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Vorwort

Die “BTW-Konferenz” stellt innerhalb der deutschsprachigen Daten-Management-
Community eines der zentralen Events zum wissenschaftlichen Austausch dar. Seit iiber
30 Jahren wird die Serie der Fachtagungen “Datenbanksysteme fiir Business, Technologie
und Web” (BTW) des Fachbereichs “Datenbanken und Informationssysteme” (DBIS) der
Gesellschaft fiir Informatik (GI) im zweijahrigen Rhythmus an unterschiedlichen Orten
ausgetragen. Fiir 2021 war die Veranstaltung vom 08. - 12. Mérz an der Technischen
Universitit Dresden unter der Schirmherrschaft des Ministerpriasidenten des Freistaates
Sachsen, Michael Kretschmer, geplant — Konferenzriume waren gebucht, Keynote-Rednerin
und —Redner eingeladen, umfangreiche Sponsorenunterstiitzung sichergestellt und — auch
wichtig fiir eine BTW — ein attraktives Begleitprogramm ausgestaltet. Leider hat die
Corona-Pandemie die Durchfiihrung einer Pridsenzveranstaltung zu dem urspriinglich
geplanten Zeitpunkt unmdglich gemacht.

Ungeachtet dessen fand jedoch ein Begutachtungsprozess der eingereichten wis-
senschaftlichen Arbeiten statt, dessen Ergebnis in dem nun vorliegenden Band dokumentiert
ist. Erstmalig wurden dabei umfangreiche Anderungen zur Sicherung der Qualitit (im
weiteren Sinne) eingefiihrt. Die sichtbarste Neuerung besteht in der Einfiihrung eines
Track-Systems und damit einhergehend der Integration des Industrie-Tracks in den reguldren
Begutachtungsprozess. Durch das thematisch organisierte Track-System konnte nun
sichergestellt werden, dass die Riickmeldungen der Gutachterinnen und Gutachter zielgenau
auf die Positionierung eines Beitrags passten. Folgende Tracks wurden definiert:

. Database Technology (Alexander Bohm; SAP SE)
. ML & Data Science (Matthias Bohm; TU Graz)

. Data Integration, Semantic Data Management, Streaming (Katja Hose; Aalborg
University)
. (Industrial) Use Cases & Applications (Stefanie Scherzinger; Universitit Passau)

Der gesamte Begutachtungsprozess wurde von den beiden PC-Chairs Melanie Herschel
(Universitit Stuttgart) und Kai-Uwe Sattler (Technische Universitit [lmenau) organisiert.
Als Proceedings Chair hat Alexander Krause (TU Dresden) zum Gelingen des vorliegenden
Bandes beigetragen. Als weitere Neuerung wurde der Review-Prozess so gestaltet, dass
Revisionen von Einreichungen ermdglicht wurden, so dass Anmerkungen und Hinweise
der Gutachterinnen und Gutachter in die wissenschaftlichen Arbeiten noch mit aufgenom-
men und entsprechend beriicksichtigt werden konnten. Dieser explizite und bewusst sehr
stark gelebte Revisionsprozess hat zu einer deutlichen Verbesserung des gesamten Be-
gutachtungsablaufs gefiihrt. Als letzte — durch einen Stempel an den jeweiligen Beitrdgen
markiert - sichtbare Neuerung darf an dieser Stelle noch auf den Reproduzierbarkeits-
prozess hingewiesen werden. Alle angenommenen Arbeiten wurden eingeladen, die in



den Publikationen dokumentierten experimentellen Ergebnisse durch ein Mitglied der
Community wiederholen zu lassen. Diese als Mentoring und bewusst nicht als Kontrolle
positionierte Wiederholung wurde fiir knapp ein Drittel der in diesem Band publizierten
Beitrige durchgefiihrt — im internationalen Vergleich ein Riesenerfolg und Zeugnis einer
lebhaften und offenen Data-Management-Community!

So wichtig wie die Publikation eines wissenschaftlichen Ergebnisses ist, so notwendig
ist auch die Présentation und eine sich anschlieBende offene Diskussion. Zum aktuellen
Zeitpunkt kann leider auf Grund der sehr volatilen Infektionslage noch keine klare Aussage
getroffen werden, ob wir — wie aktuell geplant — vom 13. bis 17. September 2021 eine BTW
an der Technischen Universitidt Dresden durchfiihren konnen. Auf jeden Fall wird es eine
Prisentation der angenommenen Beitrige geben, wenn in Priasenz nicht durchfiihrbar dann
notwendigerweise in einem virtuellen Rahmen. In diesem Kontext ist somit auch auf die
Website der BTW2021 hinzuweisen (https://btw2021-dresden.de/), auf welcher neben
aktuellen Informationen auch alle weiteren Materialien zur Verfiigung stehen.
Unabhingig von den weiteren Entwicklungen darf an dieser Stelle bereits den vielen
Menschen gedankt sein, die an der Vorbereitung der BTW2021 beteiligt waren und sind;
im Einzelnen geht unser Dank an

. alle Kolleginnen und Kollegen, die sich als Gutachterinnen und Gutachter aktiv
in den Begutachtungsprozess eingebracht haben oder sich in der Organisation von
Studierendenprogramm, Workshop- und Tutorienprogramm, Demoprogramm, Data-
Science Challenge und Dissertationspreis engagiert haben.

. alle Partner und Sponsoren, die uns trotz Pandemie eine umfangreiche Unterstiitzung
zugesagt haben.

. die GI-Geschiftsstelle fiir die Unterstiitzung bei der Finanzplanung und —abwicklung.

° die TU Dresden, die Fakultit Informatik der TU Dresden und den Lehrstuhl fiir
Datenbanken fiir tatkrédftige Unterstiitzung in der organisatorischen Vorbereitung
— angefangen von der Offentlichkeitsarbeit bis hin zur - hoffentlich bendtigten —
Bereitstellung der Raumlichkeiten.

. und - last but not at least — an alle Autoren und Autorinnen, ohne deren Input in Form
wissenschaftlicher Beitrige eine BTW2021 nicht denkbar wire!

Vielen Dank bereits jetzt an alle Beteiligten!

Dresden, im Februar 2021

Wolfgang Lehner (TU Dresden), Tagungsleitung

Johann-Christoph Freytag (HU Berlin), Ehrenvorsitzender

Ulrike Schobel, Dirk Habich, Maik Thiele (TU Dresden), Lokale Organisation und Finanzen


https://btw2021-dresden.de/

Tagungsleitung
Wolfgang Lehner, Technische Universitdt Dresden

Organisationskomitee
Ulrike Schobel, Technische Universitdt Dresden
Dirk Habich, Technische Universitit Dresden
Maik Thiele, Technische Universitiat Dresden

Ehrervorsitzender
Johann-Christoph Freytag, Humboldt-Universitit zu Berlin

Wissenschaftliches Programmkommittee

Vorsitzende
Melanie Herschel, Universitit Stuttgart
Kai-Uwe Sattler, Technische Universitit Ilmenau

Track Chairs
Alexander Bohm, SAP SE
Matthias Bohm, Technische Universitit Graz
Katja Hose, Aalborg University
Stefanie Scherzinger, Universitit Passau



Mitglieder
Ziawasch Abedjan, Leibniz Universitit Hannover
Carsten Binnig, Technische Universitdt Darmstadt
Stefan Conrad, Heinrich-Heine-Universitit Diisseldorf
Stefan DeBloch, Technische Universitiat Kaiserslautern
Jens Dittrich, Universitit des Saarlandes
Florian Funke, Snowflake Inc, San Francisco
Michael Gertz, Universitit Heidelberg
Anika Grof3, Hochschule Anhalt
Michael Grossniklaus, Universitat Konstanz
Torsten Grust, Universitit Tiibingen
Alfons Kemper, Technische Universitit Miinchen
Meike Klettke, Universitidt Rostock
Birgitta Konig-Ries, Friedrich-Schiller-Universitit Jena
Wolfgang Lehner, Technische Universitit Dresden
UIf Leser, Humboldt-Universitéit zu Berlin
Stefan Mandl, Exasol AG Niirnberg
Stefan Manegold, Centrum Wiskunde & Informatica (CWI), Amsterdam
Norman May, SAP SE, Walldorf
Sebastian Michel, Technische Universitiat Kaiserslautern
Thomas Neumann, Technische Universitdt Miinchen
Daniela Nicklas, Universitidt Bamberg
Marcus Paradies, DLR, Jena
Tilmann Rabl, HPI, Potsdam
Erhard Rahm, Universitét Leipzig
Norbert Ritter, Universitit Hamburg
Gunter Saake, Otto-von-Guericke-Universitit Magdeburg
Kai-Uwe Sattler, Technische Universitat Ilmenau
Harald Schoning, Software AG, Darmstadt
Holger Schwarz, Universitét Stuttgart
Bernhard Seeger, Philipps-Universitiat Marburg
Thomas Seidl, Ludwig-Maximilians-Universitdt Miinchen
Christin Seifert, Universitdt Duisburg-Essen
Glinther Specht, Universitit Innsbruck
Knut Stolze, IBM Research & Development, Boblingen
Uta Storl, Hochschule Darmstadt
Jens Teubner, Technische Universitit Dortmund
Jonas Traub, Technische Universitéit Berlin
Gottfried Vossen, Universitiat Miinster
Lena Wiese, Fraunhofer ITEM, Hannover
Wolfram Wingerath, Bagend, Hamburg






Inhaltsverzeichnis

Wissenschaftliche Beitrage

Database Technology

Alexander Kumaigorodski, Clemens Lutz, Volker Markl

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing

Josef SchmeiBler, Maximilian E. Schiile, Viktor Leis, Thomas
Neumann, Alfons Kemper
B?-Tree: Cache-Friendly String Indexing within B-Trees . . . . . . . . . .

Julian Weise, Sebastian Schmidl, Thorsten Papenbrock
Optimized Theta-Join Processing . . . . . . . . . . .. .. ... .....

Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May,
Robert Schulze, Alexander Bohm, Guido Moerkotte, Michael
Grossniklaus

Precise, Compact, and Fast Data Access Counters for Automated Physical
Database Design . . . . . . . . . . . e

Jonas Dann, Daniel Ritter, Holger Froning
Exploring Memory Access Patterns for Graph Processing Accelerators . .

Lukas Karnowski, Maximilian E. Schiile, Alfons Kemper, Thomas
Neumann
Umbra as a Time Machine: Adding a Versioning Type to SQL . . . . . . .

ML & Data Science

Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner
Aggregate-based Training Phase for ML-based Cardinality Estimation . .

19

39

59

79

101

123

135



Nico Lassig, Sarah Oppold, Melanie Herschel
Using FALCES against bias in automated decisions by integrating fairness
in dynamic model ensembles . . . . . . .. ... .. ... .. ... ... 155

Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl
Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive
Clustering . . . . . . . i i it e e e e 175

Steffen Kléibe, Stefan Hagedorn
Applying Machine Learning Models to Scalable DataFrames with Grizzly 195

Data Integration, Semantic Data Management, Streaming

Stefan Lerm, Alieh Saeedi, Erhard Rahm
Extended Affinity Propagation Clustering for Multi-source Entity Resolution 217

Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan

Fischer

Flexible data partitioning schemes for parallel merge joins in semantic

web queries . . . . ... e e 237

Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm
Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 257

Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl
Towards Resilient Data Management for the Internet of Moving Things . . 279

Kevin Gomez, Matthias Taschner, M. Ali Rostami, Christopher Rost,
Erhard Rahm
Graph Sampling with Distributed In-Memory Dataflow Systems . . . . . . 303

Aslihan Ozmen, Mahdi Esmailoghli, Ziawasch Abedjan
Combining Programming-by-Example with Transformation Discovery
from large Databases . . . . . . . ... . ... ... ... ... 313

Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten
Binnig
Towards Learned Metadata Extraction for Data Lakes . . . . . . . . . .. 325



Tanja Auge, Andreas Heuer
Tracing the History of the Baltic Sea Oxygen Level . . . . . . . . ... ..

(Industrial) Use Cases & Applications

Corinna Giebler, Christoph Groger, Eva Hoos, Rebecca Eichler,
Holger Schwarz, Bernhard Mitschang
The Data Lake Architecture Framework . . . . . . . .. ... ... ...

Lars Gleim, Liam Tirpitz, Stefan Decker
FactStack: Interoperable Data Management and Preservation for the Web
and Industry 4.0 . . . . . . . e e e e

Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann,
Stefanie Scherzinger
Silentium! Run—Analyse—Eradicate the Noise out of the DB/OS Stack . . .

Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia
Lenfers
Data Management in Multi-Agent Simulation Systems . . . . . . ... ..

Liste der Autorinnen und Autoren

397






Wissenschaftliche Beitrage






Database Technology






K.-U. Sattler et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2021 19

Fast CSV Loading Using GPUs and RDMA for In-Memory
Data Processing

Alexander Kurnaigorods.ki,1 Clemens LutzZ Volker Markl?

2021

AN =
RESULTS o5
REPRODUCED

Abstract: Comma-separated values (CSV) is a widely-used format for data exchange. Due to
the format’s prevalence, virtually all industrial-strength database systems and stream processing
frameworks support importing CSV input.

However, loading CSV input close to the speed of I/O hardware is challenging. Modern I/O devices
such as InfiniBand NICs and NVMe SSDs are capable of sustaining high transfer rates of 100 Gbit/s
and higher. At the same time, CSV parsing performance is limited by the complex control flows that
its semi-structured and text-based layout incurs.

In this paper, we propose to speed-up loading CSV input using GPUs. We devise a new parsing
approach that streamlines the control flow while correctly handling context-sensitive CSV features
such as quotes. By offloading I/0O and parsing to the GPU, our approach enables databases to load
CSVs at high throughput from main memory with NVLink 2.0, as well as directly from the network
with RDMA. In our evaluation, we show that GPUs parse real-world datasets at up to 76 GB/s, thereby
saturating high-bandwidth I/O devices.

Keywords: CSV; Parsing; GPU; CUDA; RDMA; InfiniBand

1 Introduction

Sharing data requires the data provider and data user to agree on a common file format.
Comma-separated values (CSV) is currently the most widely-used format for sharing tabular
data [DMB17, Nel7, Mel16]. Although alternative formats such as Apache Parquet [Ap17]
and Albis [Tel8] exist, in the future the CSV format will likely remain popular due to
continued advocacy by open data portals [KH15, Eu20]. As a result, database customers
request support for loading terabytes of CSV data [Oz18]. Fast data loading is necessary to
reduce the delay before the data are ready for analysis.

Fresh data are typically sourced either from disk or streamed in via the network, thus loading
the data consists of device I/O and parsing the file format [Me13]. However, recent advances
in I/O technologies have lead to a data loading bottleneck. RDMA network interfaces and
NVMe storage arrays can transfer data at 12.5 GB/s and beyond [Bel6, Ze19]. Research
suggests that CPU-based parsers cannot ingest CSV data at these rates [Ge19, SJ20].

I'tu Berlin, Germany, alxkum @ gmail.com
2 DFKI GmbH, Berlin, Germany, clemens.lutz@dfki.de
3 TU Berlin & DFKI GmbH, Germany, volker.markl @tu-berlin.de
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In this paper, we investigate how I/O-connected GPUs enable fast CSV loading. We
stream data directly to the GPU from either main memory or the network using fast GPU
interconnects and GPUDirect. Fast GPU interconnects, such as AMD Infinity Fabric [AM19],
Intel CXL [CX19], and Nvidia NVLink [Nv17], provide GPUs with high bandwidth access
to main memory [Le20b], and GPUDirect provides GPUs with direct access to RDMA
and NVMe I/O devices [Nv20a]. Furthermore, next-generation GPUs will be tightly
integrated into RDMA network cards to form a new class of data processing unit (DPU)
devices [Nv20b]. To parse data at high bandwidth, we propose a new GPU- and DPU-
optimized parsing approach. The key insight of our approach is that multiple data passes in
GPU memory simplify complex control flows, and increase computational efficiency.

In summary, our contributions are as follows:

(1) We propose a new approach for fast, parallel CSV parsing on GPUs (Section 3).

(2) We provide a new, streamed loading strategy that uses GPUDirect RDMA [Nv20a]
to transfer data directly from the network onto the GPU (Section 4).

(3) We evaluate the impact of a fast GPU interconnect for end-to-end streamed loading
from main memory and back again (Section 5). We use NVLink 2.0 to represent the
class of fast GPU interconnects.

The remainder of this paper is structured as follows. In Section 2, we give a brief overview
of performing I/O on GPUs, and of related work on CSV parsing. Then, we describe our
contributions to CSV parsing and streaming I/O in Sections 3 and 4. Next, we evaluate
our work in Section 5, and discuss our findings on loading data using GPUs in Section 6.
Finally, we give our concluding remarks in Section 7.

2 Background and Related Work

In this section, we describe how GPUDirect RDMA and fast GPU interconnects enable
high-speed I/O on GPUs. We then give an overview of CSV parsing, and differentiate our
approach from related work on CSV loading.

2.1 1/0 on GPUs

GPUs are massively parallel processors that run thousands of threads at a time. The
threads are executed by up to 80 streaming multiprocessors (SMs) on the Nvidia “Volta”
architecture [Nv17]. Each SM runs threads in warps of 32 threads, that execute the same
instruction on multiple data items. Branches that cause control flow to diverge thus slow
down execution (warp divergence). Within a warp, threads can exchange data in registers
using warp shuffle instructions. Up to 32 warps are grouped as a thread block, that can
exchange data in shared memory. The GPU also has up to 32 GB of on-board GPU memory.
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I/0O on the GPU is typically conducted via a PCIe 3.0 interconnect that connects the GPU to
the system at 16 GB/s. Recently, fast interconnects have emerged that provide system-wide
cache-coherence and, in the case of NVLink 2.0, up to 75 GB/s per GPU [IB18]. Databases
usually use these interconnects to transfer data between main memory and GPU memory,
thus linking the GPU to the CPU. However, GPUDirect RDMA and GPUDirect Storage
connect the GPU directly to an I/O device, such as an RDMA network interface (e.g.,
InfiniBand) or an NVMe storage device (e.g., a flash disk). This connection bypasses the
CPU and main memory by giving the I/O device direct memory access to the GPU’s
memory. Although the data bypasses the CPU, the CPU orchestrates transfers and GPU
execution.

GPUDirect Storage has been used in a GPU-enabled database to manage data on flash
disks [Lel6]. In contrast, we propose to load data from external sources into the database.

In summary, fast interconnects and GPUDirect enable the GPU to efficiently perform I/O.
In principle, these technologies can be combined. However, due to our hardware setup,
in our experimental evaluation we distinguish between NVLink 2.0 to main memory, and
GPUDirect RDMA with InfiniBand via PClIe 3.0.

2.2 CSV Parsing

CSV is a tabular format. The data are logically structured as records and fields. Thus, parsers
split the CSV data at record or field boundaries to facilitate later deserialization of each
field. The parser determines the structure by parsing field (’,’) and record (’\n’) delimiters,
as CSV files provide no metadata mapping from its logical structure to physical bytes.
Quotes (°"’) make parsing more difficult, as delimiters within quotes are literal characters
and do not represent boundaries. The CSV format is formalized in RFC4180 [ShO05],
although variations exist [DMB17].

Parsing CSV input in parallel involves splitting the data into chunks that can be parsed by
independent threads. Initially, the parser splits the file at arbitrary bytes, and then adjusts the
split offsets to the next delimiter [Me13]. Detecting the correct quotation context requires a
separate data pass, most easily performed by a single thread [Mel3]. As quotes come in
pairs, parallel context detection first counts all quotes in each chunk, and then performs a
prefix sum to determine if a quote opens (odd) or closes (even) a quotation [Eal6, Gel9].

CPU parsers have been optimized by eliminating data passes through speculative context
detection [Ge19, Lel7], and replacing complex control flows with SIMD data flows [Ge19,
LL19,Lel7, Mel3]. In contrast to these works, we optimize parsing for the GPU by applying
data-parallel primitives (i.e., prefix sum) and by transposing the data into a columnar format.
These optimizations reduce warp divergence on GPUs, but add two data passes for a total of
3 passes (without context detection) or 4 passes (with context detection). We reduce the
overhead of these additional passes by caching intermediate data in GPU memory.
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Stehle and Jacobsen have presented a GPU-enabled CSV parser [SJ20]. Their parser tracks
multiple finite state machines to enable a generalization to other data formats, e.g., JSON
or XML. Our evaluation shows that this generality is computation-intensive and limits
throughput. In contrast, we explore loading data directly from an I/O device and a fast GPU
interconnect. These technologies require a fast CSV parsing approach. We thus minimize
computation by specializing our approach to RFC4180-compliant CSV data. However, our
approach is capable of handling CSV dialects [DMB17] by allowing users to specify custom
delimiters and quotation characters at runtime. In addition, our approach can detect certain
errors with no performance penalty, e.g., CSV syntax issues involving “ragged” rows with
missing fields and cell-level issues such as numerical fields containing units. Detected issues
can be logged and reported to the user.

3 Approach

In this section we introduce a new algorithm, CUDAFastCSV, for parsing CSV data that is
optimized for GPUs. Optimizing for GPUs is challenging, because parsers typically have
complex control flows. However, fast GPU kernels should regularize control flow to avoid
execution penalties caused by warp divergence. Therefore, our approach explores a new
trade-off: we simplify control flow at the expense of additional data passes, and exploit the
GPU’s high memory bandwidth to cache the data during these passes. This insight forms
the basis on which we adapt CSV parsing to the GPU architecture.

