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Abstract: In this paper we present the concurrent constraint functional programming
language CCFL and an abstract machine for the evaluation of CCFL programs in a
multicore environment.

The source language CCFL is a simple lazy functional language with a polymorphic
type system augmented by ask-/tell-constraints and conjunctions to express concurrent
coordination patterns.

As execution model for CCFL we propose the abstract machine ATAF. ATAF im-
plements a G-machine to evaluate functional expressions and provides facilities to run
multiple cooperating processes on a fixed set of CPUs. Processes communicate via a
shared constraint store realizing residuation semantics and committed choice.

We show a few scaling results for parallel programs obtained with a prototypical
implementation of ATAF on a quadcore machine.

1 Introduction

Multicore architectures have become more and more important in recent years. Unfortu-
nately, only truly parallel programs are able to benefit from their increase in computational
power. There is, however, not yet an established method of programming these architec-
tures, which is competitive to maintainability, stability, and performance of serial program
development. Especially, many parallel programs do not automatically turn an increase in
the number of cores into shorter run times like serial programs used to profit from higher
clock rates. Regarding stability and maintainability, a declarative programming approach
is desirable since side-effects, and explicit communication/synchronization of the impera-
tive style are the root of many bugs hard to find or reproduce. Performance has traditionally
not been the strength of declarative languages but they can be efficiently parallelized and
the ubiquity of multicore computers gives a new impulse to parallel declarative program-
ming.

In this paper, we present a small programming language CCFL of the constraint-functional
family for concurrent and parallel program development. As execution model for CCFL,
we propose an abstract machine ATAF that can be efficiently implemented on multicore
architectures. CCFL programs compiled to ATAF are able to utilize several cores to gain
performance in this way. Besides this, since CCFL is a declarative language, programs are
written on a high level of abstraction by the virtue of a polymorphic type system, higher
order functions, and recursive datatypes, as well as robust and understandable because of



fun length :: List a -> Int
def length 1 = case 1 of [] -> 0;
X : xs —> 1 + length xs

Prog. 1: List length.

the absence of side-effects.

Outline In Sect. 2 we introduce the concurrent constraint-functional language CCFL by
example, where we present in particular language constructs to express concurrent and
parallel computations. Section 3 is dedicated to the abstract machine ATAF as execution
model for CCFL. We discuss its general structure and semantics, go into detail wrt. the
realization of concurrent processes and their coordination and show performance results.
We summarize the paper in Sect. 4.

2 The Source Language CCFL

The Concurrent Constraint Functional Language CCFL is a multiparadigm programming
language combining the constraint-based and the functional paradigms and it allows for
parallel multicore programming.

CCFL enables a pure functional programming style, but also the usage of constraints for
the description and solution of problems with incomplete knowledge on the one hand and
for the communication and synchronisation of concurrent processes on the other hand.

2.1 Lazy Constraint-Functional Programming

CCFL is a lazy functional language with a polymorphic type system. A CCFL program
is a sequence of data type definitions, functional and constraint abstractions. Functions
are used to express deterministic computations while constraint abstractions enable the
description of concurrent cooperative processes and non-deterministic behaviour.

The functional sublanguage of CCFL. The functional part of CCFL encompasses typi-
cal constructs such as case- and let-expressions, function application, and some predefined
infix operations, constants, variables, and constructor terms. Program 1 shows the decla-
ration and definition of a function length on lists as defined in the CCFL prelude.

Free variables. One of the main characteristics of constraints are free variables. How-
ever, in CCFL also functional expressions are allowed to contain free variables. Thus,



1 fun map :: (a —> b) —-> List a —> List b

2 def map £ 1 =

3 case 1 of [] > [1;

4 X : xs —> (f x) : (map f xs)

5

6 fun farm :: (a —> b) -> List a —> List b —> C

7 def farm £ 1 r =

8 case 1 of [] > r =:= [];

9 X : xXs —> with rs :: List b

10 inr =:= (f x) : rs & farm f xs rs

Prog. 2: Functional map and constraint-based farm patterns.

function applications are evaluated using the residuation principle [Smo93], i. e. the eval-
uation of functional expressions is suspended until variables are bound to values such
that a deterministic reduction becomes possible. For example, in CCFL, the computation
(length [2,x,y,1]1) of the length of a list containing the unbound variables x and y is
possible, while the evaluation of an arithmetic expression (z+2) suspends as long as z is
not bound to any ground value.

