. General-purpose information spaces can have 
only a limited notion of users' tasks at hand. Domain-oriented design environments 
[8] exploit domain semantics and the design context to actively notify designers 
when there is information they should know. Many current design systems are 
limited because they function only as "keepers" of the artifact, in which one deposits 
representations of the artifact being designed. Our experience has shown that 
designers integrate designing and discussing in such a way as to make separate 
interpretation difficult [22]. Talking about an artifact means talking within the context 
of the artifact (and not in separated e-mail conversations or design rationale 
handbooks). Later interpretation of discussions requires reconstruction of the context 
in which they were originally elicited. The most important implication of this view is 
that design artifacts must not be artificially separated from communication about 
them. 

A new type of collaboration ("grass-roots communities") will be possible through 
exploiting the resources of virtual communities [23]. Systems such as the world
wide web provide collective expertise (as well as nonsense). The growing megabytes 
of content are contributed by volunteers and the combination of free expression, lack 
of central control, many-to-many communication access, and volunteer effort has 
created a new kind of social organization. 



28 G. Fischer 

4 Instrumental Versions of Integrated Environments 

The integration of working and learning and new approaches toward learning [24] 
emphasize that learning (1) is a process of knowledge construction, not one of 
knowledge recording or absorption; (2) is knowledge dependent; and (3) is highly 
tuned to the situation in which it takes place. This requires computational 
environments that are simultaneously worker/learner-directed and supportive. These 
requirements are satisfied neither by intelligent tutoring systems nor by interactive 
learning environments or application programs. 

In our research, domain-oriented design environments have emerged as systems 
serving the integration of working, learning, and collaborating by modeling problem 
domains. They (1) allow users to focus on their tasks (and not just on the interface), 
(2) increase the usefulness without sacrificing usability, (3) facilitate human 
problem-domain interaction, and (4) support short-term and indirect, long-term 
collaboration. In the context of these research efforts, we have explored topics such 
as design by composition, design by modification, the integration of problem 
framing and problem solving, the use of critics to increase the back-talk of situations, 
and the reconceptualization of breakdowns as sources for creativity. Critiquing and 
proactivity both support the integration of learning, working, and collaborating, but 
are founded on different role distributions between designers and computational 
environments. 

4.1 Critiquing 

Critics in design environments [10,12,15] are programs that "look over the 
shoulder" of users as they perform tasks in computational environments and signal 
breakdowns and offer critiques from time to time. Critics compute their advice by 
using domain knowledge to examine the actions users perform (e.g., information 
spaces visited) and the products they create (e.g., constructions and specifications). 
In critiquing, humans select (partial) goals and communicate some of them to the 
system, attempt to achieve these goals, and retain control of the interactions. Critics 
detect potential problems and provide information relevant to the identified problems. 
Users evaluate the critiques and decide how to respond. 

4.2 Proactivity 

Proactivity [31] uses a different role distribution between humans and computers and 
integrates learning with working in a different manner. Proactivity allows designers 
to delegate certain tasks to the system—and in performing these tasks the system 



New Perspectives on Working, Learning, and Collaborating ... 29 

uses knowledge that may be unknown, and yet be of interest to the designer. For 
designers, work-centered events are the triggers of learning episodes; the system 
provides them with contextualized information in the process of solving a problem 
today, which might be relevant for future problem solutions. The relevance of this 
information is still determined by the user. 

ProNet, a proactive domain-oriented design environment [31], will be used as a 
concrete example. ProNet supports the delegation of specific subtasks and provides 
tightly coupled linkages between the evolving artifact and the knowledge and 
argumentation behind the artifact. It provides numerous opportunities to explore and 
learn task-relevant domain knowledge in the context of the construction of an actual 
artifact. It was created (1) to support learning on demand; (2) to explore whether a 
detailed, dynamic, contextualized, user-specified artifact is a more compelling vehicle 
for learning about new concepts than the "static," uncontextualized, theoretical 
examples presented in textbooks; (3) to investigate the question whether people will 
actually take advantage of the computational mechanisms provided; and (4) to 
transcend the boundaries of pencil and paper technologies and on-line tutorials in 
which the learner mostly reads or at best does exercises suggested by the computer 
rather than being engaged in self-directed, authentic activities. 