We first give a conceptual overview of our approach in Figure 1. Next, we describe and
discuss each step in more detail with its challenges and solutions in the following subsections.

Conceptually, the CSV input is first transferred to GPU memory from a data source, e. g.,
main memory or an I/O device. The input is then split into equally sized chunks to be
processed in parallel. With the goal to index all field positions in the input data, we first
count the delimiters in each chunk and then create prefix sums of these counted delimiters.
Using the prefix sums, the chunks are processed again to create the Fieldsindex. This index
allows the input data to be copied to column-based tapes in the next step. Tapes enable

CSVinput
|
e
Host memory

GPU memory

L |

Splitinto chunks . Count delimiters o Prefix-sum: N Create | Create tapes | Deserialize

P : in chunks "1 Field offsets "| Fieldsindex for columns tapes

Data Pass Data Pass Data Pass

Fig. 1: Conceptual overview of our approach
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us to vectorize processing by transposing multiple rows into a columnar format. Creating
the FieldsIndex and tapes are logically separate steps, but can be fused into a single data
pass. Finally, each tape is deserialized in parallel. The resulting data are column-oriented
and can then be further processed on the GPU or copied to another destination for further
processing, e. g., to the host’s main memory.

In this default Fast Mode, the parser is unaware of the context and correct quotation scope
when fields are enclosed in quotation marks. To create a context-aware FieldsIndex, we
introduce the Quoted Mode, as fields may themselves contain field delimiters. Quoted Mode
is an alternative parsing mode that additionally keeps track of quotation marks. Quoted
Mode allows us to parallelize parsing of quoted CSV data, but it is more processing intensive
than the default parsing mode. However, as well-known public data sources indicate that
quotes are rarely used in practice>, the main focus of our work is on the Fast Mode.

In this section, we assume the CSV input already resides in GPU memory. In Section 4, we
present Streaming I/0, which allows incoming chunks of data to be parsed without the need
for the entire input data to be in GPU memory.

Overall, our data-parallel CSV parser solves three main challenges: (1) splitting the data into
chunks for parallel processing, (2) determining each chunk’s context, and (3) vectorized
deserialization of fields with their correct row and column numbers.

3.1 Parallelization Strategy

Parsing data on GPUs requires massive parallelism to achieve high throughput. In the
following, we explain how we parallelize CSV parsing in our approach.

Simply parallelizing by rows requires iterating over all data first. It also results in unevenly
sized row lengths. This causes subsequent parsing or deserialization threads in a warp to
stall during individual processing, thus limiting hardware utilization. Instead, Figure 2
shows how we split the input data at fixed offsets to get equally sized chunks. These chunks

chunk 0

1D, Country, I50Code, Population\n 5
URSLY 1o alaicden) ID, Country, ISOCode, Populationnl, Germany, DE, 83149319x2, Spain, ES, 4

1,Germany, DE, 83149319\n

2,5pain, ES, 47007367\n chunkl
3,France, FR, 67076431\n 7007367w3, France, FR, 6707643104, Italy, IT, 6031711615, Japan, JP, 1261
4,Italy,IT,60317116\n

,Japan, JP, 126150745\n chunk2

& o

,China,CN,1427647786\n 5074516, China,CN, 142764778617, United States of America,US, 328239
,United States of America,US,328239523\n
,Canada, CA,37894799\n

=i

chunk3
5238, Canada, CA, 378947999, Australia, AU, 2572189210, Russian F...

- ®

Fig. 2: Splitting input into equally sized, independent, chunks

4Kaggle. https://www.kaggle.com/datasets?filetype=csv
SNYC OpenData. https://data.cityofnewyork.us/browse?limitTo=datasets
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are independent of each other and individually processed by a warp. This avoids threads
from becoming idle as they transfer and process the same amount of data.

The choice of chunk size and how a warp loads and reads its chunks impacts the paralleliz-
ability of the delimiter-counting process and, ultimately, the entire parsing process. Because
coalesced byte-wise access is not enough to saturate the available bandwidth, we read four
bytes per thread, which correspond to the 128 bytes of a GPU memory transaction per warp.
However, we experimentally find that looping over multiple consecutive 128-byte chunks
per warp increases bandwidth even more, compared to increasing the number of thread
blocks. This reduces the pressure on the GPU’s warp scheduler and the CUDA runtime.

To identify chunk sizes that allow for optimal loading and processing, we evaluate several
kernels that each load chunks of different sizes. We discover that casting four consecutive
bytes to an int and loading the int into a register is more efficient than loading the bytes one
at a time. For input that is not a multiple of 128 bytes, a challenge here is to efficiently avoid
a memory access violation in the last chunk. Using a branch condition for bounds-checking
takes several cycles to evaluate. We avoid a branch altogether by padding the input data
with NULLSs to a multiple of 128 bytes during input preparation. Conventionally, strings
are NULL-terminated, thus any such occurrence simply causes these padded bytes to be
ignored during loading and later parsing.

3.2 Indexing Fields

We can now start processing the chunks. Our goal in this phase is to index all of the
field positions of the input data in the FieldsIndex. This index is an integer array of yet
unknown size rows*columns with a sequence of continuous field positions. We construct
the FieldsIndex in three steps.

In the first pass over the chunks, every warp counts the field delimiters in its chunk. The
number of delimiters in each chunk is stored in an array. For optimization purposes, record
delimiters are treated as field delimiters, thus, creating a continuous sequence of fields.

Chunk Delimiters Prefix sum
chunk @ (offset)
ID,Country, ISOCode, Populationwl,Germany,DE, 8314931902, Spain,ES, 4 1 0
chunk 1
7007367n3, France,FR, 6707643114, Italy,IT,60317116w5,Japan,JP, 1261 12 1
chunk 2
50745n6,China,CN,1427647786w7,United States of America,US, 328239 8 23
chunk 3
5238, Canada,CA,3789479919, Australia,AU,25721892wn10,Russian F... 10 31

Fig. 3: Computing the field offset for every chunk using a prefix sum
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Prefix sum Chunk
(offset) 0— 1 2 3 45 6 (7 8, 9 10—t
0 + ID,Country, ISOCode, Populationwnl, Germany, DE, 831493192, Spain,ES, 4

12, 13 14 15 16,17 18- 19 20, 21 22 23
1 + 70073673, France,FR, 670764314, Italy,IT,60317116w5,Japan,JP,1261

24 25 26 27 28 29 30 31
23 + 50745n6,China,CN, 14276477867 ,United States of America,US,328239

32 33 34— 35 36, 37 38 39 40 4
31 + 5238, Canada, CA, 378947999, Australia,AU,25721892w10,Russian F...

Fig. 4: Using the chunk’s prefix sum to infer field positions

In the second phase, we compute the chunks’ field offsets with an exclusive prefix sum, as
illustrated in Figure 3. At the end of the prefix sum calculation, the total number of fields
is automatically available. We divide the number of fields by the number of columns to
obtain the number of rows, and allocate the necessary space for the FieldsIndex array in
GPU memory. The number of columns is specified in the table schema.

In the third and final phase, the FieldsIndex can now be filled in parallel. We perform a
second pass over all the chunks and scan for field delimiters again. As shown in Figure 4,
the total number of preceding fields in the input data can instantly be inferred using the
prefix sum at a chunk’s position.

For a thread to correctly determine a field’s index when encountering its delimiter, however,
it also needs to know the total number of delimiters in the warp’s preceding threads. Thus,
for every 128 byte loop iteration over the chunk, threads first count how many delimiters
they have in their respective four byte sector. Since threads within a warp can efficiently
access each other’s registers, calculating an exclusive prefix sum of these numbers is fast.
These prefix sums provide the complete information needed to determine a field’s exact
position and index to store it in the FieldsIndex array. The length of a field can also be
inferred from the FieldsIndex.

3.2.1 Quoted Mode

For the Quoted Mode, additional steps are required to create a correct FieldsIndex.

When counting delimiters in the first phase, quotation marks are simultaneously counted in
a similar manner. After calculating the prefix sums for the delimiters, the prefix sums for
the quotation marks are created as well. In the third phase, during the second pass over the
chunks when counting delimiters again, quotation marks are also counted again, and prefix
sums are created for both within the warp.
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ID,Name, Philosophy\n

1f"Aristotle"PJ"Quality is not an actl] it is a habit."|H

2,"Plato", "When men speak ill of theel live so as nobody may believe them."\n
3,"Epictetus","It's not what happens to you, but how you react to it that matters."\n

FieldsIndex

0 1 2 3 4 5 B 7 8 9 W 0 R B U 1 stream 2 3 4 5 6 7 8 9 M 1
compaction

0 1
0 3|8 19 20133 0 7375 0 149151 0 163 0 233 .. 0 3|8 19 21 33 73 75 149/151 163233 ...

Fig. 5: Additional pass in Quoted Mode to remove invalid delimiters

We then exploit the fact that a character is considered quoted whenever the number of
preceding quotation marks is uneven. Before writing a field’s position into the FieldsIndex
when encountering a record or field delimiter, first the number of total preceding quotation
marks at this position is checked. Should that number be uneven, a sentinel value of 0 is
written to the FieldsIndex at the index that the field’s position would otherwise have been
written to. The sentinel value represents an invalid delimiter. This approach also allows for
quotation symbols inside fields since, in accordance with RFC4180, quotation marks that
are part of the field need to be escaped with another quotation mark.

After the FieldsIndex is created, a stream compaction pass is done on the FieldsIndex to
remove all invalid, i. e., quoted, delimiters and remove gaps between valid, i. e., unquoted,
delimiters. We illustrate an example with valid and invalid field delimiters in Figure 5.
Separating this additional step from the actual FieldsIndex creation simplifies control flow
and helps to coalesce writes to memory.

3.3 Deserialization

Efficient deserialization on the GPU is a many-sided problem.

068 Fickd

. - 34[{ilGAs1 972 . Not only is the question of how to vectorize deserialization
challenging, but also how to keep the entire warp occupied.
TS TE 3T T8 A simple approach is to have every thread deserialize a

field. However, we must assume that neighboring columns
ﬁxmﬂ have different data types. Constructing a generic kernel
+3x10) -es3 | that can handle all data types involves many branches,
g:lgj causing warp divergence. Additionally, using any row-based

approach requires adding lots of complexity to work in
parallel. Complexity that is likely to cause idle threads. Any
approach that is column-based, however, can make use of the fact that all fields in the
column have the same data type, thus, giving us an easy pattern to vectorize. Every thread in
the warp deserializes one field, allowing the entire warp to deserialize 32 fields in parallel.
Similar to SQL’s DDL (Data Definition Language), users specify a column’s maximum

Fig. 6: Deserialization
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length along its type for deserialization purposes. To keep the warp’s memory access pattern
coalesced, every thread first consecutively reads four aligned bytes into a dedicated register
until enough bytes were read to satisfy the specified length of the column. If all column
fields are contiguous in memory, the warp is likely able to coalesce memory accesses. In a
loop equal to the size of the specified column length, every thread can now read and convert
each digit from a register while calculating the running sum, as illustrated in Figure 6.

While this approach can lead to workload imbalances within a warp, i. e., when neighboring
fields in a warp have unequal lengths, this approach causes no warp divergence and only
uses one branch in the entire kernel.

3.4 Optimizing Deserialization: Transposing to Tapes

Since our deserializer uses a column-based approach, its memory access pattern only allows
for a coalesced and aligned memory access with full use of all the relevant bytes when given
the optimal circumstances. CSV, however, is a row-oriented storage format. The optimal
circumstances would only come into effect when there is just one column or the field’s
data types are identical along a multiple of 32 wide field count. To improve deserialization
performance for columns with various data types we introduce deserialization with tapes.
Tapes are buffers in which the parser temporarily stores fields in a column-oriented layout.
The column-oriented layout enables vectorized deserialization of fields.

We illustrate our approach with an example in Figure 7. A separate tape for every column is
created in an additional step during the parsing process. We assume that the length of each
column is specified by the table’s schema (e.g., CHAR(18)). We then define a tape’s width
(tapeWidth) equal to its specified column length. For every field in the FieldsIndex, the
input’s field value is copied to its column’s tape at an offset equal to the field’s row number:

tapeAddress(field) :=tapecoi(fictay + row(field) X tapeWidtheoi(sicia)
Field values that do not fully use their tapeWidth are right-padded with NULLs on the tape.
Disease, Year,Country,Cases\n
COVID-19,2020,DE, 184492\n

HIN1,2009,ES,1538\n
Spanish Flu,1918,FR,187500\n

Disease : char(12) Year : uint(4) Country : char(2) Cases : uint(8)

C/O|V|I D/ -1 9M\0\0\0NO 2/ 0/2/0 D E 118 4 49 2 \0/\0
Hi 1N 1 [\0[\0[\0[\0[\0 |\ \0\O 2/0/0/9 E S 1153 8\0\0|\0(\0
Siplaln/ii|s|h Flllul\o 17918 F R 1187 5 00 \0\0

Fig. 7: Visual representation of deserialization tapes
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For our Fast Mode, materializing the entire FieldsIndex in GPU memory can be skipped and
instead the chunk’s FieldsIndex is temporarily written to shared memory. When a chunk’s
FieldsIndex is complete, the field values can be directly copied onto the tapes. However, the
length of the chunk’s last field cannot be calculated from the chunk’s FieldsIndex alone.
Instead, we work around this obstacle by saving each chunk’s first delimiter offset along
the chunk’s delimiter count during the first step of the parsing process. Combining these
two steps saves us from materializing the FieldsIndex and from having to do a total of four
passes over the input data. However, we cannot perform this optimization in the Quoted
Mode, as the complete FieldsIndex is required to detect the quotation context.

4 Streaming 1/0

We extend our approach to allow streaming of partitioned input data. This enables us to
start parsing the input before it is fully copied onto the GPU, i.e., reducing overall latency,
and for input that is too big to otherwise fit into the GPU’s memory.

The input is split into partitions before being copied to the GPU’s memory for individual
and independent parsing without the need for the complete input data to be on the GPU.
The partitions are equal in length and of size streamingPartitionSize.

4.1 Context Handover

In typesetting, widows are lines at the end of a paragraph left dangling at the top from the
previous page. Orphans are lines at the start of a paragraph left dangling at the bottom for
the next page. Both are separated from the rest of their paragraph. Partitioning our input data
creates a similar effect that we need to account for, as illustrated in Figure 8. In a partition,
we consider the last row an orphan, which will not be parsed. Instead we copy the orphan’s
bytes to a widow buffer. The next partition prepends available data from the widow buffer
to its partition data before starting the parsing process. The widow buffer’s size is defined
by a configuration variable. We set its default size to 10 KB, which is sufficient to handle
single rows spanning over 10,000 characters.

ES,47007367\n
JP,126150745\n
DE, 83149319\n
FR, 67076431\n
IT,60317116\n ! . |
CN,1427647786\n Rows parsed in partition n

Widow Orphan
Partition n-1 Partition n | Partition n+1

...7367\nJP,12615|0745nDE, 8314931 9wFR, 67076431‘ \IT, 60317 116wCN,142764. ..

Fig. 8: Widows are taken from the previous partition, while orphans are left for the next partition



Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 29

4.2 End-to-End Loading

We realize streaming as WorkStream items in our imple-
mentation, representing a CUDA stream and a partition
for processing. Every WorkStream item has a dedicated
| : partitionBuffer in the GPU’s device memory that is
| <2 used to copy its partition’s chunks into. For RDMA
= A input data, this partitionBuffer is also automatically
pataFiow registered for GPUDirect transfers via RDMA.
In Figure 9, we show the four states of a WorkStream.
(1) First, an available WorkStream requests a remote
memory read, which (2) the remote host responds to
by copying the requested data directly into GPU memory. Afterwards, (3) the local CPU
schedules a kernel for the WorkStream for parsing. Finally, (4) the kernel is synchronized
after finishing and the partition’s result data can be optionally transferred to main memory.

Local Parser Host Remote Data Host

CPU 1

Fig. 9: A WorkStream’s control and
data flow for its partition

5 Evaluation

In this section we evaluate the performance of parsing CSV data on GPUs.

5.1 Experiment Setup

In the following, we give an overview of our experimental evaluation environment.

Hardware. We use two identical machines for the majority of our testing (Intel Xeon
Gold 5115, 94 GB DDR4-2400, Nvidia Tesla V100-PCIe with 16 GB HBM2, Mellanox
MT27700 InfiniBand EDR, Ubuntu 16.04). A third machine was used for NVLink related
evaluations (IBM AC922 8335-GTH, 256 GB DDR4-2666, Nvidia Tesla V100-SXM2 with
16 GB HBM2, Ubuntu 18.04). For all our tests, we use only one NUMA node, i.e., a single
GPU and CPU with their respective memory.

Methodology. We measure the mean and standard error over ten runs with the help of high-
resolution timers. For GPU-related measurements, we adhere to Nvidia’s recommendations
when benchmarking CUDA applications [FJ19]. The time for the initialization of processes,
CUDA, or memory, is not included in these measurements. All input files are read from the
Linux in-memory file system tmpfs. With the exception of NVLink-related measurements,
we note that our measurements are stable with a standard error of less than 5% from the
mean. We measure the throughput in GB/s.

Datasets. For our evaluations we use a real-world dataset (NYC Yellow Taxi Trips
Jan-Mar 2019, 1.9 GB, 22.5M records, 14 numerical fields out of 18, short and con-
sistent record lengths), a standardized dataset (TPC-H Lineitem 2.18.0, 719 MB, 6M records,
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16 fields of various data types and string fields with varying lengths), and a synthetic dataset
(int_444, 1 GB, 70M records, three fields of four random digits).

Databases and Parsers. In Section 5.2.2, we compare CUDAFastCSV in Fast Mode to
CPU and GPU baselines. OmniSciDB (v5.1.2), PostgreSQL (v12.2), HyPer DB (v0.5),
ParPaRaw [SJ20], RAPIDS cuDF (v0.14.0), and csvmonkey (v0.1). PostgreSQL and
csvmonkey are single-threaded, all other baselines parse in parallel on all CPU cores or on
the GPU. Except for PostgreSQL and ParPaRaw, we explicitly disable quotation parsing.

I/0. In Section 5.2.3, we stream the input data from four I/O sources to compare performance
against the potentially transfer bound parsing from Section 5.2.2. We stream data over
interconnects and InfiniBand using two datasets. In contrast to end-to-end parsing, results
are not copied back to the host’s main memory. On-GPU serves as a baseline with the input
data already residing in GPU memory. PCle 3.0 serves as an upper bound for I/O devices on
the host. NVLink 2.0 is, in comparison to PCle 3.0, a higher-bandwidth and lower-latency
alternative [Le20b]. In RDMA with GPUDirect one machine acts as the file server, while
another machine with CUDAFastCSV in Fast Mode streams the input data using RDMA
directly into the GPU’s memory using GPUDirect, bypassing the CPU and main memory.

5.2 Results

In this section, we present our performance results and comment on our observations.

5.2.1 Tuning Parameters

In this section, we evaluate the parameters for performance tuning and scalability that we
introduce in Section 3.

Chunk Size. The choice of the chunkSize in CUDAFastCSV determines how much of the
input data a warp processes. An increasing size requires more hardware resources per warp
but also reduces the overhead associated with scheduling, launching, and processing new
thread blocks or warps. Figure 10 shows the throughput as a function of the chunk size. The
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Fig. 10: Impact of chunkSize on int_444 Fig. 11: Performance of input size for int_444
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observed performance reflects our design discussion in Section 3.1. The memory bandwidth
for small chunks initially increases when processing 128-byte multiples, but then drops,
e. g., before 2048 bytes. The drop stems from one less concurrent thread block running on
the SM due to a lack of available shared memory resources. A slight rise in performance
before every drop shows the improved resource utilization of the available resources. We
conclude that the best chunk size is 1024 bytes.

Input Size. Figure 11 shows the ramp up of CUDAFastCSV’s performance when given an
increasingly larger input file. While the 1 MB file only achieves 4.5 GB/s, the throughput
already strongly increases with a 10 MB file to 33.6 GB/s and continues to rise until it
approaches its limit of approximately 90 GB/s. We conclude that performance scales quickly
with regard to the input size, and maximum throughput is approached at 100 MB.

Streaming Size. In Figure 12, we define a baseline of approximately 12 GB/s for PCle 3.0
as it represents the maximum possible throughput for that machine. In our results, the
throughput scales almost linearly with the streamingPartitionSize up until 10 MB before it
hits its maximum of 11 GB/s at 20 MB. For comparison, we include results from the same
experiment over NVLink 2.0. Ramp-up speed is very similar to PCIe 3.0 but keeps rising
when the limitations of PCle 3.0 would otherwise set in. In contrast, with NVLink 2.0 we
achieve a peak throughput of 48.3 GB/s. Thus, NVLink 2.0 is 4.4x faster than PClIe 3.0.
However, our implementation is not able to achieve NVLink’s peak bandwidth due to
the limited amount of DMA copy engines, and due to the overhead from data and buffer
management required for streaming. This leads to delays, as transfers and compute are not
fully overlapped. We conclude that PCle 3.0’s bandwidth is saturated quickly and its best
streamingPartitionSize is already achieved at 20 MB. NVLink 2.0 exposes PCle 3.0 as a
bottleneck for end-to-end parsing in comparison.