Constraints in CCFL. While the functional part of CCFL can be considered as compu-
tational core of the language, the coordination core responsible for the coordination of
concurrent processes is based on constraints.

Consider Prog. 2 defining the function map and a constraint-based farm skeleton. They
have a similar functionality: Both apply a function £ on each element of a list 1 and
compose the results into a list.

In contrast to map the abstraction farm is of result type ¢ and, thus, a constraint abstraction
(or user-defined constraint). It introduces a free variable rs using the with-construct in
line 9 and computes the resulting list r by two concurrently working processes which
are generated from the two constraints in line 10 which are separated by the concurrency
operator &. That is, one of the main differences between functions and constraints in CCFL
— or map and farm, resp. — is that the former are processed purely sequentially while the
latter allow a concurrent computation.

While we stress this property of constraints in the present paper, constraints in CCFL have
a wider functionality. Actually, we distinguish ask-constraints and tell-constraints. Both
types of constraints are used in constraint abstractions. Ask-constraints appear in guards
of rules (not discussed in the rest of this paper in detail, see [Lor06, Hof08]) and enable
a synchronization of processes on the one hand and a non-deterministic rule choice (and,
thus, the description of non-deterministic behaviour) on the other hand. (Conjunctions
of) Tell-constraints allow to express concurrent coordination patterns. The constraints
in line 10 in Prog. 2 are tell-constraints. The first constraint, i.e. (r =:= (f x) : rs),
states the equality between two functional expressions. A tell-equality constraintt =:= s
is interpreted as strict [HAB™06]. During evaluation (as discussed in Sect. 3) a constraint



1 fun nfarm :: Int -> (a —> b) -> List a —> List b —> C

2 def nfarmn £ 1 r = with rs :: List (List b)

3 in let parts = partition n 1;

4 pf = map f

5 in farm pf parts rs & r =:= concat rs

6

7 fun pfarm :: (a -> b) -> List a —> List b —> C

8 def pfarm £ 1 r = nfarm noPE £ 1 r

Prog. 3: Farm parallelization patterns.

t =:= K e1 ... e, (with non-variable expressions e; and constructor K) reduces into
anequalityt =:= K vi ... v, with fresh variables v; and constraints vi =:= eq, ...,
v, =:= e, which may be evaluated concurrently. The second constraint farm £ xs rs

recursively generates according processes for the remaining list elements. The & opera-
tor combines the concurrently working processes. Thus, the farm constraint abstraction
generates one process for each application of the function £ on a list element. We dis-
cuss further examples of programming of concurrent systems of processes based on tell-
constraints in the subsequent section.

Note that currently CCFL only supports ask- and tell-constraints over terms while an ex-
tension to external constraint domains (and solvers) such as finite domain constraints or
linear arithmetic constraints is discussed in [Hof08].

2.2 Data and Task Parallelism

The description of concurrent processes can be used to specify typical parallelization
schemes.

Consider Prog. 3 which defines a second version pfarm of the farm parallelization pattern.
In contrast to farm as discussed above, the constraint abstraction pfarm includes a gran-
ularity control. It limits the number of processes to the number of processing elements
noPE. The nfarm abstraction is called from pfarm and it partitions a list into noPE sub-
lists and generates an according number of processes for list processing. These processes
are distributed across different parallel computing nodes by the runtime system ATAF of
CCFL as discussed in Sect. 3.

The farm patterns as described above allow a selective control of the parallelization of
computations. While farm illustrates the generation of a possibly huge number of concur-
renly working processes, pfarm realizes a data parallel skeleton in CCFL.