4.3 A Scenario 

The following abbreviated scenario (for details, see [31]) is provided to illustrate 
how proactivity was used by non-expert, inexperienced network designers to learn 
while working. 

Problem Context and Goals. The computer network designers investigated a 
networking problem based a real networking situation at the University of Colorado 
Biology Department. In this problem, three existing networks were located in five 
rooms. The workstations shown were Macintoshes using a proprietary AppleTalk 
protocol on LocalTalk media, but the networks were considered to be too slow. 
Figure 2 shows the three networks that were part of the initial problem. All wires in 
this figure were actually red in color, indicating AppleTalk on LocalTalk cables. The 
designers tried to achieve the following goals: (1) all 18 computers and the printer 
located in the five rooms should be able to communicate via the network, (2) devices 
on all three networks should be able to use the server and printer located in the room 
in the top center of the design, and (3) the overall network should be faster than the 
current design, yet easy to install and maintain. 

Observed solution sequence and activities. After studying the problem statement and 
looking over the initial problem state, the following major activities were observed: 



30 G. Fischer 

Figure 2: Problem state after construction tasks to connect the subnets. 

1.) Accessing domain knowledge: A designer used the domain knowledge 
hypermedia to look up the word "topology" in the glossary, read about 
topological design issues for several minutes, remarked, "Good, this is what 
I needed to know...," and went on to construction tasks. 

2.) Construction activities: Designers selected the wire item in the gallery and 
then used the worksheet drawing tool to connect the three subnets and form 
one large network, as shown in Figure 2. 

3.) Using proactivity to obtain design details: Designers then enabled proactivity 
so the system would compute design details using the global priorities. 
Figure 3 shows the resulting design. Three new details appeared in the upper 
part of the design. From left to right these are "router," "gateway," and 
"routing gateway," respectively. All wires in the design changed from red to 
green, except for one segment of wire between the routing gateway and the 
gateway where the printer is connected to the network. This one segment 
remained red. 

Learning from unfamiliar design details. Designers noticed this change in network 
color and requested a local explanation of what the green wire meant by using the 



New Perspectives on Working, Learning, and Collaborating ... 31 

Figure 3: The problem state after enabling proactivity. 

query tool labeled with "?". After finding that EtherTalk protocol on Thin-Ethernet 
media was used, they accessed domain knowledge about the pros and cons of using 
this protocol and media. They then requested and read a local explanation of the 
routing gateway that appeared in the top right of the design. Figure 4 shows the local 
explanation of the device, illustrating the contextualized explanation. 

Changing artifact specifications. Designers requested a local explanation for the 
printer in the design because its icon indicated that it was "locked" on "user-specified 
priorities." They then selected (in a specification dialog box not shown here) "allow 
flexibility" for both "how should network requirements be computed next time?" and 
"current protocol requirements," indicating that the system should proactively 
compute the best protocol and media using the global design priorities. 

Allowing proactivity to obtain new details. After printer specifications were 
"unlocked," the system proactively computed new network and media requirements 
for the printer and updated the rest of the design. 



32 G. Fischer 

Explanation about a selected ROUTING-GRTEWRY 

Explanation: 
This device is a ROUTING-GATEWAY. It behaves as both a router and a 
gateway. Tkia device trÄnalate« between APPLESHARE protocol uced lay 
network device(s) to the WEST and ETHERTALK protocol used by network 
device(s) to the SOUTHand EAST . 

Other information and advice: 
• See NETWORKS menu above to review or change GLOBAL DESIGN 
PRIORITIES. 

• Click the MORE INFO button to explore details about the explanation 
above. 

• Click SELECT DEVICE button to explicitly select a network connectivity 
device here. 

Cancel Select deuice More info 3 M 
Figure 4: Local explanation of a new routing gateway design detail. 