Warp Index Buffer Size. The warpIndexBufferSize parameter in CUDAFastCSV limits the
maximum number of found fields in all chunk segments within a warp and is used to reserve
the kernel’s shared memory space in Fast Mode or, in Quoted Mode, the required space in
global memory for the FieldsIndex. It can be altered from its default, 2048 bytes, to increase
parallelism when the underlying data characteristics of the CSV input data allow for it. As
such, less shared memory resources are allocated per thread block, allowing for additional
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Fig. 12: Impact of parameter Fig. 13: Impact of oversized
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thread blocks to run concurrently on the SM. Figure 13 illustrates this behavior as the
amount of concurrent thread blocks steps down whenever the increasing size allocates too
many resources. For a chunk size of 1024, the smallest viable warpIndexBufferSize for the
int_444 dataset is 832. Maximum throughput of around 90.9 GB/s is kept up until 1536. The
default of 2048 falls into the 85.6 GB/s range. To accommodate for a worst-case scenario of
only having empty fields in a 1024 byte chunk, we would need a warpIndexBufferSize of
4096, which reduces our performance to 68.6 GB/s. Larger sizes reduce performance even
further. We conclude that the warpIndexBufferSize has a large impact on performance, as it
is dependent on the underlying structure of the input data.

5.2.2 Databases and Parsers

To evaluate end-to-end parsing performance of CUDAFastCSV, we benchmarked our
approach in Fast Mode against several implementations from different categories as
described in our experiment setup. We use the NYC Yellow Taxi and TPC-H dataset, residing
in the host’s main memory, and measure the time until all deserialized fields are available in
the host’s main memory in either a row- or a column-oriented data storage format.

NYC Yellow Taxi. The performance numbers reported for parsing and deserializing the
1.9 GB dataset in Figure 14 highlight the strength of CUDAFastCSV, which is only limited by
the PCle 3.0’s available bandwidth. This is especially noteworthy, as deserialization includes
nine floating point numbers and five integers out of the 18 total fields. The GPU-based
implementation, cuDF with its new and updated CSV implementation, achieves only a
quarter of the performance of CUDAFastCSV. Our approach is at least 4x times faster
than all CPU-based approaches, i.e., PostgreSQL, HyPer DB, OmniSciDB, csvmonkey,
and *Instant Loading (measured by Stehle and Jacobsen [SJ20] using 32 CPU cores).
CUDAFastCSV over NVLink 2.0 more than triples the performance compared to PCle 3.0.
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Fig. 14: Taxi end-to-end performance Fig. 15: TPC-H end-to-end performance
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g 6 60 Only ParPaRaw provides comparable perfor-
<) mance to CUDAFastCSV. To determine if
E. 40 25.9 ParPaRaw is being limited by the interconnect
%"20 ﬁ - in this instance, we additionally measured its
£ 0 on-GPU throughput for this dataset and com-

ParPaRaw FastMode  QuotedMode . . . . .
pared it to our implementation in Figure 16. In

Fig. 16: On-GPU throughput of ParPaRaw ~ cOmparison to ParPaRaw, our Quoted Mode

and CUDAFastCSV is 1.6x faster and our Fast Mode is even 3.7x

faster. The reason is that we are able to reduce

the overall amount of work, as we do not need to track multiple state machines, and our
approach is less processing-intensive as a result.

TPC-H Lineitem. Figure 15 shows CUDAFastCSV to have a slightly lower throughput
when compared to the previous dataset on both PCIe 3.0 and NVLink 2.0. The bottleneck
for this data set is the transfer of the larger result data back to the host, causing increasingly
longer delays between streamed partitions. For every 100 MB partition of TPC-H data
transferred to the GPU, approximately 118 MB of result data need to be transferred back
to the host, while the NYC Yellow Taxi data only need 93 MB per 100 MB. This causes
delays in input streaming and during processing, as kernel invocations are hindered by data
dependencies and synchronization. cuDF, another GPU-based implementation, shows a
similar drop in performance of approximately 10%. In contrast, some of the CPU-based
implementations were able to significantly improve their performance for the TPC-H dataset,
namely HyPer DB and csvmonkey, due to the smaller number of numeric fields that need to
be deserialized. NVLink 2.0 again more than triples the performance of CUDAFastCSV in
comparison to PCle 3.0.

523 T1/O

We present results for CUDAFastCSV when streamed over two interconnects and InfiniBand.
We evaluate performance using the NYC Yellow Taxi and TPC-H Lineitem datasets to
compare against the potentially transfer bound end-to-end parsing.

NYC Yellow Taxi. The baseline for Figure 17 is 60 GB/s, representing CUDAFastCSV’s
maximum possible performance over an interconnect to the GPU. As seen in the previous
section, while our implementation over PCle 3.0 can fully saturate the bus, it is still less
than a fifth of the on-GPU performance. Again, throughput over NVLink 2.0 more than
triples and shows the limitations of the PCle 3.0 system in comparison. Our RDMA with
GPUDirect approach, streaming the input data from a remote machine directly onto GPU
memory over the internal PCle 3.0 bus, is at an expected sixth of the on-GPU performance.
It is unclear why the GPUDirect connection is slower than the local copy, as the network
is not the bottleneck. Li et al. [Le20a] present similar results, and suggest that PCle P2P
access might be limited by the chipset.
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TPC-H Lineitem. The baseline is established in Figure 18 with 48.5 GB/s. Similarly to the
taxi dataset, PCle 3.0 is saturated but only at a sixth of the on-GPU performance, while
NVLink 2.0 performance is almost triple in comparison. For the RDMA with GPUDirect
approach we achieve similar performance for the TPC-H dataset. Overall, throughput for
this dataset is slightly lower for the baseline and for every interconnect, due to the increased
size of the result data and its consequences as described in the previous section.

5.2.4 Quoted Mode

The Quoted Mode is an alternative parsing mode that keeps track of quotation marks to
create a context-aware FieldsIndex. In contrast to the Fast Mode, the Quoted Mode involves
additional processing steps. We show a comparison between the two modes for three datasets
in Figure 19. For all three datasets, the Quoted Mode has roughly half the throughput of the
Fast Mode. The cause of this performance drop is the materialization of the FieldsIndex in
GPU memory combined with a subsequent stream compaction pass, which are avoided in
Fast Mode. We observe that the performance drops more for the NYC Yellow Taxi dataset
than for the TPC-H and int_444 datasets. The reason is that fields have less content on
average in NYC Yellow Taxi, thus the FieldsIndex is larger in proportion to the data size (i.e.,
more delimiters per MB of data). Nevertheless, throughput is still higher than that of other
implementations in our comparisons.
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Fig. 19: Fast Mode vs. Quoted Mode Fig. 20: Comparison across generations
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5.2.5 Hardware Scalability

In Figure 20, we compare four Nvidia GPU generations to assess the performance impact of
hardware evolution: Pascal, Turing, Volta, and Ampere. The lineup includes the server-grade
Tesla V100-PClIe GPU, and three high-end desktop-grade GPUs (Nvidia GTX 1080 Ti
with 11 GB GDDR5X, RTX 2080 Ti with 11 GB GDDR6, and RTX 3080 with 10 GB
GDDR6X). We measure the parsing throughput of our three datasets, with the data stored
in GPU memory. We observe that the throughput incrementally speeds up by factors of
1.61-2.18, 1.02-1.46, and 1.22—1.3 between the respective generations. The total increase
from Pascal to Ampere is 2.55-3.02 times.

To explain the reasons for the speed-up, we profile the parser on the Tesla V100. Profiling
shows that building the FieldsIndex and transposing to tapes accounts for 85% of the
execution time. The main limiting factor of this kernel are execution stalls caused by
instruction and memory latency. For the TPC-H dataset, warp divergence causes additional
overhead. Thus, throughput increases mainly due to the higher core counts (more in-flight
instructions) and clock speeds (reduced instruction latency) of newer GPUs. In contrast,
higher bandwidth at identical compute power (Volta vs. Turing, both having 14 TIPS for
Int32) only yields a significant speed-up when there is little warp divergence.

6 Discussion

In this section, we discuss the lessons we learned from our evaluation.

GPUs improve parsing performance. In comparison to a strong CPU baseline, our
measurements show that parsing on the GPU still improves throughput by 13x for the NYC
Yellow Taxi dataset. Compared to a weak baseline, throughput can even be improved by 73x
for the TPC-H Lineitem dataset. Thus, offloading parsing to the GPU can provide significant
value for databases.

Fast parsing of quoted data. We show that our approach is able to parallelize context
detection in Quoted Mode, and scale performance up to 51 GB/s. At this throughput, we are
near the peak bandwidth of NVLink 2.0.

Interconnect bandwidth limits performance. In all our measurements, PCle 3.0 does not
provide sufficient bandwidth to achieve peak throughput. Using NVLink 2.0 instead, the
throughput increases by 2.8-3.4x. This improvement shifts the bottleneck to our pipelining
strategy. Removing this limitation would increase throughput further by 1.6x.

Network streaming is feasible. We show that streaming data from the network to the
GPU is possible and provides comparable performance to loading data from the host’s
main memory over PCle 3.0. This strategy provides an interesting building block for data
streaming frameworks.
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GPUs can efficiently handle complex data format features. Features, such as quoted fields,
decrease parsing throughput to 43-55% of the non-quoted throughput. However, this reduced
throughput is still higher than the bandwidth provided by PCle 3.0 and InfiniBand. Thus,
the overall impact is no loss in performance. Only for faster I/O devices, e.g., 400 Gbit/s
InfiniBand, would Quoted Mode become a bottleneck.

GPUs facilitate data transformation. We show that GPUs efficiently transform row-
oriented CSV data into the column-oriented layout required by in-memory databases. As
saturating the I/O bandwidth requires only a fraction of the available compute resources,
GPUs are well-positioned to perform additional transformations for databases [No20].

Desktop-grade GPUs provide good performance per cost. For all our datasets, a desktop-
grade GPU is sufficient to saturate the PCle 3.0 interconnect. At the same time, desktop-grade
GPUs cost only a fraction of server-grade GPUs (7000 EUR for a Tesla V100 compared
to 1260 EUR MSRP for a RTX 2080 Ti in 2021). Thus, buying a server-grade GPU only
makes sense for extra features such as NVLink 2.0 and RDMA with GPUDirect.

7 Conclusion

In this work, we explore the feasibility of loading CSV data close to the transfer rates
of modern I/O devices. Current InfiniBand NICs transfer data at up to 100 Gbit/s, and
multiple devices can be combined to scale the bandwidth even higher. Our analysis shows
that CPU-based parsers cannot process data fast enough to saturate such I/O devices, which
leads to a data loading bottleneck.

To achieve the required parsing throughput, we leverage GPUs by using a new parsing
approach and by connecting the GPU directly to the I/O device. Our implementation
demonstrates that GPUs reach a parsing throughput of up to 100 GB/s for data stored in
GPU memory. In our evaluation, we show that this is sufficient to saturate current InfiniBand
NICs. Furthermore, our NVLink 2.0 measurements underline that GPUs are capable of
scaling up to emerging 200 and 400 Gbit/s I/O devices. We envision that in the future,
loading data directly onto the GPU will free up computational resources on the CPU, and
will thus enable new opportunities to speed-up query processing in databases and stream
processing frameworks.

In conclusion, I/O-connected GPUs are able to solve the data loading bottleneck, and
represent a new way with which database architects can integrate GPUs into databases.
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B2-Tree: Cache-Friendly String Indexing within B-Trees.

Josef SchmeiBer! Maximilian E. Schiile 2 Viktor Leis 3 Thomas Neumann 4 Alfons
Kemper 3

Abstract: Recently proposed index structures, that combine trie-based and comparison-based search
mechanisms, considerably improve retrieval throughput for in-memory database systems. However,
most of these index structures allocate small memory chunks when required. This stands in contrast to
block-based index structures, that are necessary for disk-accesses of beyond main-memory database

systems such as Umbra. We therefore present the B2-tree. The outer structure is identical to that of an
ordinary B+-tree. It still stores elements in a dense array in sorted order, enabling efficient range scan
operations. However, B2-tree is composed of multiple trees, each page integrates another trie-based
search tree, which is used to determine a small memory region where a sought entry may be found.
An embedded tree thereby consists of decision nodes, which operate on a single byte at a time, and
span nodes, which are used to store common prefixes. This architecture usually accesses fewer cache
lines than a vanilla B+-tree as shown in our performance evaluation. As a result, the B2-tree answers
point queries considerably faster.

Keywords: Indexing; B-tree; String

1 Introduction

Low overhead buffer managers are a fairly recent development which provide in-memory
performance in case the data does fit into RAM [Lel8; NF20]. However, database systems
based on such a low overhead buffer manager still require efficient index structures which
harness this new architecture. While systems like HyPer [KN11] could use pure in-memory
based index structures, like the Adaptive Radix Tree (ART) [LKN13] or the more recent
Height Optimized Trie (HOT) [Bil8], these are no longer an option for Umbra [NF20]. Pure
in-memory index structures usually offer better performance than various B-tree flavors,
yet their tendency to allocate small varying sized memory chunks limits their range of
applicability.

With the presentation of LeanStore [Lel8], Leis et al. revisited the role of buffer managers.
LeanStore is a storage engine designed to resolve the overhead issues of traditional buffer
management architectures [Ha08]. Its main feature is to abandon a hash table based pinning
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Fig. 1: The B2-tree consists of decision nodes, similar to B+-tree nodes that contain separators and
pointers to sub-nodes, and span nodes for common prefixes.

architecture, which buffer managers usually use, in favor of a technique called pointer
swizzling [GUWO09]. Umbra’s buffer manager extends this concept by the ability to serve
variable-sized pages with a minimum page size of 64 KiB [NF20]. This obviously affects the
architectural requirements imposed on index structures. The imposed constraint precludes
the use of most state-of-art pure in-memory based index structures. B-trees and their
variations, on the other hand, fit well into Umbra’s architecture. However, we found that
even a highly optimized B+-tree implementation is no longer competitive, with regard to
string indexing, in comparison to index structures like ART and HOT. Our B?-tree operates
on top of Umbra’s buffer manager and provides significant throughput improvements over
the original Umbra B+-tree.

Fig. 1 shows a small B?-tree. It hosts an embedded tree per B-tree page. This embedded
tree serves the purpose of directing incoming searches into narrowed down search spaces.
A search on the embedded tree yields a pair of slot indices which define a span wherein a
sought key may be found. Circular nodes point to the beginning of a search range, the upper
bound. Each search space is also highlighted by the distinct coloring of its records and the
corresponding node within the embedded tree.

Modern CPU architectures usually provide three layers of cache between their registers
and main memory in order to mitigate the imbalance between CPU performance and main
memory latency [SPB05]. Performing a naive binary search over all the entries stored on
a reasonably large B-tree page usually results in high lookup costs. This is especially the
case when the B-tree page is used to store variable-sized records. One of the main reasons
is the binary search’s tendency to produce cache-unfriendly memory access patterns and
its relatively high amount of branch mispredictions during the search [LKN13]. Some
approaches try to mitigate these effects by using smaller nodes, often as small as a single
cache line, which are optimized for cache hierarchies of modern processors [JC10; RR99;
SPBO5]. However, decreasing the page size down to the size of a single cache line may



B2-Tree: Cache-Friendly String Indexing within B-Trees 41

be infeasible or at least undesirable. Letting the storage backend handle such small pages
would also lead to a considerable overhead. In the end, the choice of a certain page size will
always be a trade-off.

We argue, that traditional index-structures for disk-based database systems can be adapted
for beyond main-memory database systems. This work focuses on the development of an
index structure based on the versatile B-tree layout. Thereby, we try to resolve the previously
stated cache-unfriendliness of most B-trees variants. The presented approach hence aims
to increase the number of successful cache accesses by applying data access patterns with
higher locality. Our approach utilizes a secondary embedded index contained within each
page. This secondary index is used to direct incoming searches to narrow down the search
space within a given page. Consequently, fewer cache lines will be accessed during the
search. We have chosen to retain the B+-tree [Co79] leaf layout, where keys are stored
sequentially in accordance to their ordering. This allows us also to maintain the usual
strength of B+-trees—their high range scan throughput.

This work’s main contributions are:

. the B2-tree, a disk-based index structure tuned for cache-friendly, page-local lookups,
. the adaption of radix trees to disk-based index structures,
. and a comparison to the already optimized Umbra B+-tree.

The focus of this work lies on the development of an index structure operating on given pages
administered by Umbra’s buffer manager. Concurrency is another aspect, our proposal utilizes
an optimistic synchronization technique [ChO1], namely Optimistic Lock Coupling (OLC)
[LHN19].

This work is structured as follows: Sect. 2 gives a summary of related work on modern
index structures. Sect. 3 introduces the B>-tree, which consists of the description of span
and decision nodes as well as insertion and retrieval algorithms. Finally, Sect. 4 compares
our proposed index structures to Umbra’s B+-tree.

2 Related Work

While there has been constant development and research in the area of index structures,
recent approaches mainly focus on main-memory database systems. Many of those index
structures are therefore not designed to be used in conjunction with a paging based storage
engine, however, their general design may still provide valuable insight.

There are a couple of proposals which aim to improve the cache-friendliness of B-trees.
One of which is the Cache Sensitive B+-Tree (CSB+-Tree) [JC10]. Completely different
approaches are the so-called Cache-Oblivious B-tree and the Cache-Oblivious string B-tree
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[BDFO05; BFKO06]. Both proposals are based on an important building block, the packed-
memory array (PMA). The PMA maintains its elements in physically sorted order, however,
elements are not organized in a dense manner, instead, empty spaces will be deployed as
necessary [BHO7].

The String B-Tree is a B-tree specifically optimized to manage unbounded-length strings
[FG99] while minimizing disk I/O. It is composed of Patricia tries [Mo68] as internal nodes
where each Patricia trie node stores only the branching character. This architecture enables
the use of a constant fanout independent of the lengths of the referenced strings since the
Patricia trie leafs only store logical pointers. For this reason, searches within the String
B-Tree have to progress optimistically. A search may thereby initially yield a result which
does not match the queried key. By comparing the resulting string with the actual query, the
length of the longest common prefix will be determined. This information is then used to
find the corresponding node within the Patricia trie in question. From there on the correct
path based on the actual difference between the resulting string and the queried key will be
taken.

Additionally, the choice of a concrete binary search implementation also plays an important
role. Index structures which depend heavily on binary search, like B-trees, require an
efficient implementation thereof to achieve the best possible performance. Khuong and
Morin suggest the use of their branch-free binary search implementation for arrays smaller
than the size of the L2 cache [KM17].

Masstree is another key-value store that has mainly been designed to provide fast operations
on symmetric multiprocessing (SMP) architectures [MKM12]. It stores all data in main
memory, hence it is constructed to be used within the context of main-memory database
system. Masstree’s design resembles a trie [Br59; Fr60] data structure with embedded
B+-trees as trie nodes.

3 The B?-tree

The B2-tree is a variation of the classic B-tree, its core structure is based on the B+-
tree layout. We extend the existing layout by embedding another tree into each page, as
emphasized by the name B2-tree. The term embedded tree refers to this tree structure,
it serves the purpose of improving the lookup performance while maintaining minimal
impact on the size consumption as well as on the throughput of insert and delete operations.
Our implementation also features some commonly known optimization techniques like the
derivation of a shortened separator during a split [Gal8; GLO1; Gr11].

Other approaches that combine or nest different index structures have already proved their
potential. Masstree for instance showed considerable performance improvements [MKM12].
However, Masstree is not designed to be used in conjunction with paging based storage
engines. Another point of concern is the direct correlation between the outer trie height and
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the indexed data. The inflexible maximum span length of eight bytes may lead to a relatively
low utilization and fanout of the lower tree levels when indexing strings, this is usually
caused by the sparse distribution of characters found in string keys. This is not unique to
Masstree: ART’s fanout on lower tree levels also decreases in such usage scenarios [Bil8].
B+-trees on the other hand feature a uniform tree height by design, since the tree height does
not depend on the data distribution. Comparison-based index structures such as the B+-tree
on the other hand are often outperformed by trie-based indexes in point accesses [Bil8].

Our approach intends to combine the benefits of both worlds, the uniform tree height of
B+-trees with the trie-based lookup mechanics, while still featuring a page based architecture.
Our trie-based embedded tree on each page serves the purpose of determining a limited
search space where the corresponding queried key may reside. However, we still utilize
a comparison-based search on these limited subranges. This design aims to improve the
general cache-friendliness of the search procedure on each page.

3.1 The Embedded Tree

In the following we will present the inner page layout of our B>-tree, the general outline
can be observed in Fig. 2. As already mentioned, the general page organization follows the
common B+-tree architecture, hence, payloads are only stored in leaf nodes. Leaf nodes
are also interlinked, like it is originally the case in a B+-tree, in order to maintain the high
range scan throughput usually achieved by B+-trees.

Span Node Range Array

https:// e
0

2

Page Entries
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Fig. 2: The embedded tree structure together with an array responsible for translating the values
stored in the embedded tree (the ;) into search ranges where sought key-value pairs may reside. Its
values are the exclusive upper bounds of offsets j for the rightmost table (page entries). The grayish
virtual nodes are not part of the physically stored tree structure. Empty search ranges are omitted in
the rightmost table. This table shows the complete form of the stored keys, without their associated
payload.