Program 4 shows another typical parallelization pattern, a data parallel fold skeleton.
Again a list is partitioned into sublists according to the number of available processing
nodes noPE. The ATAF runtime system manages their parallel processing. Eventually the
list rs of intermediate results is (sequentially) folded using fold1 in a final step into the



fun pfold :: (a > a -> a) -> a —> List a —> a —> C
def pfold f e 1 r = with rs :: List (List a)
in let parts = partition noPE 1
in farm (foldl f e) parts rs &
r =:= foldl f e rs

Prog. 4: Parallel fold.

fun pmergesort :: List Int —> List Int —> C
def pmergesort 1 r = pmsort noPE 1 r

fun pmsort :: Int -> List Int -> List Int —> C
def pmsort n 1 r =
case 1 of
[] > r =:= [];
X : Xs —> case n > 1 of
True —> let (first, second) = split 1;
nl = n/2
in with sl :: List Int, sr :: List Int
in pmsort nl first sl &
pmsort (n—nl) second sr &
r =:= merge sl sr;
False —> r =:= msort 1
fun msort :: List Int -> List Int
def msort 1 = ...
fun merge :: List Int -> List Int —> List Int

def merge 1 r = ...

Prog. 5: Parallel mergesort.

overall result r.

As one can see from these examples, CCFL does not feature specialized data structures to
support data parallelism in contrast to other approaches [Nit05, CLJ*07]. Instead, the user
provides a regular splitting of the data structure controlling the granularity of parallelism in
this way', while the runtime system is responsible for an equitable distribution of the data
(and tasks) onto the processing nodes. Thus, the step from data to task parallel skeletons
is smooth in CCFL.

Consider the formulation of a parallel mergesort pmergesort (resp. pmsort) in Prog. 5.
The list to sort is again partitioned into subparts according to the number of processing
elements, where the same task (i. e. sorting) is applied to the different sublists. However,
we observe two things: 1) The list partitioning is performed in a tree-like fashion, i. e. each

Thus, in our approach the number of processing elements noPE plays a role not only in the machine space
but also on the level of the problem description.



pmsort process bears two pmsort child processes. 2) Besides the two pmsort processes,
there is a third concurrent sibling process, namely (r =:= merge sl sr), realizing a
merge of the sorting results.” Thus, Prog. 5 is already an example of the simultaneous use
of data and task parallelism within one constraint abstraction.

3 The Abstract Machine ATAF

In this section we describe the design of the execution model for CCFL: the abstract ma-
chine ATAF.

We start by giving an overview of ATAF’s general structure and operational semantics.
We then focus on the concurrency part, i. e. ATAF’s scheduling, process management, and
communication instructions, sketch the compilation of CCFL programs to ATAF machine
code, and conclude with some performance measurements.

3.1 Overview and Memory Layout

ATAF evaluates functional expressionss by a G-machine performing graph reduction
[Joh87, Aug87]. Multiple expressions are evaluated concurrently exchanging values using
the store S, a shared memory segment. Each of these independent evaluations forms a
process. A process executes a sequence of machine instructions of a global code segment
7

Since graph reduction of an expression requires a heap and a stack, we assign two local
memory areas to each process. Together with the store and code segment we obtain a
memory layout of two shared segments and several heap and stack segments as shown in
Fig. 1 (left). Mapping this layout onto a CPU with a fixed set of P cores we end up with
the structure shown in the right-hand side of Fig. 1 and define the machine state 3 as a
triple

Yi=MPxSxT, 1))

where an instance M bascially contains the process local memory areas P and two addi-
tional components R, W for scheduling (cf. Sect. 3.3):

M =RXWXxXTP ()

The state of Eq. (1) fits perfectly on modern multicore architectures: each core concur-
rently evaluates a set of processes using local memory P in parallel to all other cores and
processes communicate via S which resides in the machine’s shared memory. Usually, no
core in a multicore architecture has local memory, it is shared among all cores instead. The
memory area P therefore also resides in a physically shared memory but is logically as-
signed to s particular core. This separation, in principle, enables the possibility to respect
non-uniform memory architectures (NUMA).

2Note, that msort and merge are just functions and, thus, evaluated sequentially.



Figure 1: The memory architecture of ATAF (left) mapped onto a multicore CPU (right).

3.1.1 Machine Instructions and Semantics
The operational semantics of ATAF instructions are defined by a transition relation
B CYxY 3)
connecting two subsequent states. In an execution step
(Mo,...,Mp_1,8,I) = (M,...,Mp_,,S",T) “)

all instances proceed simultaneously from M; to M/ (with M; = M/ permitted) and the
meaning of each instruction is specified by rules defining valid transitions o = o”.