5 Design for Mutual Understanding and Change 
If a lion could talk, we could not understand him. (L.Wittgenstein) 

Our work on domain-oriented design environments is based on an understanding of 
design activities as intrinsically collaborative and ongoing. Complexity in design 
arises from the need to synthesize different perspectives on a problem, the 
management of large amounts of information potentially relevant to a design task, 
and understanding the design decisions that have determined the long-term evolution 
of a designed artifact. Design activities require collaboration among stakeholders, 
because they are characterized by a symmetry of ignorance, meaning that no 
individual stakeholder (or individual group of stakeholders) knows all the relevant 
knowledge. 

A major challenge of system building is to identify and refine the system 
requirements of domain workers, and to implement appropriate functionality. 
Representations in the context of our work are created not primarily for 
computational processing but (1) to elicit knowledge from domain workers that is 
often tacit and therefore not easily expressible in abstract situations, and (2) to 



New Perspectives on Working, Learning, and Collaborating ... 33 

communicate the intentions and background between system builders and domain 
workers. 

Communication among stakeholders (environment developers, domain designers and 
clients) is difficult because they use different languages. Explicit representations 
ground collaborative design by providing a context for communication. 
Representations help to detect communication breakdowns caused by unfamiliar 
terminology and tacit background assumptions, and turn the breakdowns into 
opportunities to create a shared understanding. 

5.1 Shared Context in Design Environments 

An important component of a shared context is the intent of the collaborators. A 
shared understanding of intent promotes mutual intelligibility by serving as a 
resource for assessing the relevance of information within the context of 
collaboration. In our design environments, design activities, including the 
communication of intent, are centered around artifacts. By capturing the intentions 
and priorities of designers and associating them with the artifacts, design 
environments can locate stored artifacts and information relevant to a designer's task 
at hand and can provide the designer with resources for assessing the relevance of 
delivered information. 

Domain-oriented design environments address these problems in three ways. First, a 
domain-orientation allows a default intent to be assumed, namely, the creation of a 
"good" artifact in the given domain. Second, a construction situation (see Figure 2) 
can be "parsed" by the system, providing the system with information about the 
artifact under construction. Third, a specification component allows designers to 
explicitly communicate high-level design intentions to the system, thereby 
establishing a shared context between the designers and the design environment. 

5.2 Seeding, Evolutionary Growth, and Reseeding 

Design problems are intrinsically ill-defined, open-ended, and "wicked," making it 
impossible to predict, let alone collect, all the potentially relevant information in 
advance. Design environments must capture information continuously over the 
lifetime of the system [17] and make that information available to designers when it 
is relevant to their particular tasks. We have developed a process model for the 
evolution of domain-oriented design environments [13] consisting of three phases: 
seeding, evolutionary growth, and reseeding (see Figure 5). 



34 G. Fischer 

Environment Domain 
Developers Designers 

'K \fi 
Seedng 

Clients 

Evolutionary Growth 
of Design Environment 

' New Domain 
Knowledge 

4 
^f 

M~*tim 

M 

Reseeding 

Time 

Figure 5: A process model for the development and evolution of domain-oriented design 
environments 

A seed is a collection of knowledge and procedures created through a collaboration 
between environment developers and domain designers. To design new artifacts that 
are useful for skilled domain workers, either (1) environment developers have to 
understand the domain concepts and the use activities of the domain designers, (2) 
domain designers have to understand the possibilities and limitations of 
computational artifacts, or (3) domain designers must be able to give complete 
descriptions of their demands, which we know is not possible. Seeds should 
stimulate, focus, and mediate discussion between the stakeholders, and they should 
provide mechanisms to capture additional knowledge during the incremental growth 
phase. There is no absolute requirement for the completeness, correctness, or 
specificity of the information in the seed. In fact, it is often its shortcomings in these 
respects that provoke input from designers. 

Evolutionary growth during system use is a process of adding information related 
directly or indirectly to the artifact being designed. Thus, the artifact is the foundation 
for evolutionary growth. During the growth phase the designers who use the system 
are primarily focused on their task at hand. Information input is highly situation 
specific—tied to a specific artifact and stated in particular rather than in general. 