The embedded tree itself is composed of a couple of different node types. First, we define the
decision node, it acts like a B-tree node by directing incoming queries onto the corresponding
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Fig. 3: Memory layout of all the embedded nodes deployed by B2-tree. Each node contains a one
byte large header. A flag inside the header determines whether a node contains pointers to subtrees or
references to search ranges.

child. Probably the main difference to a B-tree node, is the fact that these nodes operate on a
fixed size decision boundary represented by a single byte in our implementation, in contrast
to B+-tree nodes, which usually operate on multiple bytes at once. We hence decompose
keys into smaller units of information similar to how the trie data structure operates [Br59;
Fr60]. Nodes of this decision type direct the search to the first child where the currently
investigated byte of the search key is less or equal to the separator. The fanout of this
type of node is also limited in order to improve data locality. Another similarity to B-tree
nodes is the fact that they can be hierarchically arranged just like B-tree nodes. This node
type bears some similarity to the branch node found in Patricia tries [M068]. However,
Patricia’s branch nodes only compare for equality, our decision nodes use the range of
bytes to determine the position of a corresponding child. In Fig. 2 this type is illustrated as
divided rectangular shape. Fig. 3 illustrates the memory layout for this node type. Note that,
inner decision nodes and their leaf counterparts share the same layout, they just differ in
the interpretation of their two byte large payloads. Leaf nodes terminate the search for a
queried key even if it is not fully processed, the remainder of a queried key will then be
further processed by the subsequent comparison based search.

The second node type we define are span nodes. These store the byte sequence which forms
the longest common prefix found in the subtree rooted at the current node. Their memory
layout is shown in Fig. 3. This node type can be compared to the extension concept of the
Patricia trie [Mo68], however, span nodes have two additional outgoing edges to handle
non-equality. Note that, by using an order preserving storage layout for the nodes, there
is no necessity to store any next pointer within the span node, since the child node will
directly succeed the span node. In Fig. 2 span nodes are illustrated as rounded rectangles.
The deployment of span nodes is necessary to advance the queried key past the length of
a span if the current subtree has a common prefix. At the following key depth, decisions,
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whether a queried key is part of a certain range, can be made once again by the deployment
of decision nodes.

Obviously, the content of a span node does not have to match the corresponding excerpt of
the queried key exactly. In case the stored span does not match, three scenarios can occur.
Firstly, the size of the span may actually exceed the queried key. In that case the input will
be logically padded with zero bytes. This may lead to the second case where the input is
shorter. Any further comparisons with subsequent nodes are therefore meaningless. Hence,
we introduce the concept of a virtual edge pointing from each span to its leftmost child, a
so-called virtual node. To the edge itself we will refer as minimum edge. In Fig. 2 such an
edge and its corresponding node is always colored gray to emphasize the aspect that it is
not part of the physical tree structure. We follow this edge every time the input is less than
the content of the span node. Note that encountering a fully processed input key implies
that the minimum edge of a span node has to be taken. Fig. 2 illustrates the usage of this
concept with the insertion of the Wikipedia URL after the construction of the embedded
tree. This URL does not match the second span node, hence, it is delegated to the virtual
node labeled “3”.

The last case where the input is greater than the span node’s content is completely symmetrical
to the minimum edge situation. Therefore, a second virtual edge and node pair exists for
every span node to handle the greater than case. We will cover the algorithmic details more
elaborately in Sect. 3.2.

Fig. 2 also illustrates the range array, which stores the positions of key-value pairs. These
define limited search spaces on the page. This array serves two purposes. First, it eliminates
the need to alter the actual contents of the embedded tree during insert and removal
operations, this simplifies modification operations significantly. Second, it enables the use
of the aforementioned minimum and maximum edges.

During a lookup on a page this array is used to translate the output r; of a query on the
embedded tree into a position j on the actual page. Each lookup on the embedded tree itself
yields an index into this array. This array, on the other hand, contains indices into the page
indirection vector [Gr06], whereas the indirection vector itself points to any data that does
not fit into a slot within the indirection vector [Gr06]. A resulting index thereby specifies an
upper limit for the search of a queried key, whereas the directly preceding element specifies
the lower limit. In Fig. 2 the annotated positions are colored differently in accordance to
their origin. The very first position is colored green, this special element ensures that the
lower limit for a search can always be determined. Indices originating from virtual edges
are colored gray, whereas blue is used for regular positions. We denote these indices as
r; where i represents the corresponding position within the array of prefix sums. Each r;
occupies two bytes within each leaf node, the memory layout is illustrated in Fig. 3.

Insertion and removal operations, which are to be performed on the overlying page, also
affect the embedded tree. More precisely, this affects the search range given by the embedded
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tree where the actual operation took place and all subsequent search ranges, since adjusting
an upper boundary of one particular search range also implies that subsequent search ranges
have to be shifted in order to retain their original limits. This is achieved by simply adjusting
the values within the range array for the directly affected search range and every following
search range.

3.1.1 Construction

One aspect we have not covered so far is the construction of the embedded tree structure.
The construction routine is triggered each time a page is split or merged and also periodically
depending on the number of changes since the last invocation.

The construction routine always starts by determining the longest common prefix of the
given range of entries beginning at the very first byte of each entry. We will refer to the
position of the currently investigated byte as key depth, which is zero within the context
of the first invocation. On the first invocation, this spans the entire range entries on the
current page. Based on the length of the longest common prefix a root node will be created.
If the length of the longest common prefix is zero, a decision node will be created, else a
span node. In the latter case, the newly created node contains the string forming the longest
common prefix. Afterwards, the construction routine recurses by increasing the key depth
to shift the observation point past the length of the longest common prefix.

The creation of a decision node is more involved, here we investigate the byte at the current
key depth of the key in the middle of the given range. Subsequently, with the concrete value
of this byte, a search on the entries right to that key is performed. This search determines
the lower bound key index with regard to that value at the current key depth. In some cases,
the resulting index may lie right at the upper limit of the given key range. For this reason,
we also search in the opposite direction and take the index which divides the provided range
of keys more evenly. This procedure is repeated on both resulting subranges until either the
size of a subranges falls below a certain threshold or until the physical node structure of
the current decision node does not contain enough space to accommodate another entry.
Once a decision node is constructed, the construction routine recurses on each subrange,
however, this time the key depth remains unchanged. This process is repeated until each
final subrange is at most as large as our threshold value.

3.2 Key Lookup

On the page level, the general lookup principle is performed as in a regular B+-tree. The
only difference is the applied search procedure. We start by querying the embedded tree
which yields an upper limit for the search on the page records within the indirection vector.
With the upper limit known, the lower limit can be obtained by fetching the previous entry
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from the range array. Afterwards, a regular binary search on the limited range of entries
will be performed.

Querying the embedded tree not only yields the search range but also further information
about the queried key’s relationship to the largest common prefix prevailing in the resulting
search range. The concrete relationship is encoded in skip, the stored value corresponds to
the length of the largest common prefix within the returned search range. It also indicates
that the key’s prefix is equivalent to this largest common prefix. This information can be
exhibited to optimize the subsequent search procedure by only comparing the suffixes.

Algorithm 1 Traversal of the embedded tree structure.

1: function TRAVERSE(node, key, length, skip)

2 if IsSpan(node) then

3 (exh, diff) «— CmpSraN(node, key, length, skip)
4 if diff > 0 then

5: return MaximumMLEAF(node)

6 else if diff < 0 or exh then

7 return MinimumLEAFR(node)

8

else
spanLength < GETSPANLENGTH(node)

10: key < key + spanLength
11: length « length — spanLength
12: skip « skip + spanLength
13: TRrRAVERSE(child, key, length, skip)
14: end if
15:  else
16: child < GeTCHILD(node, key, length)
17: if [sSLEAF(node) then
18: return (child, skip)
19: else
20: TrRAVERSE(child, key, length, skip)
21: end if
22:  endif

23: end function

Algorithm 1 depicts a recursive formulation of the embedded tree traversal algorithm. It
inspects each incoming node whether it is a span node or not. We compare the stored span
with the corresponding key excerpt at the position defined by skip, in case a span node is
encountered. The difference between the stored span and the key excerpt will be the result of
this comparison. We also determine whether the key is fully processed in this step, meaning
that the byte sequence stored within the span node exceeds the remaining input key. Three
cases have to be differentiated at this point.

Firstly, the obtained difference stored in diff may be greater than zero, hence, the span
did not match. However, this also implies that the remaining subtree cannot be evaluated
for this particular input key. One of the outgoing virtual edges must therefore be taken.
Implementation-wise, this edge is realized by a call to MaximumLeaf. It traverses the
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remaining subtree by choosing the edges corresponding to the largest values. The final result
is thus the rightmost node of the remaining subtree.

The second case, where the excerpt of the input key is smaller, is mostly analog. However,
the condition must now not only include the result, whether diff is smaller than zero, but
also the result, whether the input key has been fully processed during the span comparison
or not. An input key that is shorter than the sum of all span nodes, which led to the
key’s destination search range, will be logically padded with zeros. This leads to another
interesting observation. Consider two keys with different lengths and their largest common
prefix being the complete first key, all remaining bytes of the second key are set to zero.
The index structure has to be able to handle both keys. However, from the point of view
of the embedded tree, both keys will be considered as equal. This also implies that the
embedded structure has to ensure that both keys will be mapped into the same search range.
It is therefore up to the construction procedure to handle such situations accordingly. The
subsequent binary search has to handle everything from there on.

The third and last case, where the key excerpt matches the span node, should be the usual
outcome for most input keys. We obviously have to account for the actual length of the span
to advance the queried key beyond this byte sequence. Hence, the point of observation on the
key has to be shifted accordingly. This is also the case where skip is adjusted accordingly. It
holds the accumulated length of all span nodes which were encountered during the lookup,
or an invalid value if one of the span nodes did not match or more precisely if diff evaluated
to a non-zero value. The subsequent call to either MaximumLeaf or MinimumLeaf thereupon
returns an invalid value for the skip entry in the result tuple.

3.3 Key Insertion

We have already briefly discussed, how the insertion of new entries, affects the embedded
tree, and its yielded results. Two cases have to be addressed. Either there is enough free
space on the affected page to accommodate the insertion of a new entry, or the space does
not suffice. A new entry can be inserted as usual if the page has enough free space left.
However, this will also require some value adjustments within the range array in order to
reflect the change. The latter case, where the page does not hold enough free space for the
new entry, will lead to a page split. Splitting a page additionally results in roughly half of
the embedded tree being obsolete.

For a simple insertion that does not lead to a page split, updating the embedded tree is trivial.
We first determine the affected r; in the range array where the insertion takes place. The
updated search range is then defined by the preceding value and the value at r;, which has
to be incremented, since the search range grew by exactly one entry. In Fig. 2 these index
values are denoted as j, and they are stored within the range array. However, this change
must also be reflected in all subsequent search ranges. Therefore, all the following entries
within the range array have to be incremented as well, in order to point to their original
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elements. By conducting this change, subsequent index values will then span all the original
search spaces, which were valid up to the point where the insertion occurred.

The case where an insertion triggers a page split has to be handled differently. A split
usually implies that approximately half of the embedded tree represents the entries on the
original page whereas the other half would represent the entries on the newly created page.
Consequently, the index values defining the search ranges of one page are now obsolete.
Although, the structure could be updated to correctly represent the new state of both pages,
we instead opted to reconstruct the embedded trees. This allows us to utilize the embedded
structure to a higher degree, since the current prevailing state of both pages can be captured
more accurately. Having a newly split page also ensures that roughly half of the available
space is used. We can thus construct a more efficient embedded tree, which specifies
smaller search ranges. In turn, smaller ranges can be used to direct incoming searches more
efficiently.

3.4 Key Deletion

Deletion is handled mostly analogously. However, the repeated deletion of entries, which
define the border between two ranges, may lead to empty ranges. This is no issue per se: The
subsequently executed search routine just has to handle such a scenario accordingly. As it is
the case with insertions, the deletion of entries also requires further actions. Directly affected
search ranges have to be resized accordingly. Hence, the corresponding j values within the
range array have to be decremented in order to reflect those changes. All subsequent values
also have to be decremented in order to point to their original elements on the page.

3.5 Space Requirements

Another interesting aspect is the space requirement of the embedded tree structure. In the
following we will analyze the worst-case space consumption in that regard. We start by
determining an upper bound for the space consumption of a path through the embedded tree
to its corresponding section of the page which defines a search range.

For now, we only consider the space required by the structure itself, not the contents
of span nodes. The complete length of all the contents of span nodes forms the longest
common prefix of a certain page section, which our second part of this analysis takes into
account. Furthermore, a node in the context of the following first part refers to a compound
construction of a decision node and a zero-length span node, this represents the worst-case
space consumption scenario, where each decision node is followed by a span. Similar to
the analysis of ART’s worst-case space consumption per key [LKN13], a space budget
b(n) in byte for each node # is defined. This budget has to accommodate the size required
by the embedded tree to encode the path to that section. x denotes the worst-case space
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consumption for a path through the embedded tree in byte. The total budget for a tree is
recursively given by the sum of the budgets of its children minus the fixed space s(n)
required for the node itself. Formally, the budget for a tree rooted in 7, can be defined as

X isTerminal(n)
2cechildren(n) D(¢) — s(n) else.

b(n) :{

Hypothesis: Vn : b(n) > x.
Proof. Let b(n) > x. We give a proof by induction over the length of a path through the tree.

Base case: The base case for the terminal node n, i. e. a page section, is trivially fulfilled
since b(n) = x.

Inductive step:

b(n) = Z b(c) - s(n)

cechildren(n)
> b(c1)+b(cy) —x (a node has at least two children)

>2x—x=x (induction hypothesis).

Conclusion: Since both cases have been proved as true, by mathematical induction the
statement b(n) > x holds for every node n. O

An upper bound for the payload of the span nodes is obtained by assigning the complete
size of the prefix of each section to the section itself. Assigning the complete prefix directly
to a section implies that the embedded tree does not use snippets of the complete prefix for
multiple sections, therefore, each span node has a direct correlation with a search range
defined by the embedded tree. The absence of shared span nodes, thus, maximizes the space
consumption for the embedded tree. An upper bound for the space consumption of the
embedded tree is given by

ZresearchRanges(p) (I(r) +x)

where [(r) yields the size of the longest common prefix of the search range r within page p.

We can therefore conclude that the additional space required by the embedded tree mostly
depends on the choice of how many search ranges are created and the size of common
prefixes within them. Our choice of roughly 32 elements per search range yielded the optimal
result on all tested datasets, however, this is a parameter which may require further tuning in
different scenarios. In our setting, the space consumption of the embedded structure never
exceed 0.5 percent of the page. Note that, the prefix of each key within the same search
range does not have to be stored, the B2-tree may therefore also be used to compress the
stored keys.

In the following we will analyze how modern CPUs may benefit from B-tree’s architecture.
Both AMD’s and Intel’s current x86 lineup feature L1 data caches with a size of 32 KiB,
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8-way associativity, and 64-byte cache-lines. Our previous worst-case space consumption
showed that the size of the embedded tree is mostly influenced by the size of common
prefixes. The constant parameter x, on the other hand, can be set to 15, which is the size of
a decision node and an empty span node. With the aforementioned setup of 32 elements
per search range and a page size of 64 KiB, we can assume that the embedded structure,
excluding span nodes, fits into a couple of cache lines, our evaluation also supports this
assumption.

Efficient lookups within the limited search ranges are the second important objective of
our approach. With the indirection vector being the entry point for the subsequent binary
search, it is beneficial to prefetch most of the accessed slots. In our implementation, each
slot within the indirection vector occupies exactly 12 bytes. Therefore, with 32 elements
per search range, only six cache-lines are required to accommodate the entire section of
the indirection vector. Recall that it is a common optimization strategy to store the prefix
of a key within the indirection vector as unsigned integer variable. The B>-tree, however,
utilizes this space to store a substring of each key since the prefixes are already part of the
embedded tree. We will refer to this substring as infix. It can also be observed that the stored
infix values within the indirection vector are usually more decisive, since the embedded
tree already confirmed the equality for all the prefix bytes. Overall, this implies that fewer
indirection steps, to fetch the remainder of a key, have to be taken.

3.6 Concurrency

B2-tree was designed with concurrent access via optimistic latching approaches taken into
consideration. While this approach adapts well to most vanilla B-tree implementations, other
architectures may require additional logic. This section covers all necessary adaptions and
changes required by the B2-tree in order to ensure correctness in the presence of concurrent
accesses.

Optimistic latching approaches often require additional checks in order to guarantee thread
safety. Leis et al. [LHN19] list two issues that may arise through the use of speculatively
locking techniques such as OLC. The first aspect concerns the validity of memory accesses.
Any pointer obtained during a speculative read may point to an invalid address due to
concurrent write operations to the pointer’s source. Readers have hence to ensure that the
read pointer value was obtained through a safe state. This issue can be prevented by the
introduction of additional validation checks. Before accessing the address of a speculatively
obtained pointer, the reader has to compare its stored lock version with the version currently
stored within the node. Any information obtained before the validation has to be considered
as invalid if those versions differ. Usually, an operation will be restarted upon encountering
such a situation.

Secondly, algorithms have to be designed in a manner that their termination is guaranteed
under the presence of write operations performed by interleaving threads. Leis et al. discuss
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one potential issue concerning the intra-node binary search implementation as such. They
note that its design has to ensure that the search loop can terminate under the presence of
concurrent writes [LHN19]. Optimistically operating algorithms, therefore, have to ensure
that no accesses without any validation to speculatively obtained pointers are performed
and that termination under the presence of concurrent writes is guaranteed.

However, the presented traversal algorithm does not guarantee termination without the
introduction of further logic. One main aspect concerns the observation that span nodes can
contain arbitrary byte sequences. It is hence possible to construct a key containing a byte
sequence that resembles a valid node. Such a node may also contain links pointing to itself.
An incoming searcher may then end up in a cycle due to previous modifications performed
by an interleaving writer which had conducted modifications to the embedded structure in
said manner.

To prevent issues such as the one described, certain countermeasures have to be taken.
We have to ensure that the traversal progresses with every new node. Furthermore, node
pointers must not exceed the boundary of their containing page. We could have used the
validation scheme presented by Leis et al. [LHN19]. This would require a validation on the
optimistic lock’s version after each node fetch. However, we can also use the fact, that in
our implementation each parent node has a smaller address than any of its children. We
furthermore have to ensure that each obtained node pointer lies within the boundary of
the current page. Note that any search range obtained through the embedded tree is also a
possible candidate leading to invalid reads. We hence have to ensure that each obtained
boundary value also lies within the boundary of the currently processed page. Our binary
search implementation, which will be performed directly afterwards, trivially fulfills the
previously described termination requirement.

Insert and delete operations do not require any further validation steps, since they do not
depend on any unvalidated speculative reads and exclusive locks will be held during such
operations anyway.

4 Evaluation

In the following we evaluate various aspects of our B2-tree and compare them to the Umbra
B+-tree. Note that the Umbra B+-tree is our only reference due to the lack of any other page
based index structure capable of running on top of Umbra’s buffer manager. In the following
we analyze B2-tree’s performance as well as its scalability, the space requirements for the
embedded tree, and the time required to construct the embedded tree.

4.1 Experimental Setup

All the following experiments were conducted on an Intel Core 19 7900X CPU at stock
frequency paired with 128 GB of DDR4 RAM. Furthermore, index structures do not have
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Fig. 4: Single-threaded throughput comparison of the B2-tree and the Umbra B-+-tree grouped by the
used dataset and imposed workload.

to access background memory, everything will be kept in main memory, unless otherwise
stated. B2-tree as well as the standard B+-tree have been compiled to use 64 KiB pages
which is the smallest page size Umbra’s buffer manager provides. The evaluation system
runs on Linux with GCC 9.3, which has been used to compile all index structures.

Our reference will be the Umbra B+-tree as already stated. This particular B+-tree imple-
mentation uses some commonly known optimizations like the choice of the smallest possible
separator within the neighborhood of separators around the middle of each page, and a data
locality optimization where the first bytes of each key are stored within its corresponding
entry in the indirection vector [GLO1; Gr06; Gr11].

4.2 Datasets

We have used a couple of different datasets in our evaluation. Those datasets were chosen to
resemble real-world workloads to a certain degree. Indexing of URLSs and English Wikipedia
titles® should resemble real-world scenarios. We also included a completely synthetic dataset
consisting of randomly drawn strings, this dataset will be denoted as Random dataset.

6 https://dumps.wikimedia.org/enwiki/20190901/enwiki-20190901-all-titles.gz
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distinct | aVerage | median min max

count length length | length | length

Wikipedia | 48454094 21.82 17 1 257
Random 30000000 68.00 68 8 128
URL 6393703 62.14 59 14 343

Tab. 1: Parameters of the used datasets.

Tab. 1 summarizes some of the most important characteristics of the used datasets. The
Random dataset is generated by a procedure which generates each string by drawing values
from two random distributions. Thereby, the first distribution determines the length of the
string which is about to be generated. Subsequently, the second distribution is used to draw
every single character in sequence until the final destination length is reached.