We skip the details of = (they can be found in [Lor06]), and give an informal description
of the concurrency part of ATAF instead. A good description of the graph reduction part to
evaluate purely functional expression with lazy semantics is [LP92].

3.2 Communication and Synchronization

Processes communicate by reading and writing values to and from the store. The store S
is a triple
S:=VxBxB[, Q)

with the words of the store segment V', a blocked queue B, and suspended queues Blv], v €
V.

To prevent inconsistencies in the shared structures, access to the store has to be enclosed
by the instruction pair LOCK, UNLOCK. We restrict the valid transitions such that only one
M; may execute LOCK or UNLOCK, i.e. reading and writing the store is subject to mutual
exclusion. All processes waiting for access to the store are enqueued in B by LOCK if
necessary and dequeued by UNLOCK.

Because of the residuation semantics of CCFL, processes may have to wait on variables,
either because no guard is fulfilled or because a function is applied to an unbound variable.
When a process has to wait on a word v in the store, it executes the instruction SUSPEND v
which adds the process to B[v], a queue containing processes expecting a modification



Figure 2: Process state transition diagram of ATAF: running R, running uninterruptible R*, sus-
pended BJv], ready W, and blocked 5. Nodes with double border indicate states occupied by at
most one process, nodes with single border represent queues.

of v. As soon as the word’s content is changed B[v] is flushed and the processes are
re-enqueued in WV of their instance to re-examine its value.

Changes of variables in the store happen on the evaluation of a tell-constraint v =:= e
which is implemented by the TELL instruction. TELL also transfers all processes of Blv]
into the ready state.

3.3 Scheduling and Process Management

In each processing instance, only one process is executed, i. e. is in the running state and
occupies the R register. Other processes waiting for execution are in state ready and
enqueued in W. All processes {R} U W on an instance are scheduled for execution by a
preemptive time-slice scheduler in round-robin fashion. Preemption may be circumvented
but this privilege is restricted to the process currently accessing the store. It is therefore not
exposed to the programmer but encapsulated in the LOCK and UNLOCK instructions instead.
This strategy helps to keep locking intervals relatively short because a process cannot be
preempted while manipulating the store. Figure 2 summarizes the possible process states
and transitions.

Conjunctions like e & f create new processes to evaluate the expressions e and £. The
ATAF instruction SPAWN sets up a new process for e and transfers all required data to its
local stack and heap to evaluate e. Let e be the expression r =:= g v in the context

let v = x in e & f .

e needs the expression x to evaluate g v. Since x may contain further references to the
heap of the context’s process, which are not available in the new empty process environ-
ment for e, these referenced structures have to be copied.

Unlike process creation there is no instruction for termination. A process terminates as
soon as its stack is empty. The G-machine instruction UNWIND, responsible to find the
next reducible expression, detects this situation and deallocates the stack and heap of the
terminating process.

A newly created process will run on that instance that currently has fewest processes to
execute, thus implementing a simple load balancing. This scheme provides the possibility
that each of P processes spawned on an empty machine is executed by one core, thus



achieving true parallel execution (cf. Sect. 2.1 and 2.2).

Initial and Final State The initial state of a program loaded into ATAF is a single process
evaluating the main function which starts additional processes. A program terminates as
soon as no process is left on any instance.

3.4 Compiling CCFL to ATAF

To illustrate the generation of ATAF instructions for CCFL programs we present compilation
schemes for two language constructs (for details, we again refer to [Lor06]):

e Conjunctions: e; & ... & en.
e Tell-equalities: v =:= e
These two types of expressions characterize most of CCFL’s concurrency features as

demonstrated in Sect. 2.1 and use the five instructions LOCK, UNLOCK, TELL, SPAWN,
SUSPEND, which have been introduced in the previous section.

Our compiler is a function
C : Expr — [Instr] (6)

mapping a CCFL expression to a sequence of ATAF instructions.