New Perspectives on Working, Learning, and Collaborating ... 35 

Information will grow over time, order will eventually break down, and the system 
will begin to degrade in its usefulness. 

Reseeding is necessary when evolutionary growth stops proceeding smoothly. 
During reseeding, the system's information is restructured, generalized, and 
formalized to serve future design tasks. The reseeding process creates a forum to 
discuss what design information captured in the context of specific design projects 
should be incorporated into the extended seed to support the next cycle of 
evolutionary growth and reseeding. Tools contained in design environments support 
reseeding by making suggestions about how the information can be formalized [28]. 

5.3 End-User Modifiability 
Convivial tools are those which give each person who uses them 

the greatest opportunity to enrich the environment 
with the fruits of his or her vision. (I. Illich) 

The message derived from the "seeding - evolutionary growth - reseeding" model is 
that no matter how much software designers try to anticipate and provide for what 
users will need, the effort always falls short because (1) it is impossible to know in 
advance what is needed, (2) knowledge is tacit, and (3) the world changes. It is an 
empirical fact that all successful software undergoes changes. 

The approach described by our model documents well how large software systems, 
such as Symbolics' Genera, Unix, the X Window System, have evolved over time. 
In such systems, users develop new techniques and extend the functionality of the 
system to solve problems not anticipated by the system's original authors. New 
releases of the system often incorporate ideas and code produced by users. In the 
same way that these software systems are extensible by programmers who use them, 
design environments need to be extended by domain designers who are neither 
interested nor trained in the (low-level) details of computational environments [20]. 

End-users may wish to have functionality that fits their needs, but the creation of this 
functionality is a difficult task. Two major approaches, namely programmable design 
environments and collaborative work practices, make end-user programming a more 
realistic challenge. 

Programmable design environments [6] are designed to cope with complexity from 
different angles by integrating a number of distinct elements: (a) an "application-
enriched" programming environment, (b) a "critiquing component" that monitors the 
user's work and occasionally offers suggestions for changes or tutorial assistance, 
(c) a "catalog" of illustrative or exemplary work that the user can employ as a starting 



36 G. Fischer 

End-User Modifiability 
End-User Programming f 

n 

S 

Figure 6: Learning on Demand and End-User Modifiability 

point for his or her own work, and (d) embedded tutorial components that the user 
can access for learning about the application or domain. The first of these elements is 
primarily aimed at alleviating the problems of complexity faced by the experienced 
user, whereas the last three of these elements might be viewed collectively as 
alleviating complexity for the less experienced user. 

Collaborative work practices [20] can support end-user computing. In any 
organization that deals with the same computational artifacts there will eventually be 
power-users and local developers who will acquire the knowledge to tailor 
environments to the specific needs of a group. Social resources provided by the 
community of practice will assist the individual to cope with changes and new 
demands. 

6 Lessons Learned From Our System-Building Efforts 

Domain-oriented design environments address the research issue articulated in 
section 2, "Beyond Human-Computer Interaction": (1) they deal not only with 
interfaces and tools, but with artifacts and design knowledge of domains; (2) they 
make an attempt to close the gap between useful and usable by hiding low-level 
computational details; (3) they support a variety of collaboration processes; and (4) 
they support human problem-domain interaction. They are instrumental versions of 
systems that are simultaneously user-directed and computationally supportive. 



New Perspectives on Working, Learning, and Collaborating ... 37 

The critiquing paradigm offers learning opportunities (e.g., by supporting learning 
on demand [6]) and collaboration opportunities (e.g., by investigating the thinking 
and the perspectives of other designers as those are embedded in the critiquing itself 
as well as in argumentation and cases associated with the problem at hand [10]). 