4.3 Lookup Performance

In the following we will compare the point lookup throughput of our B2-tree against our
reference. The lookup benchmark queries each key from the randomly shuffled dataset
which has been used for the construction of the index itself. Fig. 4a summarizes the results
of our string lookup benchmark whereas Fig. 4b shows the influence of B-tree’s more
efficient lookup approach onto the insert throughput. B2-tree’s lookup throughput is roughly
twice as high as that of its direct competitor. Keys in the URL and Wikipedia datasets
often share large common prefixes, discriminative bits are therefore often not part of the
integer field within the indirection vector of Umbra’s B+-tree. In these situations, the B2-tree
has an advantage since the entries within the indirection vector are more likely to contain
discriminative bits. The Random dataset, on the other hand, features very short common
prefixes and a larger amount of discriminative bits between the bit string representation of
keys. It is therefore not surprising that the performance gap between the Umbra B+-tree and
our B2-tree is smaller on this dataset.

Approach | Inst. | IPC | L1D-Miss | LLC-Miss | BR-Miss
B2-tree | 1402 | 0.39 38.32 10.17 159
Random

Umbra B+-tree | 2519 | 0.51 44.63 20.02 19.84
URL B2-tree | 1839 | 0.49 45.69 11.35 22.74
Umbra B+-tree | 3382 | 0.51 79.58 28.88 16.15
S B2-tree | 1593 | 0.38 46.02 13.84 22.76

Wikipedia
Umbra B+-tree | 3147 | 0.43 61.7 30.82 28.22

Tab. 2: Performance counters per lookup operation. The best entry in each case is highlighted in
bold type. B2-tree mostly dominates the Umbra B+-tree which is in accordance with the previously
discussed throughput numbers.
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Recording performance counters during experiments usually facilitates further insights,
Tab. 2 therefore contains an exhaustive summary. Comparing the averaged amount of
instructions required per lookup between the B+-tree and our B2-tree already reveals a
considerable advantage in favor of the latter approach. This advantage also exists between
the observed amount of L1 data cache misses (L1D-Miss) and last level cache misses
(LLC-Miss), where the latter metric reveals that the standard B+-tree produces roughly twice
as many misses. This is most likely related to the redesigned search procedure. Thereby,
binary search is performed on a smaller search range. Furthermore, the contents of the infix
fields within the indirection vector are usually more decisive than the contents wherein
stored by the Umbra B+-tree. As a result, the comparison procedure, which will be invoked
by the binary search procedure, can often refrain from performing any comparisons on
the suffixes stored within the area where the remainder of the records are stored. This also
reduces the total amount of cache accesses. For the B-tree one might expect fewer branch
mispredictions, since the infix values are usually more decisive, however, the metric for the
amount of mispredicted branches (BR-Miss) per lookup reveals no significant differences
between both approaches. This is most likely the result of the additional logic performed
during the lookups on the embedded tree.

4.4 Scalability

Additionally, to evaluating B2-tree’s single-threaded point lookup and range scan throughput,
we also analyzed its scalability. We ran the same workload as in the single-threaded point
lookup experiment. The results of this experiment are shown exemplarily for the URL
dataset in Fig. 5. Note that we omitted the results for the remaining datasets due to them
being very similar.

10 —@— B’tree
—#— Umbra B+4-tree

M lookups / s
(=2} oo
X
X

2 | 6 8 10
threads

Fig. 5: Scalability on the URL dataset.

Also, the performance difference between our standard B+-tree and B2-tree remains as the
number of threads increases. Overall, the B2-tree scales well for still being a B+-tree from
an implementation point of view. This also correlates with previous work which did analyze
the lookup throughput of B+-trees in combination with OLC [Lel8; Wal8].
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4.5 Throughput With Page Swapping

The experiment was set up as follows: in the first phase, all the keys of the Wikipedia titles
were inserted into an empty index structure. If necessary, pages were swapped out into a
temporary in-memory file by the buffer manager. In the second phase, the retrieval time for
each key of the randomly shuffled input was measured.

1.0 o —o— BZ-tree
L —#— Umbra B-tree
» 0.8 ~.
~ \
S ) o.
£0.6
Z > [T, [ \.
2 T
=04 D
=

swapped pages [%)]
Fig. 6: Lookup throughput on the URL dataset with index structures utilizing Umbra’s buffer manager.

Fig. 6 shows the results of the comparison between these two index structures in dependence
of the percentage of swapped out pages. The B>-tree outperforms the Umbra B+-tree for
every tested percentage of swapped out pages. However, note that both curves eventually
converge as the workloads become increasingly I/0 bound.

4.6 Space Consumption

Another important aspect of the presented approach is the total amount of additionally
required space on each page. Recall that we use 64 KiB large pages. We were able to fit the
complete embedded tree structure in just a couple of hundred bytes as Tab. 3 affirms.

dataset | size [%]
Wikipedia titles 0.48
Random strings 0.49
URLs 0.52

Tab. 3: Averaged space consumption for the complete embedded tree in percent of the page size.

The space utilization of the embedded tree has therefore never been a source of concern
in our point of view. However, it should be noted that the size of the embedded tree is
variable, and that it will be influenced by the structure of the input data. Especially long
shared prefixes have an impact on the overall space consumption of the embedded tree.
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5 Conclusion

We presented the B2-tree which speeds up lookup operations by embedding an additional
tree into each tree node. The B2-tree showed considerable performance improvements in
comparison to an optimized B+-tree. This is related to the total number of instructions
required per lookup, which in this case is lower than the number required by the Umbra
B+-tree. Our B2-tree, therefore, provides considerable improvements regarding the point
lookup throughput. The overhead inflicted by the construction of an embedded tree during
each page split is no point of concern as our experimental analysis showed. Furthermore, the
additional space required for the embedded structure is mostly negligible, as our evaluation
confirmed.
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Optimized Theta-Join Processing through Candidate
Pruning and Workload Distribution

Julian Weise! Sebastian Schmidl? Thorsten Papenbrock3

Abstract: The Theta-Join is a powerful operation to connect tuples of different relational tables
based on arbitrary conditions. The operation is a fundamental requirement for many data-driven
use cases, such as data cleaning, consistency checking, and hypothesis testing. However, processing
theta-joins without equality predicates is an expensive operation, because basically all database
management systems (DBMSs) translate theta-joins into a Cartesian product with a post-filter for
non-matching tuple pairs. This seems to be necessary, because most join optimization techniques,
such as indexing, hashing, bloom-filters, or sorting, do not work for theta-joins with combinations of
inequality predicates based on <, <, #, >, >.

In this paper, we therefore study and evaluate optimization approaches for the efficient execution of
theta-joins. More specifically, we propose a theta-join algorithm that exploits the high selectivity of
theta-joins to prune most join candidates early; the algorithm also parallelizes and distributes the
processing (over CPU cores and compute nodes, respectively) for scalable query processing. The
algorithm is baked into our distributed in-memory database system prototype A2DB. Our evaluation
on various real-world and synthetic datasets shows that A2DB significantly outperforms existing
single-machine DBMSs including PostgreSQL and distributed data processing systems, such as
Apache SparkSQL, in processing highly selective theta-join queries.

Keywords: theta-join; query optimization; distributed computing; actor programming

1 Theta-Join Processing

A join is a powerful operation in relational database theory that allows us to combine tuples
of the same or different relational instances. The most popular join operator is the equi-join
>« that combines tuples based on the equality of certain attribute values. The equi-join
serves most basic tuple combination scenarios, such as tuple reconstruction in normalized
schemata, knowledge enrichment via data integration, and the resolution of foreign-key
relationships. The theta-join =g is a generalized join variant that combines tuples based on
arbitrary join conditions ® including but not limited to value equality. A join condition is a
boolean statement on the attribute values of two tuples. Following related work, we express
any such statement as a conjunction of predicates based on <, <, #, >, >.
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Geo-spacial querying. Theta-joins are used whenever tuples need to be paired up in a
specific way. In temporal or geo-spacial querying, for example, tuples often need to match
in certain value ranges. The query "Combine all City-tuples with those State-tuples in
which they are geographically located"(see Figure 1), for instance, matches tuples based on
longitude (Long) and latitude (Lat) range information.

pc(City) P<S.Longmin <C.LongAS.Longmax >C.LongAS.Latyin <C.LatAS.Latyax>C.Lat PS (State)
Fig. 1: A geo-spatial query that builds tuples of cities and their corresponding states.

Data cleaning. Another important area of application for theta-joins is rule-based data
cleaning. Given a data quality rule or an integrity constraint, such as "TaxPayers with higher
income need to pay more taxes than TaxPayers with lower income", we can formulate the
negated constraint as a theta-join query (see Figure 2) to retrieve all data inconsistencies
w. r. t. this constraint from the data and clean them afterwards.

pr1(TaxPayer) ><71 [ncome<T2.IncomenT 1.T axRate>T2.T axRate PT2(TaxPayer)

Fig. 2: A data cleaning query retrieving all inconsistent tuple pairs w.r. t. a given integrity constraint.

Hypothetis testing. The use of theta-joins in the area of hypothetis testing works very
similar to the data cleaning use case: Given a hypothethis statement, such as "Countries
that invest more in education have less child poverty and a higher educational level than
Countries that invest less in education", we can query all pairs of countries that contradict
this statement via a theta-join (see Figure 3).

pA(Country) »as ESpend>B.ESpendn(A.CPov>B.CPovVA.ELevel<B.ELevel) PB(Country)

Fig. 3: A hypothesis testing query that collects contradicting tuple pairs.

Hypothesis and integrity statements are often formulated manually by domain experts.
They can, however, also be discovered automatically with modern data mining and data
profiling algorithms. Functional dependencies, order dependencies and denial constraints
are only a few types of statements that can meanwhile be retrieved automatically [AGN15].
While it has been shown that the mined statements are useful for tasks, such as consistency
checking and data cleaning [Bo07; Col7], the amount and complexity of the statements
puts significant pressure onto the theta-join operations used for their evaluation.

Although the theta-join is an essential part of relational algebra, its common physical
implementation in data query engines is a nested-loop join, i. e., the Cartesian product, in
combination with a filter operation. Consider for example the theta-join shown in SQL
Query 1, which targets the San Francisco Employee Compensation dataset?.

4 https://data.sfgov.org/City-Management-and-Ethics/Employee-Compensation/88g8-5mnd (08-August-2020)
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SELECT a.eID, b.eID

FROM EmployeeCompensation a, EmployeeCompensation b
WHERE a.jobCode = b.jobCode

AND a.salaries < b.salaries

AND a.eID != b.eID

SQL Query 1: Identify pairs of employees performing the same job but being paid differently.

We executed the query on different query engines including PostgreSQL?>, SparkSQL® and
Amazon Redshift”, which all produced a query plan similar to the one shown in Listing 2:
an equi-join on the equality predicates followed by a post-filter on the inequality predicates.

Merge Join
Merge Cond: (a.jobcode = b.jobcode)
Join Filter: ((a.salaries < b.salaries) AND (a.ID <> b.ID))
-> Sort: Sort Key: a.jobcode

-> Seq Scan on EmployeeCompensation a
-> Materialize

-> Sort: Sort Key: b.jobcode
-> Seq Scan on EmployeeCompensation b

Listing 2: The PostgreSQL query plan for SQL Query 1.

With the high selectivity of the equi-join, the query offers a relatively good performance.
However, considering the queries of the use cases discussed above, most of them do not
employ equality operators. So replacing the equality operator in Query 1 with an inequality
operator causes the query engines to produce queries plans similar to the one shown in
Listing 3: a nested-loop join with a large post-filter.

Nested Loop
Join Filter: ((a.jobcode <> b.jobcode)
AND (a.salaries < b.salaries) AND (a.ID <> b.ID))
-> Seq Scan on EmployeeCompensation a
-> Materialize

-> Seq Scan on EmployeeCompensation b

Listing 3: PostgreSQL Query Plan for SQL Query 1 without equality operator

Because the established hashing-, indexing- and sorting-based optimizations are not
applicable for complex join conditions with inequality predicates, the systems fall back to
the quadratic comparison of all tuples without employing any optimization. The performance
of the nested-loop join in all systems is, therefore, dramatically worse than the performance

S https://www.postgresql.org/ (08-August-2020)
¢ https://spark.apache.org/sql/ (08-August-2020)
7 https://aws.amazon.com/redshift/ (08-August-2020)
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of an equi-join. This is problematic when executing theta-joins on real-world datasets as the
costs scale quadratically with the datasets’ size.

Although there is probably no solution for the quadratic complexity of theta-joins, we
can still optimize the join performance by pruning join candidates (and, hence, their join
condition tests) and by distributing the join workload to multiple machines (and, hence,
scale out the processing). In this paper, we develop a theta-join algorithm that implements
these two optimizations for our distributed in-memory database system prototype A’DB.
A’DB is an actor-based and, therefore, inherently parallel and distributable database, which
is designed for analytical query workloads. It builds upon the actor model, which is a
reactive programming paradigm that uses actors as its universal computational primitives.
An actor is essentially an object with strictly private state that communicates with other
actors using asynchronous messaging. The architecture of this system follows the idea of an
actor database system [Bel8; SSP19], in which all database state is encapsulated in actors.
Our database prototype and, hence, also our theta-join algorithm are implemented using the
akka toolkit®, which is the most popular actor model implementation for the Java Virtual
Machine.

Join candidates pruning. Our first optimization is based on the observation that theta-join
results in real-world use cases are small (often even empty) and grow rather linearly with the
size of the data: Geo-spacial queries result in manageable overlaps, data cleaning queries
should return relatively few data quality issues, and hypothesis checking queries are expected
to return empty results (or very small results if the hypothesis is not quite correct). For
this reason, most real-world theta-joins have a high selectivity. In this paper, we propose
a theta-join algorithm that calculates and evaluates the selectivity of the individual join
predicates; selective predicates are, then, used to prune the candidate space.

Join workload distribution. Because theta-join results have a quadratic worst-case size in
the length of the input dataset, the candidate pruning effects are not always sufficient to
process larger join queries. For this reason, our theta-join algorithm facilitates parallelization
and can be scaled out to multiple compute nodes. The ability to scale also naturally exploits
the distributed storage of data in the A>DB system.

In the following, we first discuss related work in the area of (theta-)join processing and the
limitations of existing approaches (Section 2). We then explain how data is maintained and
distributed (Section 3). With these basic details explained, we first describe our distributed
theta-join algorithm (Section 4) and then its selectivity-based join strategies (Section 5).
In an extensive evaluation, we then compare the performance of our theta-join algorithm
with the performance of the data processing systems PostgreSQL (single node), SparkSQL
(12 node cluster) and Amazon Redshift (12 node cloud) to demonstrate that A’DB can
process selective theta-joins significantly faster than the state-of-the-art Carthesian product
plus post-filter approach (Section 6).

8 https://akka.io (08-August-2020)
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2 Related Work

In this section, we give an overview of existing work in the area of theta-join processing.
We take a brief look at the origin of join operations in the relational model but focus our
investigation on efficient and distributed answering of theta-joins.

Relational Joins were first discussed by Codd in 1970 as a concept of combining tuples
based on attribute equality in his proposal for the relational data model. He later extended his
proposal by combining tuples also with non-equality operators, which was the introduction
of the theta-join operator [Co79]. Early subsequent work then mainly focused on the
equality-based join operation and suggested various implementations and optimizations to
calculate these equi-joins efficiently [Go75]. Prominent examples are hash, sort-merge, and
nested-loop joins, as well as techniques utilizing indexes [ME92].

Parallel and Distributed Equi-Join Processing techniques have been examined extensively
in response to the development of multi-core machines. Specifically, researchers identified
challenges and proposed solutions for typical problems in multi-threaded and distributed
systems, such as shared state and workload partitioning [ESW78; VG84]. A prominent
optimization for calculating joins in distributed systems, which was proposed by Bernstein,
utilizes semi-joins to extract join candidates [BC81]. In this way, the communication
overhead and, hence, query processing time could be decreased significantly. Most of the
techniques proposed in this area can, however, not be applied to theta-joins, because they do
not support complex theta predicates.

Efficient Theta-Join Processing is the goal of the IE-Join algorithm by Khayyat et
al. [Kh15]. The algorithm applies a sophisticated sort-merge approach by first sorting the
values of up to two join attributes and implicitly identifying candidate sets. Via permutation
arrays and clever bitset operations, the algorithm tests all predicates of the join condition
successively while effectively pruning candidates on the way. In this way, IE-Join is orders
of magnitude faster than both PostgreSQL and SparkSQL. Despite its superior performance,
the proposed approach is inherently limited to only two join predicates. Adapting IE-Join to
more than two predicates requires exactly the strategies proposed in this paper: a strategy to
choose the two IE-Join predicates and a post-processing step for all non-chosen predicates.

Distributed Theta-Join Processing optimizations mostly target batch processing and data
flow engines, such as Apache MapReduce or Apache Spark. These engines are effective
in processing equi-joins, because distributed grouping and aggregation of tuples is baked
into their core feature set, but ineffective for theta-joins, because the grouping does not
innately support inequality operators. The I-Bucket-Theta algorithm by Okcan et al. [Ok11]
is a theta-join processing approach on MapReduce that splits the quadratic comparison
space into buckets, which are then processed distributedly by different machines to share
the comparison load. M-Bucket-Theta enhances the 1-Bucket-Theta algorithm in that the
algorithm can detect empty regions in the matrix and prune non-contributing join candidates.
Because the algorithm depends on a single comparison matrix, theta-joins with more than
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one predicate are handled by concatenating the predicates’ attributes into one key. For this
reason, M-Bucket-Theta can handle theta-joins with only one predicate effectively. The work
of Koumarelas et al. [KNG18] proposes several strategies to optimize M-Bucket-Theta’s
efficiency for low-selectivity queries. By manipulating the matrix of the mapping phase such
that larger regions of it can be pruned, the strategies reduce the algorithm’s communication
and computation costs by up to 45% and 50% respectively. Despite these performance
improvements, the theta-join algorithm still cannot handle multiple predicates. Because
multiple-predicate theta-joins are a given for most use cases, such as hypothesis testing and
data cleansing, we do not evaluate these approaches in this work.

To join more than two relations at once, Zhang et al. studied the problem of decomposing a
multi-way theta-join into multiple binary joins and proposed different strategies and a cost
model for optimizing the overall processing time [ZCW12]. For the execution of chained
joins, the authors rely on variations of M-Bucket-Theta. In this paper, we consider multi-way
theta joins as orthogonal work and focus on efficiently joining two relations.

Besides the MapReduce-based theta-join approaches, Apache Spark supports join processing
with arbitrary join conditions innately with its relational module SparkSQL [Ar15]. The data
flow engine offers DataFrames as an abstraction for distributed datasets and an SQL engine
to query these datasets. Although the engine also falls back on Broadcast-Nested-Loop-Joins
when processing theta-joins, the framework is significantly faster than MapReduce.

The capability of distributed theta-join processing can also be found in many commercial
DBMSs, such as Amazon Redshift. Redshift is a distributed data warehouse solution hosted
exclusively in the Amazon Web Services (AWS) cloud. It distributes data across a cluster of
configurable size and involves all nodes in query answering. Redshift in particular claims
itself to be an efficient and scalable solution for experimenting with (possibly huge) amounts
of data [Gul5], which makes it a perfect baseline for our experimental evaluations.

3 Data storage in A’DB

Before we introduce our theta-join algorithm, we need to explain how our database system
prototype A?DB stores and handles data. A’DB is an actor-based, distributed in-memory
relational DBMS for analytical query workloads that facilitates a leader-follower architecture:

Leader Node: One dedicated node in the A’DB cluster takes the role of a leader. It is
responsible for bookkeeping the follower node’s membership state, accepting queries and
loading data into the database.

Follower node: An A’DB follower is a node in the cluster that is responsible for maintaining
and querying portions of the data. Which portions, i. e., partitions of the data a follower is
responsible for is defined by the leader node.

Follower nodes play an active role in query processing: The leader node breaks every
submitted query, such as a theta-join, into multiple work packages and assigns them to
individual follower nodes. Once a follower node receives a work package, it requests
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necessary data from other nodes, decides the best local query execution strategy, processes
the local results, and sends the results of the query back to the master.

The partitioning of the data in A?’DB follows the PAX concept: The entire relational dataset
is sliced horizontally into equally sized partitions and every partition is stored columnar-wise
on one follower node. For every column in a partition, A’DB maintains column-specific
metadata, such as the column’s min and max values in this partition and a pre-calculated
sorting of the partition tuples w.r.t. this column. During query processing, the extreme
values can be used to prune this partition and the pre-sortings support sort-based query
operators, such as sort-merge joins.

Strictly following the actor programming model, all partitions in A’DB are represented
as autonomous actors, which is, in private, non-parallelizable actor state. To access data
owned by another actor (e. g., in a join scenario), partition holder actors need to ask other
partition holder actors via asynchronous messaging for certain tuples, columns, or values.

4 Theta-Join Workload Distribution

When theta-joining two relations R and S, the query engine needs to validate each possible
combination of tuples from both relations against the join condition ®. Hence, up to
|R| X |S| comparisons need to be performed. Our first approach to efficiently process these
comparisons is to distribute the workload to any given number of nodes. When a query
is issued, the data is already horizontally partitioned on these nodes. In this section, we
propose a reactive join strategy that decomposes and distributes the © evaluations. Figure 4
visualizes the general idea of our approach with an example: A?DB splits the join space of
two relations R and S and their partitions Ri and Si into node-joins, such as R4 »<g Sp, and
each node-join then into partition-joins, such as Pgry >g Ss;. A partition-join comprises
two partitions Pg; and Pg; and constitutes the smallest work-package in the system. In
the example, the theta-join consists of four node-joins and each node-join consists of four
partition-joins — usually, though, an A>DB cluster consists of more nodes and partitions.