3.4.1 Compiling Conjunctions

We compile a conjunction with the function

Cler & ... &enﬂ=g0+l-¢1-|+-~-|+¢n—1-|+1; @)
where

© = [SPAWN f(2)1),...,SPAWN f(1),,_1),JUMP f(t/NJ)] ®)

vi = Clei] + [JUMP b(3))] ©)

) =Clen] - (10)
For each but the last expression e,,, the sequence ¢ calls SPAWN to create a new process.
Each of these i = 1,...,n — 1 processes executes the code beginning at relative address

f (1), the address of the first instruction of sequence 1;, which is the result of recursively
compiling expression e;. For expression e, no new process is created but its instructions
sequence v is executed by the parent process, hence the jump to f (1)) at the end of . To
prevent any of the e;, © = 1,...,n — 1 to execute instructions not belonging to v;, we

insert a jump to the address b(q/;), the first instruction following 7,/;.3

3In ATAF, all instruction addresses as in JUMP or SPAWN are instruction pointer relative.



34.2 Compiling Tell-Equalities
A tell-equality is compiled into the following subsequences:
Clo =:= e] =Cle] # ¢(v) # ¢ (11

The process evaluating v =:= e first computes e by the instruction sequence C[e]. Then
it proceeds by locking the store to augment the new value by sequence ¢(v):

¢(v) = [LOCK, ISBOUND 7 4, TELL v, UNLOCK, JUMP 3] (12)
+H [SUSPEND 7, JUMP — 6] (13)

Since the result r of e may be an unbound variable, the process may have to suspend. This
check is done by the conditional jump ISBOUND:

e If r is bound, ISBOUND transfers control to the next instruction TELL, which records
the value r for v in the store. Finally, the store is unlocked and the remaining two
instructions are skipped by JUMP 3.

e If r is an unbound variable, the process jumps to the beginning of (13) and suspends
on r, which simultaneously unlocks the store. As soon as 7 is modified, the process
jumps back to the head of sequence (12) to re-examine the value of r.

If the result r is a constructor, the operational semantics of CCFL require that its subterms
are evaluated (see Sect. 2.1) by new processes. In order to spawn these processes, TELL
pushes a variable-expression pair (v;, e;) for each subterm e; to be evaluated by v; =:= e;
onto the stack. The compiler creates processes to evaluate the expressions 1ift v; e;
with

fun 1ift :: a > a > C

def lift re =1r =:=¢

in the sequence ):*

1 = [ISBOUND v; 3,POP 1,JUMP 8] (14)
+H [SPAWN 3, POP 2, JUMP — 5] (15)
+ [PUSHFUN 11 ft, MKAP, MKAP, UNWIND] (16)

The ISBOUND instruction in (14) checks if a (v;,e;) is returned and continues with se-
quence (15) in that case, or jumps ahead of (16) by JUMP 8 otherwise.

Sequence (15) spawns a new process which executes (16), a sequence of G-machine
instructions to evaluate the application 1ift v; e;, removes the current (v;,e;) pair
(POP 2), and jumps back to the head of v to check for a next pair.

41ift is added to all CCFL programs by the compiler.



3.5 Prototypical Implementation and Scaling Behaviour

We have implemented a protoype interpreter of ATAF in HASKELL using the OPENMPI
implementation of MPI [SOHL'96] as communication library to evaluate the feasibility
and scaling characteristics of our approach. Measurements have been performed on an
Intel quadcore machine with 2.4 GHz and 4 GB of memory running GNU/LINUX. We plot
the average speed-up of five samples obtained by running our examples on 1, 2, 3, and 4
cores of the test machine.

The speed-up of a parallel program is defined as

T

Sp=-1,
P=T

a7
where 77, Tp are the times the program runs on 1, P cores resp. and indicates how well a
program is parallelized.

3.5.1 Speed-up of pfarm

To demonstrate the scaling of pfarm (Prog. 3) we calculate the square root of the numbers
1,2,...,m with m = 1000, 2000.

Figure 3(a) shows an acceptable speed-up of the pfarm coordination, especially for an
unoptimized interpreter prototype. Due to Amdahl’s law [Amd67], it stays in the sublinear
regime, of course. The program shows good scaled speed-up performance approaching
optimal speed-up for larger inputs.

Similar to pfarm is pfold (see Prog. 4) but the folding function £ has to be sufficiently
time-consuming. Otherwise, the run-time is dominated by the list partitioning. For ex-
ample, calling pfold + 0 1 r on a list of integers 1 gives of course no performance
benefits for P = 2, 3, 4.