Proactivity addresses the production paradox (productive work cannot be done 
without learning, and learning is prohibited by a lack of time [2]) by helping users 
get real work done while providing opportunities to learn from the help that is 
provided. As new details appear in the design, the user can request an explanation of 
what they are and why they are needed and use these devices to access other related 
domain knowledge. A shared understanding between designer and system is 
achieved through the construction and the specification. The construction 
environment supports experiential cognition allowing the user to create or modify 
design artifacts and then observe the proactive responses of the system to these 
actions. Local explanations and argumentative hypermedia allow the designer to 
reflect on pros and cons, alternatives, and decisions by accessing a web of factual 
knowledge related to the problem being solved. 

7 Human-Computer Interaction: A Design Science 
Der Worte sind genug gewechselt, 

lasst mich doch endlich Taten sehen. (Goethe, "Faust") 

Many researchers and developers in the HCl community have been historically 
content with evaluating and assessing computational artifacts created by other 
groups. I strongly believe that HCl needs to become much more a design science, 
intertwining theory, system-building efforts, and assessment, as illustrated in Figure 
7. The HCl community should not only reflect but also propose and develop new 
designs and new methods and new environments to be used in design. We should 
not only reflect but enable change. We cannot be content to leaving things as they are 
or assume that other people should change them. 

A design science always has to be prescriptive; it cannot remain only descriptive. 
Whereas we have to build on as much descriptive knowledge as possible (e.g., 
strengths and weaknesses of human information processes, properties of 
technologies, work practices as they exist), we need to decide which kind of 
computational artifacts we want to have to serve the purposes of working, learning, 
and collaboration. Our prescriptions will not only be technological, but we have to be 
(or will implicitly be) social reformers, because information technologies will change 
how people learn, work, and collaborate. We have to find a careful balance between 
tradition and transcendence [5]. Designers can prompt and support change in 



38 G. Fischer 

Theory / Innovative 
Conceptual Framework System Building 
• human-, learner-, and worker- • cooperative problem-solving 

centered systems 
• cooperative problem solving • active help systems 
• design (tradition, iWW^O/O^ • domain-oriented design 

transcendence) ^ f o ' f f i environments 
• argumentation ^'-/-' 'ffi • human-centered agents 

serving design ^^/^^^^^^^-^/ (delegation, critics) 
(reflection-in-action) ^&$;V;f^ • malleable systems (adaptive 

• breakdowns as ^&tt&&&+/ffl a n d adaptable) 
opportunities \&&!^-:&yfffl • end-user programming / 

• learning on demand > & £ S ^ w $ / modifiability 
• symmetry of ignorance yfc&W$/ * representations for mutual 
• motivation vt-^'-i/ understanding 

yüy • on-demand and shared 
v context 

Assessment and Evaluation 
• naturalistic environments • relevance (not only rigor) 

(not only laboratory) • analysis and usage patterns of 
• skilled domain workers complex information spaces 

(communities of practice) • domains (not just tools) 
• problem owners and problem • "basic" skills 

framing 

Figure 7: The intertwining between conceptual frameworks/theory, innovative systems, and 
assessment and evaluation 

communities of practice but they cannot and should not predetermine it. Design and 
use mutually shape one another in iterative, social processes, as indicated in Figures 
5 and 6. By seeding a design environment, we not only seed an artifact, but we seed 
a community of practice—and the community of practice changes in using this 
artifact. 

8 Conclusions 
This is not the end. It is not even 
the beginning. But it is, perhaps, 

the end of the beginning. (W. Churchill) 

The dominant HCl research issues of the last decade have been (1) WIMPs 
(windows, icons, menus, and pointers); (2) an emphasis on interfaces; and (3) a 
focus on beginners. Important contributions have been made, as can readily be 
observed by anyone who compares today's interfaces to an ASCII terminal 
connected to a mainframe computer of ten years ago. These major achievements 



New Perspectives on Working, Learning, and Collaborating ... 39 

should not be considered the end, but rather the beginning. As HCl researchers, 
we—in close collaboration with others—not only have to reinvent and reengineer the 
computational artifacts and media, but we have to change the underlying processes of 
working, learning, and collaborating. The major argument behind the current 
business reengineering debate is that investments in information technology have 
delivered disappointing results because companies tend to use technologies to 
mechanize old ways of doing business. The same argument holds for education and 
collaboration: we use technology as add-on to existing practices, rather than to 
fundamentally rethink what education and collaboration should be all about in the 
next century. The old frameworks such as instructionism, curriculum, memorization, 
and decontextualized learning are not changed by technology itself whether we deal 
with intelligent tutoring systems, multimedia, or world-wide networks. We have to 
actively contribute to new frameworks, such as lifelong learning, integration of 
working and learning, authentic problems, self-directed learning, (intrinsic) 
motivation, collaborative learning, organizational learning, new content, and new 
unique properties of computational media. 