Figure 5 depicts the process of executing a theta-join: When the leader node receives a
theta-join query, it creates the node-join matrix that partitions the join into node-joins. It
then opens a query session, which causes all follower nodes to calculate their local node-join,
i.e., all Ry »ag Sa, Rp »<g Sp etc. To perform a partition-join, a processor evaluates all
tuple combinations ((7r,ts) [ r € Pr,,?s € Ps;) against the join condition © and sends the
matching tuples to the result set of the theta-join on the leader. Whenever a follower node
finishes a node-join, the leader serves the follower with another node-join. This reactive
work pulling mechanism keeps all cluster nodes busy until the join is completed. The leader
coordinates this process so that, in the end, all partition-joins are executed. Later in this
section, we discuss the leader’s node-join selection strategy in more detail.

Every node-join is calculated on one follower node. On that node, the calculation is strongly
parallelized and consists of three overlapping steps, which are also shown in Figure 5: The
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Fig. 4: Distribution of the theta-join calculations over two nodes.

work generation step splits the node-join into partition-join tasks. The data loading step
then fetches all necessary remote partition data on demand from the other node of the
current node-join; the step makes sure that every partition is retrieved only once and it is
skipped by the self node-joins, e. g., R4 g S4. Once a remote partition is available, the
execution step can start to join this partition with every local partition; every partition-join
is executed reactively on one actor and, hence, in parallel to other partition joins. Once
all partition-joins are calculated and their results are send to the leader, the node-join is
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completed and the follower is ready for the next node-join.

In the following, we discuss the orchestration of the node-joins (Section 4.1), the provisioning

of partitions (Section 4.2), and the actual join processing (Section 5).
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4.1 Execution Plan

The execution plan is essentially a dynamically created actor on the leader that represents
the distributed execution of a theta-join query. It opens a cluster-wide session (involving
session actors on all follower nodes), orchestrates the intermediate query processing steps
and collects the query result. Through the session actors, all follower nodes know each other
and can communicate on a peer-to-peer basis.

With the execution plan, A’DB aims to orchestrate the node-joins in an optimal way. It
does so by sending out node-joins as work packages to the followers’ query executors.
The initial task for each follower’s executor is to calculate the local node-join. Afterwards,
the executors start pulling further node-joins from the execution plan and the task of the
execution plan is to serve these requests in a best possible way. This means primarily that
every node-join should be handled by a node that owns at least one of the node-join’s sides,
i.e., R4 »<g Sp should be handled by node A or B. Furthermore, we assign both node-join
directions to the same node, i.e., R4 g Sp and Sp »<@ R4 are one work package that goes
to either node A or node B. In this way, partitions are not send in both directions. However,
by assigning the node-joins naively in, for instance, node order, the execution plan quickly
encounters requests by a node, whose partitions have all already been joined elsewhere,
and therefore cannot serve this node with optimal work. Because followers usually finish
their node-joins unevenly fast, the execution plan cannot plan the node-join distribution in
advance and, instead, chooses the node-joins reactively based on three heuristics:

1. Data Locality: Assign a node-join that involves the partitions of the requesting node,
if possible. This rule has the highest priority and overrules all other heuristics.

2. Selection Flexibility: Assign a node-join with the least often joined node. By joining
the least often joined node next, the execution plan maintains the highest possible
flexibility for future join selections — it effectively tries to avoid situations where all
node-joins of a particular requesting node are already done. For this, the execution
plan counts the number of already assigned node-joins per node.

3. Query Politeness: Assign a node-join with the least often requested node. If all
potential join partner have the same join counts, selecting the least often requested
partner should avoid uneven loads for sending out local partitions. For this heuristic,
the execution plan also counts the number of partition requests per node.

Work assisting: Despite these heuristics, the execution plan cannot always meet the first
rule, especially at the end of the execution. So if a node cannot be served with a node-join
involving itself, the execution plan assigns a node-join according to rule two and three. We
refer to the process of taking over foreign node-joins as work assisting. The processing of
such node-joins requires the execution node to fetch partitions from two nodes instead of
one, which is more expensive. Hence, to decide whether work assisting is actually beneficial,
the execution plan tracks three additional runtime metrics per node: the average execution
time of node-joins #4y¢rqge, the execution time for the current node-join f¢jqpsed» and the
average partition transfer delay #4¢;4y. Then, work stealing is done only if the expected
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remaining execution time (Z4yerage —telapsea) is larger than the expected additional network
delay of executing the next node-join as a foreign-node-join (?gerqay)-

Work stealing: If work assisting is no longer possible, follower nodes may support other
follower nodes in finalizing their current node-joins by “stealing” some partition-joins. In
contrast to work assisting, work stealing does not take over an entire node-join but some
portion of the remaining partition-joins. For this, the execution plan actor instructs the work
requesting follower to steal half of the partition-joins from the follower with the shortest
current node-join time #,74psed, Which should be the follower with the heuristically most
unfinished partition-joins. The stealing follower than retrieves these partition-join tasks
from the target follower in a peer-to-peer fashion. Both followers report their join results
directly to the leader; the leader takes care that no follower is “robbed” more than once.

4.2 Context-specific Partition Provisioning

Before a follower node requests partitions from another follower node, it first exchanges
both the join condition ® and the headers of the involved partitions (see Section 3) with the
other follower. The join condition and header metadata help the follower nodes to exchange
only required, i. e., context specific partition data. Given the node-join R4 > Sp, then only
a portion of S’s partitions on node B are relevant for the node-join on node A:

1. A requires only those attribute values from B’s partitions that are used in ®. Thanks
to the column-oriented format of the partitions, these attributes can easily be selected.

2. A requires only those records from B’s partitions that intersect with A’s partitions
w.r.t. all of ®’s attribute-specific join operators, which are <, <, =, #,>,>. The
overlap can be checked quickly with the partition’s min and max values of each
attribute.

As an example for condition 2, if two partitions Pg; and Pg; have no overlap in attribute x,
i.e., PRiXmin > Psj.Xmax and the join condition is R.x < §.x or R.x < S.x, then AZDB
does not transmit Pg, because the join of these partitions is empty. If Pr; and Pgs; overlap
partially, the records are filtered so that the range (min and max) of the transmitted values
matches all ® conditions. In other words, given R.x < S.x, node B sends only those local
Pgj records where Pgj.x > Pg;.Xyi,. With this minimal checking overhead, A2DB can
prune many partition values from the sending process.

5 Theta-Join Candidate Pruning

As already shown in Figure 5, the node-join processing consist of three steps: work generation,
data loading, and execution. The work generation splits the node-join into partition-joins
and puts the resulting tasks into a task queue. To not overload the memory or network
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and to allow other followers to steal work from the task queue, data loading and execution
operate on a pull-based execution model: Free worker actors consume partition-join tasks,
which first causes missing partition data to be loaded and, once the data arrives, be joined.
Via slight over-provisioning and data pre-fetching, the A>’DB follower nodes maximize
both CPU and network utilization. The final partition-join execution step takes as input the
partitions Pg; and Pg;, the partition header metadata, and the join condition ©.

5.1 Predicate-specific Selectivity Calculation

Before A?DB starts the actual join calculation, it first determines the selectivity of each join
predicate Pg;.x »<9 Pgj.x in ©® with ¢ € {<, £,=, #, >, >}. Based on the selectivities, each
follower can later choose the best join strategy for its current partition-join. To calculate
the selectivity for each join predicate, A>DB exploits the pre-calculated sortings of every
attribute in a way that requires at most 2 - (|Pg;| + |Ps|) tuple comparisons. For this, we
interpret each predicate as a | Pg;| X | Ps ;| matrix of record pairs. We then draw two lines into
this matrix that separate matching tuples from non-matching tuples w.r. t. the predicate’s
join operator 3. Figure 6 shows example results for all operators. To calculate the selectivity,
we simply sum up all ranges of matching tuples and divide the result by |Pg;| - | Ps;].

< © v @ @ s oA

(a) < () < ©# @)= (&) > ® >
Fig. 6: Exemplified join matrices for all join operators supported by AZDB

To calculate the border lines efficiently, a partition-join worker starts with two pointers [ and
r in the left-upper corner of the matrix. It then compares the records at the pointer locations
and advances the / pointer in a way that it follows the left index of matching tuples and
r follows the right index of matching tuples. So for example, if Pg;(/) ¢ Ps;(!) is true,
i.e., the records’ values at pointer location / match, [ advances downwards; otherwise, it
advances to the right. For the same comparison, r advances to the right for matches and
downwards, otherwise. The calculation ends when both pointers arrive at the bottom of
the matrix. Note that this procedure does not work for #, because # defines two areas
of matching tuples; hence, A’DB calculates # as = and inverts the resulting counts. The
matching tuple pairs are technically stored in an |Pg;| long array of ranges (see Figure 7).
We call this the join candidate set for predicate ©. The range indexes are given by the / and
r pointers whenever these pointers move downwards. The selectivity calculation is executed
for all join predicates of © in parallel and finishes when all branches are done.
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Fig. 7: Representation of matching tuples pairs in ranges

5.2 Partition-Join Strategies

The intersection of all candidate sets, i. e., all tuple pair sets of all predicates, is the theta-join
result for Pgr; ><g Ps;. However, because the join matrices (mostly) use different sortings,
the calculated ranges cannot be intersected directly. There are basically two join strategies
that we can follow at this point: row-oriented joining and column-oriented joining.

Row-oriented Join Strategy: The row-oriented joining strategy takes a set of join candidates,
which is, for example, the candidate set of one join predicate, and checks each candidate
against the entire join condition ®. This immediately validates the entire join tuple, i. e.,
one result row. Because © is formulated in conjunctive normal form, the predicate testing
for one tuple pair stops immediately and discards the pair if a predicate is invalid.

Column-oriented Join Strategy: The column-oriented joining strategy successively
intersects the sets of matching tuple pairs of all join predicates. Thereby, the strategy
basically tests one predicate after the other vertically for all result tuples, i. e., column-wise
for each join attribute. To intersect two candidate sets, which are represented as lists of
tuple ranges based on attribute-specific sortings, A”DB first translates both candidate sets
into matrices with same tuple sortings in both dimensions. Both resulting matrices are
represented as |Pg;|-long array of sparse bitsets (1-bits for matches; 0-bits for no-matches).
After this transformation, A2DB can efficiently intersect these candidate sets. The costs for
the transformation and intersection depend on the selectivities of the two join predicates.

Both the row- and the column-oriented join strategy profit from considering the most selective
predicates, which is the one with the lowest selectivity factor, first: The candidate set of the
most selective predicate is the smallest and, hence, prunes the most candidate evaluations
when chosen as initial candidate set for row-oriented joining; similarly, intersecting the
sparsest candidate sets first in column-oriented joining maximizes the pruning effect of
every intersection step and, hence, the overall compute efficiency. For this reason, A2DB
sorts the predicates by their selectivity factors and uses the most selective predicates first —
regardless of the join strategy, which it needs to choose right after sorting the predicates.

Choosing the row-oriented strategy effectively uses one candidate set for pruning. However,
if there is no single predicate with a high selectivity (low selectivity factor) and further
predicates are needed to sufficiently prune the candidate space, this strategy alone looses a lot
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of pruning potential. On the other hand, choosing the column-oriented strategy exploits all
pruning aspects, but because the transformation of range-based into bitset-based candidate
sets is expensive, translating all candidate sets outweighs the pruning effect. Considering the
examples in Figure 6 shows that, for instance, neither (b) nor (f) are particular effective, but
their intersection, which is (d), is highly selective; the candidate set (c) is neither alone nor
in any combination effective enough to compensate its translation costs. For these reasons,
we propose a strategy selection heuristic that combines both approaches.

Strategy Selection Heuristic: All workers decide the join strategy for their current partition-
join task based on the local selectivities and independently of one another. After all predicates
are sorted in ascending order according to their selectivity factors, a worker follows the
following decision heuristic:

1. Only one predicate: If the join condition ® consists of only one predicate, A’DB
simply returns the candidate set of that one predicate, which is the result of the current
partition-join.

2. 100% selective: If the most selective predicate matches no tuple pair, the partition-join
result is empty, because the predicate with the highest selectivity defines an upper
bound for the number of join results; hence, an empty set is returned.

3. 95 -100% selective: If the most selective predicate matches only at most 5%, it alone
is so selective that column-oriented joining is not promising. For this reason, the
worker uses only the first predicate’s candidate set as input for row-oriented joining.

4. < 95% selective: If no highly selective predicate exists, the worker intersects the
two most selective predicates via column-oriented joining and feats the resulting
candidates into row-oriented joining.

The last case uses only the first two predicates for column-oriented joining, because we
observed that the first two predicates usually have such a strong combined pruning effect that
adding a third predicate does not pay off. Different settings of the proposed 95% decision
threshold can cause faster execution times depending on various factors, such as dataset size,
cluster size and cluster speed, but thresholds around 95% showed the best and also very
similar (hence robust) performance results in our experiments. This is due to the generally
high selectivity of most real-world theta-join queries and the fact that all workers choose
their strategies independently.

Whenever a worker finishes a partition-join, it sends the results to the leader node and
fetches the next partition-join from the work queue. After completing all partition-joins, the
current node-join is completed and the follower pulls the next node-join from the leader’s
execution plan. Once all node-joins are done, the execution plan actor reports the final result
to the query issuing client and closes the join session.
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6 Evaluation

We now evaluate A>DB’s theta-join performance against the theta-join performance of three
state-of-the-art data query engines: PostgreSQOL as a modern representative for a single
machine (non-distributed) DBMS, Amazon Redshift as a distributed and highly scalable
relational DBMS, and Apache SparkSQL as a distributed batch-processing system with
theta-join capabilities. For the experiments, we configured these systems as follows:

AZDB runs on a 12 node cluster, where each node has an Intel Xeon E5-2630 v4 CPU (20
threads), 32 GiB RAM and 1 GiBit/s Ethernet. The nodes run Ubuntu 18.04.4 and Java 1.8
with G1 garbage collector. A>’DB uses a maximum partition size of 5,000 tuples for datatses
smaller than 500,000 tuples and a maximum partition size of 10,000 tuples, otherwise. In
this way, each node hosts at least one maxed out partition in all evaluations.

PostgreSQL version 10.12 uses one of the nodes described above, but with 64 GiB RAM.
We optimized the default configuration of PostgreSQL to achieve a better performance for an-
alytical workloads as suggested in the official documentation®: We set the shared_buffers
to 25% of the system’s main memory, which is 16 GiB. The work_mem is increased to
512 MB, to not exhaust the memory but still provide enough memory for executing queries
mainly in memory. We also increased the temp_buffers to 512 MB.

Apache SparkSQL version 2.4.4. uses the same cluster than A’DB. The driver program
is written in scala version 2.12 and uses the Hadoop distributed file system as storage
technology for the datasets and the query results.

Amazon Redshift needs to be hosted on different hardware in the AWS cloud. Its cluster
consists of 12 dc2.large nodes and runs Redshift version 1.0.17498. Each node is an EC2
cloud computing resource with an Intel E5-2686 v4 CPU (two threads), 15 GiB RAM,
and 160 GiB NVMe SSDs. To run only one query at a time, we changed the query queue
configuration to prohibit concurrent query execution and use all available memory.

Because the hardware for Redshift differs, we define the following rules for comparing the
query times of the four systems: A’DB is truly better than PostgreSQL only if it is at least
11 times faster than PostgreSQL (because it has 11 times more nodes); A>DB is better than
Redshift only if it is at least 10 times faster (because it has 10 times more threads) and
A’DB is clearly slower if Redshift is faster despite its disadvantage — otherwise, we cannot
specify which query processing time is better as we do not know Redshift’s scalabilty with
the number of local threads (note that Redshift is also highly optimized and specifically
tuned for being executed on AWS hardware); A>DB and SparkSQL are directly comparable.

For our experiments, we use synthetic and real-world datasets, which are differently sized
subsets of four base recordsets (see Table 1): The synthetic TPC-H benchmark dataset, the
employee compensation dataset DataSF of San Francisco, the US Bureau of Transportation

9 https://www.postgresql.org/docs/10/runtime-config-resource.html (08-August-2020)
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dataset Flight, and the extended edited synoptic Cloud reports dataset. For the purpose of
identifying single rows, we extended all datasets with an additional surrogate key, which is
a dedicated, monotonic increasing integer id column. We cut down the Cloud dataset to five
million records, because all systems struggled with its entire size.

Dataset # Rows # Columns Size on disk ~ Domain Real-World
TPC-H 6,001,215 25 1,639 MB  Order Management X
DataSF 968,373 22 197 MB Public Administration v
Flight 7,268,232 15 701 MB  Flight Control v
Cloud 384,584,555 28 521 MB Weather v

Tab. 1: Recordsets used for dataset creation

Our theta-join workload consists of 12 manually crafted theta-join queries. None of the
queries contains equality predicates (=). Hence, common join algorithms and optimizations
do not apply for any of them. Instead, all predicates are based on <, <, #, >, >. The number
of predicates in the queries varies between 2 and 13: TPC-H (5,2), DataSF (2,4,3), Flight
(3,4,5,4), and Cloud (5,13,4). We always execute each query with two warm-up executions
and report the arithmetic mean of the last five executions. A’DB’s theta-join algorithm, the
base recordsets and our theta-join SQL queries are available online©.

6.1 Equi-Join vs. Theta-Join

To demonstrate the remarkable performance gap between equi-join and theta-join executions,
our first experiment compares the performance of an equi-join with the performance of a
theta-join. To create the equi-joins for this comparison, we take the two TPC-H queries
from our theta-join workload and exchange all their non-equality operators with equality
operators. Table 2 shows the measured execution times on the TPC-H datatset.

Recordset Dataset Query Results ‘ PSQL<> SparkSQL Redshift* A2DB
Q1 0 ‘ 29345373 18,630,581 9,371,830
TPC-H orig. QI-Eq 6,366,031 25,616 8,998 332,475 158,315
Q2 30,980,486 T 24,839,845 31,970,932 440,435
Q2-Eq 833,567 12,942 5,774 4,483,270 64,198
F: Timeout after 24 hours *: 2 instead of 20 hyper-threads ¢: 1 instead of 11 nodes

Tab. 2: Query Execution time (in ms) comparison of Equi- vs. Theta-Join

The results show that the equi-joins perform orders of magnitude better than the theta-joins
on all systems. This is because the systems can use sophisticated equi-join algorithms, such
as (distributed) sort-merge joins, and, therefore, do not need to compare all tuple pairs. Note
that the performance gain for equi-joins is not necessarily tied to smaller results: Q1’s result
gets larger when being turned into an equi-join, while Q2’s result gets smaller, and in both
cases the equi-join is faster. Even though A’DB’s theta-join algorithm is not optimized for

10 https://hpi.de/naumann/s/a2db-theta-joins (30-November-2020)
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equality predicates, it also achieves considerably faster execution times for equi-joins. For
theta-join query Q2, A’DB is clearly more efficient than all state-of-the-art competitors.

6.2 Query Performance

For a broader performance comparison of A’DB and its competitors, we now measure the
query times for all 12 theta-join queries on different subsets of our evaluation datasets. The
results of this experiment are listed in Table 3.

The query times show that A>’DB significantly outperforms existing single-node DBMSs,
such as PostgreSQL, and distributed batch-processing systems, such as Apache Spark, in
processing highly selective theta-join queries. PostgreSQL in particular struggles to answer
many theta-join queries within 24 hours that A>DB can process in minutes. Considering
the setup differences for Redshift and AZDB, which is that Redshift has 10 times fewer
threads but also over-optimizes on its hardware, both systems compete quite well. As we
know that Redshift does not use join techniques, join operators or join plans optimized
for theta-joins, we can conclude that its technical optimizations can actually compete with
A’DB’s algorithmic optimizations. However, A’DB clearly outperforms Redshift on some
queries, such as TPC-H-Q2, Flight-Q1, and Flight-Q4, which are particularly selective.
A’DB’s selectivity calculations for the individual predicates comes at the expense of extra
processing time (e. g., Cloud-Q2), but the overhead is usually negligible w.r. t. the high and
quadratic tuple matching costs (e. g., TPC-H-Q2).

A’DB performs particularly well on TPC-H-Q2, Flight-Q1 and Flight-Q4, because it success-
fully identifies the most selective predicate, e. g., p_retailprice >=1_extendedprice
for TPC-H-Q2 with a selectivity factor of about 1%, and prunes the candidates accordingly.
On most other queries, such as SF-Q2, no single, super selective predicate exists and A2DB
needs to combine predicates for candidate pruning. With 13 predicates, query Cloud-Q?2 is
the largest query in the workload. Interestingly, neither PostgreSQL nor Redshift show a
significant performance difference on Cloud-Q2 compared to the other queries; A*DB is
more affected by this high number of predicates, because the join matrix calculations take
a larger share of the entire query processing time. In summary, A2DB performs best on
highly selective theta-join queries with possibly few predicates, which is exactly the kind of
theta-join query that we observe in most use cases.