3.5.2 Speed-up of pmergesort

We sort two lists with length m = 500, 1000 of random integers with the pmergesort
program of Prog. 5. Due to the divide-and-conquer nature of mergesort running on a
number of processors P in the range 2¢ < P < 2¥*1 is not faster than running on P = 2*
— we therefore skip P = 3. The scaling of pmergesort as shown in Fig. 3(b) is not as
good as of pfarm because the fraction of inherently serial computation (merge) is larger.

4 Conclusion

We presented the design, implementation, and performance measurements of an abstract
machine for the concurrent constraint-functional language CCFL for parallel multicore pro-
gramming. CCFL is a declarative language using constraints for the description of systems
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Figure 3: Speed-up of two CCFL examples for different problem sizes.

of concurrent processes. We have shown how to elegantly and abstractly express typical
data and task parallel execution patterns. The actual data and task distribution as well as
the process coordination is controlled by the abstract machine ATAF. Despite its simplicity,
ATAF already shows acceptable scaling behaviour for a small number of cores, but there
are certainly possibilities for improvement, especially regarding the following two aspects:

e The scheduler does not migrate processes and the load-balancing will show poor re-
sults when the workload per process is very irregular. More sophisticated schedul-
ing algorithms like work stealing as used in CIAO [CCHOS] or the Penny system
[MHO97] would definitely improve the performance and should be investigated.

e The global lock realizing mutually exclusive access to the store is a potential per-
formance bottleneck. Techniques for efficient implementations of message passing
via a shared heap as e. g. studied in [JSWO03] for the Erlang/OTP system could be
adapted for ATAF such that send- and receive-operations in a one-to-many commu-
nication play the role of TELL- and SUSPEND-instructions.

Related Work From the programming languages’ structure point of view, EDEN and
GOFFIN can be seen as close relatives of CCFL. EDEN [LOPO05] is an extension to the lazy
functional language HASKELL [Pe03] that adds explicit process constructs to allow the de-
scription of parallel applications. An EDEN program defines a system of processes which,
evaluating functional expressions, exchange data via unidirectional communication chan-
nels between a writer and a reader modelled by head-strict lazy lists. Non-determinism is
realized by means of the predefined process abstraction merge.

The target architecture for EDEN are distributed memory systems like networks of worksta-
tions or clusters. Nevertheless it has recently been investigated in a multicore environment
[BDLLO09]. The execution model of EDEN is DREAM [BKL197], an extension of the STG-
machine, supporting channel and communication primitives. DREAM, unlike ATAF, has no
shared memory segments since processes cooperate exclusively via message-passing.

The language GOFFIN [CGKL98] combines HASKELL with a constraint-based coordi-



nation language to express parallelism and non-deterministic computation. It provides
a similar structure like CCFL, while CCFL’s constraint abstractions are more oriented to
predicates than to functions and the ask-constraint’s functionality is a bit more extended.
Moreover, in [Hof08] we discuss the extension of CCFL constraints to typical constraint
systems.

Further related work from the functional realm are e. g. DATA PARALLEL HASKELL, MAN-
TICORE, and ERLANG. DATA PARALLEL HASKELL [CLJ*07] is an extension of HASKELL
targeting multicore architechtures. It allows nested data-parallel programming [Les05]
based on a built-in type of parallel arrays by distributing data among processors and ap-
plying transformations to flatten nested parallel operations in order to reduce synchroniza-
tion points and intermediate structures. The strict functional language ERLANG [Arm07]
supports concurrency by explicit constructs for process creation and message passing.

MANTICORE [FFRT07] is a strict functional language offering several levels of paral-
lelism: fine-grained data-parallelism for arrays and tuples, parallel bindings, which are
all implicitly threaded, and explicit threading as in CML [Rep99] for coarse-grained par-
allelism and concurrent programming. One important aspect of the MANTICORE is to
support different scheduling policies in the same program, e. g. gang scheduling and work
stealing [FRROS8]. Therefore, the core of MANTICORE only provides primitive operations
for scheduling and thread management like stopping and preemping that are composed to
complex scheduling algorithms.

Concurrent Constraint Programming (CCP) [Sar93] is an important area of development,
which is, though not especially designed for parallel architectures, the origin of many
concepts regarding the coordination of processes like ask-/tell-constraints, and guarded
expressions as in CCFL.
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