9 Acknowledgments 

The author would like to thank the members of the Center for Lifelong Learning and 
Design (particularly Hal Eden and Jim Sullivan) at the University of Colorado who 
have made major contributions to the conceptual framework and systems described 
in this paper. The research was supported by (1) the National Science Foundation, 
Grant RED-9253425, (2) the ARPA HCl program, Grant N66001-94-C-6038, (3) 
Nynex, Science and Technology Center, (4) Software Research Associates (SRA), 
and (5) PFU. During the academic year 1994/95, the author is supported by the 
"SEL-Stiftungsprofessor" of the Technical University Darmstadt. 

10 References 

[1] Bush, V.: As We May Think. In: Atlantic Monthly. 176 (1945) pp. 101-108. 

[2] Carroll, J. M.; Rosson, M. B.: Paradox of the Active User. In: Interfacing Thought: Cognitive 
Aspects of Human-Computer Interaction. J. M. Carroll, (Ed.): The MIT Press: Cambridge, 
MA. (1987) pp. 80-111. 

[3] Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. HarperCollins 
Publishers: (1990). 

[4] Drucker, P. F.: The Age of Social Transformation. In: The Atlantic Monthly. (1994) pp. 53-
80. 



40 G. Fischer 

[5] Ehn, P.: Work-Oriented Design of Computer Artifacts. Almquist & Wiksell International: 
Stockholm, Sweden, (1988). 

[6] Eisenberg, M.; Fischer, G.: Programmable Design Environments: Integrating End-User 
Programming with Domain-Oriented Assistance. In: Human Factors in Computing Systems, 
CHI'94 Conference Proceedings. Boston, MA. (1994) pp. 431-437. 

[7] Fischer, G.: Making Computers more Useful and more Usable. In: Proceedings of the 2nd 
International Conference on Human-Computer Interaction (Honolulu, Hawaii). Elsevier 
Science Publishers: New York. (1987) pp. 97-104. 

[8] Fischer, G.: Domain-Oriented Design Environments. In: Automated Software Engineering, 
Vol. 9, No. 2 (1994) pp 177-203 

[9] Fischer, G.: Beyond Human-Computer Interaction. In: Mensch Computer Kommunikation. 
H.-D. Boecker, W. Glatthaar, T. Strothotte (Eds.), Springer Verlag, Berlin-Heidelberg-New 
York (1993) pp. 274-287 

[10] Fischer, G. et al: Supporting Indirect, Collaborative Design with Integrated Knowledge-Based 
Design Environments. In: Human Computer Interaction, Special Issue on Computer Supported 
Cooperative Work. 7 (1992) pp. 281-314. 

[11] Fischer, G.; Lemke, A. C : Construction Kits and Design Environments: Steps Toward 
Human Problem-Domain Communication. In: Human-Computer Interaction. 3 (1988) pp. 
179-222. 

[12] Fischer, G. et al: The Role of Critiquing in Cooperative Problem Solving. In: ACM 
Transactions on Information Systems. 9 (1991) pp. 123-151. 

[13] Fischer, G. et al: Seeding, Evolutionary Growth and Reseeding: Supporting Incremental 
Development of Design Environments. In: Human Factors in Computing Systems, CHF94 
Conference Proceedings (Boston, MA). (1994) pp. 292-298. 

[14] Fischer, G.; Nakakoji, K.: Beyond the Macho Approach of Artificial Intelligence: Empower 
Human Designers - Do Not Replace Them. In: Knowledge-Based Systems Journal. 5 (1992) 
pp. 15-30. 