6.3 Scaling Follower Nodes

To utilize all available resources for query answering, A2DB parallelizes and distributes
the theta-join processing across a cluster of compute nodes. We now evaluate A’DB’s
horizontal scalability by measuring the query execution time for both TPC-H queries on an
increasing number of follower nodes to evaluate the effectiveness of the distribution. The
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Dataset  Subset Query PostgreSQL<> SparkSQL Redshift* A’DB
100k TPC-H-Q1 2,392,800 +1.2% 87,587 +02.7% 4,770 +00.9% 4,497 +04.7%
TPC-H-Q2 2,107,905 +1.6% 79,581 +£32.5% 9,038 +07.8% 248 +15.7%

500k TPC-H-Q1 56,685,284 +0.0% 231,617 +03.8% 120,770 +01.4% 88,944 +00.7%

TPC-H TPC-H-Q2 54,921,837 +0.0% 402,951 +05.7% 221,565 +01.6% 3,461 +04.2%
M TPC-H-Q1 T 863,338 +02.4% 490,846 +00.8% 335,696 +00.9%
TPC-H-Q2 T 752,133 £04.0% 886,364 +00.1% 12,572 +00.6%

oricinal TPC-H-Q1 T 29,345,373 +00.0% 18,630,581 +00.0% 9,371,830 +00.6%

€ TPC-H-Q2 T 24,839,845 +00.0% 31,970,932 +00.0% 440,435 +00.8%

SF-Q1 19,745 +0.1% 10,814 +05.6% 381 +03.7% 374 +04.5%

100k SF-Q2 1,395,888 +4.3% 107,340 +01.5% 6,044 +00.3% 9,228 +07.2%

SF-Q3 1,374,122 +4.3% 101,629 +03.5% 4,710 +03.7% 6,861 +03.3%

SFData SF-Ql 509,051 +0.1% 24,232 +11.9% 8,343 +02.3% 4,962 +03.7%
500k SF-Q2 34,557,816 +0.7% 263,941 +03.5% 149,412 +00.0% 124,786 +05.4%

SF-Q3 32,563,594 +0.0% 257,551 £01.5% 110,397 +03.1% 99,494 +04.0%

SF-Q1 1,855,169 +0.1% 67,183 +10.7% 65,422 +21.6% 16,849 +01.5%

original SF-Q2 T 878,780 +02.8% 554,790 +01.1% 230,320 +65.6%

SF-Q3 T 836,345 +00.8% 413,278 +00.4% 316,181 +06.1%

Flight-Q1 1,191,327 +1.0% 120,986 +57.6% 73,647 +00.49% 280 +48.9%

100k Flight-Q2 1,304,863 +2.49% 132,064 +59.9% 73,395 +00.2% 4,844 +03.3%

Flight-Q3 1,088,810 +2.0% 152,851 +31.4% 36,106 +00.7% 675 +03.1%

Flight-Q4 1,327,722 +2.5% 155,010 +35.7% 74,711 +00.2% 226 +21.7%

Flight-Q1 29,650,984 +0.4% 1,043,191 +04.2% 126,333 +02.8% 1,329 +07.0%

500K Flight-Q2 16,834,932 +0.6% 1,231,222 +04.1% 129,090 +03.0% 91,106 +02.0%
Flight-Q3 17,578,355 +0.7% 301,850 +04.7% 72,648 +03.3% 11,569 +01.8%

Flight Flight-Q4 16,777,141 +0.6% 1,041,470 +15.6% 128,522 +02.9% 2,000 +05.0%
Flight-Q1 T 800,759 +03.5% 503,496 +00.6% 2,318 +05.6%

M Flight-Q2 67,258,984 +0.0% 925,637 +02.1% 516,183 +00.6% 347,167 +01.1%

Flight-Q3 74,540,859 +0.0% 870,808 +05.6% 295,086 +01.2% 50,471 +01.1%

Flight-Q4 66,986,894 +0.0% 855,871 +03.7% 514,542 +00.7% 8,802 +10.3%

Flight-Q1 T 38,000,013 +02.8% 27,037,084 +00.0% 224,395 +04.6%

original Flight-Q2 T 42,649,266 +00.0% 27,662,430 +00.0% 18,298,443 +00.6%

& Flight-Q3 T 40,199,029 +00.0% 15,917,689 +00.0% 2,556,697 +00.8%

Flight-Q4 T 39,766,269 +00.0% 28,007,283 +00.0% 433,267 +04.5%

Cloud-Q1 1,162,777 +0.0% 173,795 +32.0% 65,921 +02.3% 2,634 +10.9%

100k Cloud-Q2 1,142,804 +0.4% 223,127 +27.5% 67,101 +01.6% 3,987 +02.3%
Cloud-Q3 1,178,760 +0.0% 154,900 +39.3% 73,966 +24.5% 2,824 +03.4%

Cloud-Q1 17,881,648 +0.8% 365,068 +59.0% 115,802 +03.3% 48,062 +01.2%

500k  Cloud-Q2 20,666,685 +0.1% 356,302 +11.0% 125,579 +03.1% 57,959 +02.8%

Cloud Cloud-Q3 24,579,790 +0.3% 329,993 +06.0% 200,597 +31.5% 52,287 +01.3%
Cloud-Q1 73,539,017 +0.0% 940,311 +02.3% 460,299 +00.8% 177,332 +00.2%

M Cloud-Q2 84,057,122 +0.0% 1,115,216 +09.2% 497,687 +00.5% 224,698 +01.0%

Cloud-Q3 T 947,624 +03.7% 897,059 +35.2% 192,318 +00.2%

Cloud-Q1 T 19,298,715 +00.0% 12,129,946 +00.1% 3,985,490 +00.3%

M Cloud-Q2 T 23,178,835 +00.0% 11,521,068 +00.0% 5,519,018 +01.1%

Cloud-Q3 T 19,259,093 +00.0% 11,058,125 +04.7% 4,407,499 +00.1%

F: Timeout after 24 hours *: 2 instead of 20 hyper-threads : 1 instead of 11 nodes

Tab. 3: Average query execution times in ms (and maximum measurement deviations) over five
measurements for different subsets of all datasets; on average, the measurement deviations are 0.8% for
PostgreSQL, 11.4% for SparkSQL, 3.8% for Redshift and 4.0% for A2DB (if we exclude measurements
with sub-second duration). The best execution times are highlighted.
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minimal cluster configuration has one leader and one follower node; the largest tested cluster
has one leader and eleven follower nodes. We execute query TPC-H-QI (empty result)
on TPC-H 500k and query TPC-H-Q2 (relatively large result) on TPC-H IM. Figure 8
plots the query execution times in milliseconds and a reference line for ideal, i. e., linear
scalability. The measurements for both queries show that the proposed theta-join processing
scales linearly with the number of follower nodes; for this reason, we conclude that A2DB’s
workload distribution strategy works well. Furthermore, the higher communication costs for
larger cluster setups have no major impact on the overall performance, which underlines our
observation that A’DB’s theta-join processing is CPU bound.
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— 800,000 | —*—ADB || — —e— A’DB
g B = | N L
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E £
§ 400,000 |- . § 50.000 | |
& 200,000 |- -
0 | | 0 | |
0 5 10 0 5 10
#Follower Nodes #Follower Nodes

Fig. 8: TPC-H-Q1 on TPC-H 500k and TPC-H-Q2 on TPC-H IM with varying cluster sizes.

6.4 Work Stealing

As followers sometimes finish their work earlier than others, A2DB implements work
assisting (WA) and work stealing (WS) to keep all nodes well utilized. The next experiment
evaluates the effectiveness of the two strategies by comparing the query times with these
optimizations to the ones without them. The measurements in Table 4 show that the benefit
of balancing workload at the end of the join processing is 6—-10% query time reduction.
Hence, both strategies effectively accelerate the join processing; the lively redistribution of
work between the nodes at the end succeeded to keep all nodes busy.

Recordset ~ Dataset ~ Query  Without WA/WS ~ With WA/WS ‘ Difference

100Kk Ql 95,030 88,944 ‘ - 6,4%

TPC.H Q2 3,873 3,461 -10,6%
™ Q1 373,410 335,696 -10,1%

Q2 13,596 12,572 -7,5%

Tab. 4: Query runtimes on TPC-H with and without work assisting and work stealing.

6.5 Context-Specific Attribute Provisioning

To reduce the network overhead when fetching remote data, AZDB applies context-specific
attribute provisioning to send only required values. We now evaluate the effectiveness of
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this strategy by measuring the number of attribute values that are transferred and the number
of non-relevant attribute values that are filtered. Figure 9 visualizes these numbers for the
TPC-H and Flight queries. The measurements show that with context-specific attribute
provisioning, we save about 0% (TPC-H-Q1) to 27% (Fligh-Q1) values on network traffic.
Hence, the savings are dataset-specific, but can be quite substantial. Although not all queries
profit from the filtering, most queries in our workload filter at least 10% values in this way.
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Fig. 9: Amount of transferred (blue) and saved (red) attributes values for the TPC-H and Flight queries
with the context-specific attribute provisioning.

7 Summary

In this paper, we proposed a novel theta-join algorithm that accelerates the processing of
selective theta-join queries via predicate-based candidate pruning and reactive workload
distribution. Our experiments show that with these (and probably also further) optimizations,
theta-joins can be processed orders of magnitude faster than state-of-the-art join strategies
in modern data processing engines. In this way, we motivate a more careful optimization of
theta-joins beyond naive nested-loop joins in modern database management systems. The
selectivity-based predicate selection approach and the strategy-driven join technique can
also be used to extend existing theta-join algorithms, such as IE-Join [Kh15] or 1-Bucket-
Theta [Ok11], so that they can handle arbitrary many join predicates as well. Although such
combinations could lead to further improvements, their construction and evaluation is not
in the scope of this paper and we have to leave them to future work.
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Precise, Compact, and Fast Data Access Counters for
Automated Physical Database Design

Michael Brendle! Nick Weber?s Mahammad Valiyev®? Norman May? Robert Schulze?
Alexander B6hm? Guido Moerkotte? Michael Grossniklaus®

Abstract: Today’s database management systems offer numerous tuning knobs that allow an adaptation
of database system behavior to specific customer needs, e. g., maximal throughput or minimal memory
consumption. Because manual tuning by database experts is complicated and expensive, academia
and industry devised tools that automate physical database tuning. The effectiveness of such advisor
tools strongly depends on the availability of accurate statistics about the executed database workload.
For advisor tools to run online, workload execution statistics must also be collected with low runtime
and memory overhead. However, to the best of our knowledge, no approach collects precise, compact,
and fast workload execution statistics for a physical database design tool. In this paper, we present
data structures that solve the problem of providing workload execution statistics with high precision,
low memory consumption, and low runtime overhead. In particular, we show how existing approaches
can be combined and for which advisor tools, new data structures need to be designed. We evaluate
our data structures in a prototype of a commercial database and show that they outperform previous
approaches using real-world and synthetic benchmarks.

1 Introduction

Modern database management systems (DBMS) offer a plethora of tuning knobs to adapt
the system behavior to specific customer needs [Ag04; Ra02]. As a result, finding an
optimal configuration that meets all requirements (e. g., with respect to throughput or
memory consumption) is usually a difficult task performed by experts. Since manual
database tuning by experts is expensive or even infeasible in managed database-as-a-service
(DBaaS) environments, academia and industry devised tools for automated physical database
design [Lul9]: (1) Index advisors improve query performance by creating (clustered)
indexes on columns frequently referenced in selective query predicates [Ag04; Ko20;
Na20]. (2) Data compression advisors reduce the table memory consumption, and thus,
the amount of data read and processed by physically compacting columns [Dal9; Le10].
(3) Buffer pool size advisors lower the Total Cost of Ownership (TCO) by setting the buffer
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pool size to the working set size such that memory costs are minimized without impairing
performance [Dal6; St06]. Finally, (4) table partitioning advisors enable partition pruning,
an effective method of reducing the amount of data to be read [ABI19; Ag04; Cul0; Ra02;
Sel6]. Furthermore, separating frequently accessed (hot) and rarely accessed (cold) data
into disjoint partitions can increase the buffer pool hit ratio.

All aforementioned physical database design tools require an objective function, e. g., the
workload performance or memory footprint, while respecting given constraints, e. g., a
memory budget or maximum workload execution time. To do this, advisor tools consider a
set of potential new physical layout alternatives (e. g., by enumeration). For each alternative,
the advisor calculates a change in the objective function based on the data, the workload, and
the current physical layout. Accurate statistics about the executed workload are of particular
importance for the effectiveness of many advisors. For example, index advisors rely on
precise knowledge of query predicate selectivities, data compression advisors depend on
understanding how much data is sequentially read (e. g., scans) or randomly accessed (e. g.,
index join), buffer pool size advisors are based on page access statistics, whereas table
partitioning advisors build upon row- or value-level access statistics.

Obviously, there is a trade-off between the accuracy of workload execution statistics and
their runtime and memory overhead. Ideally, workload execution statistics are collected
with low overhead, such that advisor tools can be executed online to adapt to dynamically
changing workloads. However, in practice, workload execution statistics are either gathered
offline, e. g., by executing a representative sample of the workload on a separate node [Ag04;
Cul0; Ra02], or collected with low precision, e. g., by tracking access frequencies at page
granularity instead of per row and attribute, combined with sampling [FKN12; Hu19; No20].
As aresult, to the best of our knowledge, no approach collects precise, compact, and fast
workload execution statistics for an advisor tool.

In this work, we formalize, analyze, and solve the problem of providing workload execution
statistics with high precision, low memory consumption, and low runtime overhead as input
to automated physical database design tools. Our contributions are as follows:

e we demonstrate and discuss four practical use cases of automated physical database
design advice that require workload execution statistics as input (Section 2);

e we define the workload execution statistics that need to be collected, and we subse-
quently formalize the problem (Section 3);

e we discuss and classify related work with respect to their precision, space efficiency,
and runtime overhead (Section 4);

e we present data structures for collecting precise, compact, and fast workload execution
statistics (Section 5); and

e we implement our data structures prototypically in SAP HANA and show for each
use case that workload execution statistics are provided with high precision and low
memory and runtime overhead using real-world and synthetic benchmarks (Section 6).
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2 Use Cases of Physical Database Design Advice

This section introduces four use cases of automated physical database design advice in
column stores that require workload execution statistics F'Stat about a workload W. For
now, it suffices to think of W as a set of SQL statements and FStat as statistics about W
collected during the execution of W.

We argue that automated physical database design tools can be categorized according to
their objective function, aiming either for maximum performance or minimum memory
footprint. Besides that, advisor tools need to fulfill given constraints, e. g., a memory budget
or a maximum workload execution time. In Section 2.1, we introduce an index advisor and
a data compression advisor that focus on in-memory performance, i. e., speeding up query
response times of given workloads. Section 2.2 presents a buffer pool size advisor and a
table partitioning advisor that optimize for memory footprint.

In the following, R denotes a set of n relations, and A(R;) is the set of m; attributes of
relation R; € R. Further, D(A; ;) = {Vvi j.1, . Vi,j.k» - Vi.j.d;; } Tefers to the active domain
of attribute A; ; € A(R;) withv; j 1 < .. <V;jk <. <Vija,, whered ;isthe number
of distinct values in A; ;. Finally, R;[rid;].A; ; € D(A; ;) is the value of the row with row
id rid; € [1, |R;|] of attribute A; ; € A(R;), where |R;| is the cardinality of R; € R.

2.1 Automated Physical Database Design for Maximizing Performance

Creating a (clustered) index on a column improves the performance if the workload includes
selective filter predicates. Traversing the index is then faster than performing a full column
scan. Besides that, we assume that a memory budget is given to create indexes only on those
attributes where they yield the largest benefit [Ag04; Ko20; Ra02].

Use Case 1 (Index Advisor) Letr A; ; € P(A(R;)) be a set of attributes from the power set
of all attributes that is uniquely identified by s € [1, |RP(A(R))|], 1,5 a single-/multi-column
index defined over A; s, and 1 the set of all possible indexes over all relations. An index
advisor proposes an index configuration IC C I such that the estimated execution time & of
aworkload W based on workload execution statistics FStat is minimized while the estimated
additional memory consumption M of the indexes adheres to a given memory budget M B:

argmin &(IC, W, FStat) subject to M(IC) < MB.
I1Ccl

Applying compression to a column may reduce its size, and thus, the amount of data
processed by sequential scans. In contrast, compression may deteriorate the time to
dereference individual row ids (e.g., during projections) since the decompression of
individual rows or blocks may incur multiple random memory accesses, depending on the
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compression technique. In practice, robust performance is often preferred, and a column
would only be compressed if the speed of critical SQL statements does not decline compared
to an uncompressed column [Dal9; Lel0]).

Use Case 2 (Data Compression Advisor) Let C; ; be a set of compressed and uncom-
pressed storage layouts for an attribute A; ; € R;, Cl’.fj € C;j be the uncompressed
storage layout, and W,y € W be the subset of (business) critical SQL statements in the
workload, defined by the user. A data compression advisor proposes for each attribute
A j € A(R;) of each relation R; € R a physical storage layout C; ; € C; ; such
that the estimated execution time & of a workload W based on workload execution
statistics FStat is lezimized, while for each critical SQL statement q € Wep, the esti-
mated execution time & does not exceed the estimated execution time & without compression:

arg min E({Cijl1 <i<n1<j<m},W, FStar)
VR;€RVA; jeA(R;):Ci jeC; ; —~
subject to Vg € Werir : 8({Cij |1 < i< n,1 < j<m},q,FStar)

<E{CH; |1 <i<n1<j<m},q FStar).

2.2 Automated Physical Database Design for Memory Footprint Reduction

A buffer pool size advisor aims for a minimal buffer pool size such that a performance
constraint, e. g., a maximum workload execution time, is still fulfilled. To do this, a buffer
pool size advisor needs to identify the workload’s working set and configure the buffer pool
size so that all hot pages can still be held in DRAM.

Use Case 3 (Buffer Pool Size Advisor) A buffer pool size advisor proposes a minimal
buffer pool size B € N such that the estimated execution time & of a workload W based on
workload execution statistics FStat does not violate a given threshold SLA:

argmin B subject to g(B, W, FStat) < SLA.
BeN

A buffer pool is a simple and practical approach to retain data’s hot working set in DRAM.
Its most significant drawback is that mixing hot and cold data within the same page pollutes
the buffer cache and works against its effectiveness. Table range partitioning separates hot
and cold data into disjoint range partitions, and hence, improves the buffer pool hit ratio.

Use Case 4 (Table Partitioning Advisor) Let S; be a set of range partitioning specifica-
tions for a relation R; € R. A table partitioning advisor proposes a buffer pool size B € N,
and for each relation R; € R a range-partitioning S; € S; such that the buffer pool size B is
minimized, while the estimated execution time & of workload W with workload execution
statistics FStat does not violate a maximum workload execution time SLA.

argmin B subject to g({S,- |1 <i<n},B,W,FStat) < SLA.
BEN,R,—ER:S;, ES[
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3 Problem Statement

We now formalize the problem of providing workload execution statistics F'Stat with high
precision, low memory consumption, and low runtime overhead as input to automated
physical database design tools. We start this section by defining F Stat for a workload W
and show exemplary FStat after executing JCC-H Query 3 [BAK18].

Definition 1 (Workload Execution Statistics) We define a workload W as a multiset of
SQL statements” and T (q) as the physical execution plan of a SQL statement g € W. For a
workload W, we define workload execution statistics F Stat:
F1 (Index Advisor): For each executed SQL statement q € W, FStat stores for each
selection o, (R;) on a base relation R; € R in the physical execution plan T (q) that
consists of an index-SARGable predicate p, a tuple (|0, (R;)|, F (p)), where |0, (R;)|
is the output cardinality of o, (R;) and F (p) are the free attributes contained in p.
F2 (Data Compression Advisor): For each executed SQL statement g € W, F Stat stores
for each attribute A; ; € R; a pair (s; j,r; ;), where s; j is the number of rows in A; ;
that were sequentially accessed by q (e. g., by a selection o,(R;) € T(q), where p
contains A; ;), and r; j is the number of rows that were randomly accessed in A; ; by q
(e. g., by a projectionIa, ; € T(q)).
F3 (Buffer Pool Size Advisor): For each executed SQL statement g € W, FStat stores the
access frequency fp, , , to each page P; ; , € P; j,u € [1,|P; j|] (i.e., P; jy stores for
a set of rows the values R;[rid;].A; j), where P; j is the set of all pages of A; j € R;.
F4 (Table Partitioning Advisor): For each executed SQL statement g € W, FStat stores
the access frequency f,, ;. for each value v; j x € D(A; ), where fy, ;  is the sum of
e the number of sequential reads of A; j by q such that AR;[rid;].A; ; = v; j x, rid; €
[1, |R:|] that is part of the matching rows (e. g., by a selection op(e) € T(q) where
p references A; j and v; j i satisfy p)$, and

o the number of random reads of rows in A;; by q such that R;[rid;].A;; =
Vi.j.k,Vridi € [1,|R;i]] (e. g, by a projection 14, ; € T(q)).

We execute JCC-H Q3 [BAK18] to demonstrate F Stat.
Figure 1 shows the optimal query execution plan, lop(R)I 7 (p)

identified by SAP HANAs query optimizer [MBL17]. 3,774,696 { O_ORDERDATE }
299,496 { C_MKTSEGMENT }
Table 1 shows FStat FI for an index advisor.