[15] Fischer, G. et al: Embedding Critics in Design Environments. In: The Knowledge Engineering 
Review Journal. Cambridge University Press: 8 (1993) pp. 285-307. 

[16] Galegher, P. et al, (Ed.): Intellectual Teamwork. Lawrence Erlbaum Associates: Hillsdale, NJ. 
(1990). 

[17] Henderson, A.; Kyng, M.: There's No Place Like Home: Continuing Design in Use. In: 
Design at Work: Cooperative Design of Computer Systems. J. Greenbaum and M. Kyng, 
(Ed.): Lawrence Erlbaum Associates: Hillsdale, NJ. (1991) pp. 219-240. 

[18] Hutchins, E. L. et al: Direct Manipulation Interfaces. In: User Centered System Design, New 
Perspectives on Human-Computer Interaction. D. A. Norman and S. W. Draper, (Eds): 
Lawrence Erlbaum Associates: Hillsdale, NJ. (1986) pp. 87-124. 

[19] Lave, J.; Wenger, E.: Situated Learning. Cambridge University Press: Cambridge, UK, (1991). 

[20] Nardi, B. A.: A Small Matter of Programming. The MIT Press: Cambridge, MA, (1993). 

[21] Norman, D. A.: Things That Make Us Smart. Addison-Wesley Publishing Company: 
Reading, MA, (1993). 

[22] Reeves, B. N.: The Role of Embedded Communication and Artifact History in Collaborative 
Design. Ph.D. Thesis: University of Colorado, 1993. 



New Perspectives on Working, Learning, and Collaborating ... 41 

[23] Rheingold, H.: The Virtual Community: Homesteading on the Electronic Frontier. Harper 
Perennial: (1994). 

[24] Resnick, L. B., (Ed.): Knowing, Learning, and Instruction: Essays in Honor of Robert Glaser. 
Lawrence Erlbaum Associates: Hillsdale, NJ. (1989). 

[25] Rittel, H.: Second-Generation Design Methods. In: Developments in Design Methodology. N. 
Cross, (Ed.): John Wiley & Sons: New York. (1984) pp. 317-327. 

[26] Schoen, D. A.: The Reflective Practitioner: How Professionals Think in Action. Basic Books: 
New York, (1983). 

[27] Scribner, S.; Sachs, P.: On The Job Training: A Case Study. In: National Center on Education 
and Employment. (1990) pp. 1-4. 

[28] Shipman, F.: Supporting Knowledge-Base Evolution with Incremental Formalization. Ph.D. 
Thesis: University of Colorado, 1993. 

[29] Simon, H. A.: Cognitive Science: The Newest Science of the Artificial. In: Perspectives on 
Cognitive Science. D. A. Norman, (Ed.): Ablex Publishing Corporation, Lawrence Erlbaum 
Associates: Norwood, NJ - Hillsdale, NJ. (1981). 

[30] Suchman, L. A.: Plans and Situated Actions. Cambridge University Press: Cambridge, UK, 
(1987). 

[31] Sullivan, J.: A Proactive Computational Approach for Learning While Working. Ph.D. 
Thesis: University of Colorado at Boulder, 1994. 

[32] Uhlich, E.: Von der Benutzungsoberflaeche zur Arbeitsgestaltung. In: Software-Ergonomie'93. 
K. H. Roediger, (Ed.): B.G. Teubner: Stuttgart, Germany. (1993).pp. 19-29. 

[33] Volpert, W.: Von der Software-Ergonomie zur Informatik. In: Software-Ergonomie'93. K. H. 
Roediger, (Ed.): B.G. Teubner: Stuttgart, Germany. (1993) pp. 51-65. 

[34] Zuboff, S.: In The Age Of The Smart Machine. Basic Books, Inc: New York, (1988). 

Gerhard Fischer 
Department of Computer Science, Campus Box 430 
University of Colorado 
Boulder, CO 80309-0430 USA 
e-mail: gerhard@cs.colorado.edu 

mailto:gerhard@cs.colorado.edu



	45.pdf