Since the most selective predicate is applied to Tab. 1: Collected statistics F'Stat F1
C_MKTSEGMENT, an index advisor might propose for selections o (R;) of JCC-H Q3.
an index on this attribute. Depending on the memory

budget, the advisor might also recommend an index on O_ORDERDATE. The selection on
L_SHIPDATE is not recorded since it is not performed on a base relation in the plan.

7 We consider multisets of SQL statements to account for realistic workloads with repeated queries.
8 We record only accesses to rows that match the predicate since we assume that a range partition generated for a
value v;_; i is pruned if the value does not satisfy the predicate.
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T[L_ORDERKEY, revenue, O_ORDERDATE, O_SHIPPRIORITY Al"] Si’j ri’j
Sort C_CUSTKEY 0 299,496

revenue desc, O_ORDERDATE, top 10
sum(L_EXTENDEDPRICE * (1 — L_DISCOUNT)) as revenue C_MKTSEGMENT 1,500,000 0
. O_ORDERKEY 0 1015311

O_ORDERKEY

Y O_CUSTKEY 0 3,774,696
L-SHIPDATE>199505.29 O_ORDERDATE 15,000,000 377,432
B ommust oteer O_SHIPPRIORITY 0 10
2 cuSTKEY=C CUSTKEY LINEITEM L_ORDERKEY 0 3,045,935
/\ L_DISCOUNT 0 1,074,616
O-O_ORDERDqTE<1993-05-29 GC_MKTSEGMErTfFURNITURE' L_EXTENDEDPRICE O 1 ’074’6 1 6
ORDERS CUSTOMER L_SHIPDATE 0 3,045,935

Fig. 1: Optimal query execution plan for JCC-H Tab. 2: Collected statistics F'Stat F2 about the
Q3, identified by SAP HANAs query optimizer.  number of rows that were sequentially (s;, ;) and
randomly (r;, ;) read for each A; ;.

Table 2 shows F'Stat F2 for a data compression advisor. Since C_MKTSEGMENT exposes
only sequential but no random reads, a data compression advisor might suggest compression.
A data compression advisor might also propose compression of O_ORDERDATE since the
amount of data processed by sequential scans is reduced. However, random accesses would
slow down the time of dereferencing individual row ids due to compression. Therefore, the
data compression advisor needs to consider the trade-off between the gain of speeding up
sequential reads and the loss of slowing down random accesses.

Figure 2 shows for each 256KB page P; ;. (x-axis) of L_EXTENDEDPRICE the ac-
cess frequency fp, ;, (y-axis), i.e., FStat F3. Due to dictionary compression in SAP
HANA [MBLI17], pages contain either value-id array chunks (600 pages) or dictionary data
(40 pages). Since only =75% of the value-id array pages are accessed, a buffer pool size
advisor might propose reducing the buffer pool size such that all hot pages can still be held
in DRAM.

Figure 3 shows for each value v; ; i of the active domain of O_ORDERDATE (x-axis)
the access frequency f,, ;, (y-axis), i.e., FStat F4. A table partitioning advisor might
propose a (hot) range-partition for data items with O_ORDERDATE between 1993-01-29
and 1993-05-28 since only those values are accessed frequently. In contrast, data items with
O_ORDERDATE larger than 1993-05-28 have an access frequency of 0 and a corresponding
(cold) table partition will be pruned by the predicate on O_ORDERDATE.

Problem 1 The problem we consider is to provide workload execution statistics FStat,
which are precise (i.e., as accurate as possible), compact (i. e., the memory footprint
compared to the data set size should be as small as possible), and fast (i. e., the runtime
overhead during workload execution should be as low as possible).
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Fig. 2: Collected statistics F'Stat F3 about the Fig. 3: Collected statistics FStat F4 about
access frequency fp, ;, of each page P; j, of the access frequency fy, ;, of each value
L_EXTENDEDPRICE for JCC-H Q3. vi.j,k € D(O_ORDERDATE) for JCC-H Q3.

4 Related Work

This section discusses and classifies related approaches of collecting workload execution
statistics F'Stat with respect to the precision for use cases F1 to F4, space efficiency, and
runtime overhead. The considered approaches are summarized in Table 3.

The first type of workload execution statistics are row-level data access counters. Project
Siberia [LLS13] analyzes log samples to estimate the access frequency of rows, and SAP
ASE [Gul8] caches runtime access patterns of rows. In row stores, this approach yields
precise access frequencies of pages (F3). To also track access frequencies of active domain
values precisely (F4), separate counters per domain value and attribute are needed, which
results in high memory consumption and runtime overhead. Furthermore, with row-level
counting, it is unable to deduce the output cardinality of selections (F1). Finally, the total
number of rows that were accessed sequentially or randomly can only be tracked if separate
counters of each access type exist (F2).

Another class of workload execution statistics are graphs. In Schism [Cu10] and Clay [Sel6],
each row is represented as a node, and edges connect rows if accessed within the same
transaction. The weight of an edge denotes the number of transactions that accessed both
rows. Graphs are as precise as row-level data access counters. However, the memory and
runtime overhead depends on the workload. If transactions touch only a few rows, an
adjacency list results in low memory and runtime overhead. In contrast, if transactions touch
many rows, both an adjacency list or a matrix result in high memory and runtime overhead.

To further improve the memory and runtime overhead, block-level data access counters
were proposed. For example, X-Engine [Hul9] leverages access frequencies at extent level
collected during workload execution, and HyPer [FKN12] uses for each virtual memory
page flags of the CPU’s MMU to identify cold pages. Block-level data access counters
provide precise access frequencies of pages (F3). The tracking accuracy for accesses to the
active domain (F4) depends heavily on the workload and falls short in the presence of heavy
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Precise FStat Compact Fast
Fl F2 F3 F4

Approach for collecting workload execution statistics

Row-level data access counters [Gul8; LLS13] X v v v X X
Graph representation [Cul0; Sel6] X v v v

Block-level data access counters [FKN12; Hul9] X v v v

SQL statements + What-if API [Ag04; Ra02] v X
Memory access tracing [No20] X v v X X
Our approach v v v 7 v v

Tab. 3: Comparison between different approaches for collecting workload execution statistics F'Stat
as input to advisor tools with respect to their precision, space efficiency, and runtime overhead.

hitters. The total number of rows sequentially or randomly accessed is available if separate
counters for each access type are maintained (F2). The access granularity cannot be tracked
as row-level access counters (F1). While block-level access counters are compact, their
runtime overhead depends on the workload. In the worst-case, all counters of all blocks
accessed need to be incremented (e. g., during a full column scan).

A traditional approach of collecting workload execution statistics is to feed the workload’s
SQL statements into offline physical design advisors, which rely on the query optimizer’s
what-if API [Ag04; Ra02]. While the collected SQL statements are compact, the most
significant drawback is that physical accesses to the data are not tracked. Thus, the approach
fails to provide accurate statistics as it relies on estimates.

Instead of collecting workload execution statistics inside the database, memory access
tracing [No20] uses the PEBS mechanism of Intel processors to trace memory accesses,
which are mapped to the data to determine precise access frequencies of pages (F3) and
values of the active attribute domain (F4). While only single memory accesses are traced,
the access granularity (F1) and access type (F2) cannot be identified. Since memory traces
are logged and analyzed offline, the memory and runtime overhead is high.

In sum, no approach collects precise, compact, and fast workload execution statistics FStat
for a physical database design tool. In the next section, we show how existing approaches
can be combined and for which advisor tools new data structures need to be designed.

5 Data Access Counters

We begin describing our approach by explaining how precise, compact, and fast workload
execution statistics for an index advisor can be collected (Section 5.1). Afterwards, we
present data structures for a data compression advisor (Section 5.2), a buffer pool size
advisor (Section 5.3), and a table partitioning advisor (Section 5.4).
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5.1 Use Case 1: Index Advisor

The most popular approaches of providing workload execution statistics for index advisors
(FStat FI) consider SQL statements as input to the optimizer’s what-if API. As a result,
those approaches are limited in their performance due to what-if analysis and rely on
the availability of precise cardinality estimates. To address these limitations, we track the
actual output cardinalities of selections o, (R;) at query execution time. Since tracking
the exact output cardinalities |0, (R;)| of all selections would consume too much memory,
we introduce a threshold parameter ¢ € (0, 1] to capture only selections with an output
cardinality less than ¢ - |R;| since only selective predicates benefit from indexes [KAI17].
To reduce the memory overhead further, we group the actual output cardinalities into
intervals [b", b"*1), b € R.,0 < r < [log,(¢ - |R;|)] and instead only count the number
of selections per interval. The estimated output cardinality for selections that are recorded to
the interval [b”, b"*) is Vb - b7+!. Hence, we determine an error (i. e., the ratio between
the actual and recorded output cardinality) of Vb for arbitrary complex predicates. In our
experiments in Section 6, we set the interval base parameter b to 2, such that the actual and
recorded output cardinalities differ at most by a factor of V2.

Since an index advisor may recommend multi-column indexes, we would need one set
of intervals (i.e., [b",b"*!), b € Ro(,0 < r < [logy(¢ - |R;|)]) per combination of free
attributes per relation, i. e., in total, 2™ — 1 (= [P(A(R;)) \ {}]) set of intervals. As a result,
the memory consumption of our approach using 32-bit counters for a relation R; with
m; attributes would be ([logp (¢ - |R;])]+ 1) - (2" — 1) - 4 bytes. To meet the memory
requirements, we propose lazy counters, only created if (1) the corresponding combination
of free attributes actually occurred in selection predicates and (2) the selectivity of this
attribute combination is below ¢. We argue that this number of attribute combinations
is significantly smaller than the number of all attribute combinations. For example, for
LINEITEM with scale factor 10 (i. e., 16 attributes and 60,000,000 rows) and b = 2, counters
for all combinations of free attributes constitute 0.32% of the data set size of LINEITEM in
SAP HANA (1.90 GB), while our lazy counters constitute only 0.02% of the data set size.

Section 6 demonstrates that our approach has a high precision as well as a low memory and
runtime overhead. We summarize the presented data structure in the following:

Access Counter 1 (Index Adyvisor)

Physical Accesses: We consider each selection o, (R;) consisting of an index-SARGable

predicate, and its actual output cardinality |0, (R;)|, collected during query execution.

Lazy Counters: For a base b € R and a set of attributes A; s € P(A(R;)), we create and

maintain integer counters Xl”fx ... qu_ivxr R Xl'iz‘)f”()gb(¢'|Ri D if there exists a selection

op(R;) €T(q),q € W such thatA, s € F(p)and|o,(Ri)| < ¢-|R;il

Interval Counting: A counter X; ‘dx is incremented by 1 for a selection o, (R;) € T(q), q €
W ifloy (Ri)| > 0 and 7 = [10gy (| (Ri) )] and |ey (R < 6+ IRil. For |y (Ry)| =

X’ "o is incremented by 1.
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Xi9x_ 1 0 | ¥= 100_ORDERDATE> 1992-05-22(ORDERS)| = 14, 673,977 xidx

1.1.23 12,23
X0 X150
P |00_ORDERDATE=1996-05-28 (ORDERS)| = 1,142, 442 i
X101 2‘—[ X101

|co_ORDERDATE=1992-05-28 (ORDERS)| = 1,142,946

d d
X{T11| 147 |00_ORDERPRIORITY="1-URGENT’ A I—>X 159 | 1
U | O_ORDERDATE=1997-10-05 (ORDERS)| = 298 R

X{fll’fo 0 |c0_ORDERDATE=1997-10-0s (ORDERS)| = 1428 Xfflz’fo 0
Ay, = {O_ORDERDATE} {O_ORDERDATE, O_SHIPPRIORITY} = A ,

Fig. 4: Illustration of our approach for collecting workload execution statistics for an index advisor.

Figure 4 shows for five selections on ORDERS with scale factor 10 (15,000, 000 rows)
how the access counters with base b = 2 are updated. We show the access counters for
selection predicates containing attribute O_ORDERDATE (left), and selection predicates
containing O_ORDERDATE and O_ORDERPRIORITY (right). The first selection on
O_ORDERDATE matches 14, 673,977 rows, and thus no counter is updated for ¢ = 0.1.

The counter X fdlxz | is updated twice, by the second ([loga (1, 142,442)7 = 21) and the third
selection ([log,(1,142,946)] = 21). The fourth selection updates the counter Xlidzx9 for
the attribute set of O_ORDERDATE and O_SHIPPRIORITY as 298 rows match, and two

attributes are referenced in the predicate.

As future work, we plan to collect for a join e >4 =A R;, where e is an expression (e. g.,
op(Ry)), the cardinality of expression e (i.e., |e"|) for attribute A; ; of relation R;. The
reason is that an index on an attribute A; ; may improve the performance if |e| is small.
Traversing the index on A; ; is then faster than building a hash table on A; ;.

5.2 Use Case 2: Data Compression Advisor

In Section 4, we have shown that existing approaches of collecting workload execution
statistics for data compression advisors (F'Stat F2) do not consider the type of access (i.e.,
sequential vs. random access). We propose to count both the number of rows accessed
sequentially and randomly by the workload. Maintaining just two counters per attribute
fulfills the space efficiency requirement. Section 6 shows that our approach also achieves a
low runtime overhead. Note that besides workload execution statistics, characteristics of
the data (e. g., number of distinct values, value distribution, or whether the data is sorted)
are also needed to propose an optimal compression layout (Use Case 2) [Dal9]. Moreover,
these statistics are typically available in databases today with sufficient quality. However,
workload execution statistics are essential in estimating the performance benefit, particularly
for (business) critical queries. We summarize the presented access counter in the following:
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Access Counter 2 (Data Compression Advisor)

Physical Accesses: We consider the physical data accesses during execution of workload W.
Access Type: For each attribute A; ; € R;, we create and maintain an integer counter X;
which tracks the number of rows sequentially read, and an integer counter X T which tmcks
the number of rows randomly accessed.

Aij X3 . Xr.
> i,j tJ
C_CUSTKEY 0 299,496 TT|_ORDERKEY, revenue, O_ORDERDATE, O_SHIPPRIORITY
C_MKTSEGMENT | 1,500,000 0 SOtevense desc op 10
O_ORDERKEY 0| 1,015,311 sum( (- ) as revenue
O_CUSTKEY 0| 3,774,696 T'o oRDERKEY
O_ORDERDATE 15,000, 000 01 SHIPOATE1965.05.26
O_SHIPPRIORITY 0 10 M3 ORDERKEY=L ORDERKEY
L_ORDERKEY 3,045,935 N : /\
MG custkey=c custkey LINEITEM
L_DISCOUNT /\

L_EXTENDEDPRICE 00 _ORDERDATE<1993-05-29 0 C_MKTSEGMENT='FURNITURE’

Slo|o|o

L_SHIPDATE

3,045,935 ORDERS CUSTOMER

Fig. 5: Illustration of the data structure for collecting FStat F2 for a data compression advisor.

Figure 5 shows for JCC-H Q3 how X: ‘J and X! ’] are updated. Note that these statistics
are actual values from the execution with SAP HANA. Data accesses by an operator in
the plan and updating the corresponding counter are highlighted using a unique color.
The selection on O_ORDERDATE causes 15,000,000 sequential row accesses, while
the join between ORDERS and CUSTOMER causes 299, 496 random row accesses to
C_CUSTKEY and 3, 774, 696 random accesses to O_CUSTKEY (a customer has on average
10 orders). The projection on O_SHIPPRIORITY generates 10 random row accesses due to
the top-10 query.

5.3 Use Case 3: Buffer Pool Size Advisor

Block-level data access counters provide precise access frequencies of pages if the block size
equals the page size. However, keeping track of accesses that span multiple pages requires
updating |P; ;|-many block counters. Instead of updating for each query the frequencies
of all touched pages individually, we propose to update only the respective start and end
page counters: If a query accesses the pages [P; v, Pij.w), Pij.v,Pijw € Pij, the
corresponding counter to page P; ;. , is incremented, while the counter of page P; ; 41 is
decremented since P; ; ,, is the last accessed page. This enables counter updates in constant
time. Since we decrement the counter of the following page, in total |P; ; + 1| counters
are needed to be able to decrement a counter for accesses to the last page P; ; p, ;+|- After
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statistics collection, the final page access frequencies are derived by calculating the prefix
sum of the counters up to the target page. We argue that the statistics are considerably
more often updated than read (e. g., after a sampling phase) and that we thus meet the
runtime overhead requirements. Furthermore, the memory overhead is low because only a
single 64-bit signed integer counter per page is stored. For example, in SAP HANA [Sh19]
the memory footprint varies between 0.2% (64 bit/4 KB) and 0.00005% (64 bit/16 MB),
depending on the page size. We present the data structure below:

Access Counter 3 (Buffer Pool Size Advisor)

Physical Accesses: We consider the physical data accesses by the workload W.

Start/End Block Counting: For each attribute A; ; € R;, we create and maintain inte-

P P P ; ;

ger counters Xl.’j’l, RN Xi,j,v’ RN Xi,j,(UP’i,ﬁlI)‘ For physical accesses to pages in the
range [P; v, P;;wl, Pijv,Pijw € Pij counter Xin , is incremented by 1, and
counter ij’(wﬂ) is decremented by 1. The access frequency fp, ;, for page P; j, is
defined as fp, ;, = X\_, xF

i,j,v*

N e S BR E e

= :00_ORDERDATE>'1992-01-01’(Orders) @ . ‘1 L ‘1 |

8 +1 - + -

< o_ORDERDATE (€) ° °

=

21 PagesPij, of O_ORDERDATE Pi ;i Pijo Pij3 Pija - Pijel :

- :.:::!::::'.:::!::::::'.:::::!::::'.::::::::::!::::::::'.:::!::::::'.:!:::!::::'.:::!::::::'.:!:::!::::'.:::!::::::'.:!:::!5
% 8 Access Counters Xin u ’ +1 I +1 I -1 l 0 I I +1 l ) ‘ :
[SEE =1 e .
2 é Access Frequency fp, ; , 1 2 1 1 2

Fig. 6: Illustration of the data structure for collection FStat F3 for a buffer pool size advisor.

Figure 6 shows for a selection and a projection on O_ORDERDATE how the page accesses
are counted. The selection changes counter X[.I’J il by +1 and counter X[.I’J 7B+ by -1,
while the projection increments only the counter of the accessed page by +1 and decrements
the counter of the following page by —1. Note that for accesses to the last page, the counter
X f (a1 is decremented. We compute the prefix sum of the counters up to the target
page to obtain the access frequencies of individual pages, e. g., page P; ; » has an access

frequency of 2 (= Xl.Pj s Xl.PJ. 2)-

5.4 Use Case 4: Table Partitioning Advisor

A naive approach of tracking the access frequencies of values in the active attribute domain
(FStat F4) is to group values into value ranges and to increment a value range counter by
one whenever a value or sub-range of the value range is read. With the counter representing
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the access frequency of each value in the range, frequencies are overestimated substantially.
Instead, we propose to count the number of actually accessed values. A single random read
would increase the counter by one, whereas a full column scan would increment the counter
by the number of values in the range (i. e., the block size). The access frequency of a value
is then obtained by dividing the value range counter by the block size. The calculated access
frequencies are nevertheless prone to skewed access patterns. More specifically, access
frequencies of heavy hitters are underestimated, whereas frequencies of rarely accessed
values (i. e., the long tail) are overestimated.

To improve precision in such situations, we propose to employ the space-saving algorithm
and its stream-summary data structure [MAEQOS5] in order to monitor the top-2 most
frequently accessed values of a value range. However, depending on /4, not all values stored
in the stream-summary are true heavy hitters. To identify actual heavy hitters from the values
stored in the stream-summary, we additionally consider each values’ value range counter.
Since the stream-summary substantially overestimates access frequencies of rarely accessed
values, we argue that the estimated frequency of a heavy hitter must not be significantly
larger than its corresponding value range counter. Since the stream-summary also tends
to overestimate heavy hitters, we tolerate a slightly larger estimated access frequency.
Therefore, we introduce a tolerance parameter A, such that the estimated access frequency
of the stream-summary is only considered if its estimate is at most A-times larger than its
corresponding value range counter.

To calculate the access frequency of a value, we first check if the corresponding value range
contains heavy hitters. If this is the case, we subtract their accumulated access count from
the value range counter. The estimated access frequency of values from the long tail is
given by the remaining block count divided by the number of values from the long tail in
the value range. The estimated access frequency of heavy hitters is simply taken from the
stream-sumimary.

Our approach can be tuned to fulfill the space requirement by configuring the block size
and the number of heavy hitter candidates tracked by the stream-summary data structure.
We show in Section 6 that our approach also achieves high precision while having a low
runtime overhead. The presented data structure is summarized in the following:

Access Counter 4 (Table Partitioning Advisor)

Block Counting: For each attribute A; j € R;, we create counters X[.V;?ZO, el Xl.V;.’lb, e,

Xl'v}llLd- i) where the block size b; j is the number of values grouped into a block.

sJs i,j i,j

Stream-summary: For each attribute A; ; € R;, we create a stream-summary data struc-
ture SS lh]. such that D(SS lh ].) is the domain of the monitored top-h most frequently accessed

values. For a value v; j i, the estimated access frequency is given by SSﬁj(v,-,j,k) if
Vijk € D(SSf”j), otherwise 0.

Physical Accesses: We consider the physical data accesses during execution of workload W.
For a sequential read on A; j, XiV’J“.’lb is incremented by the number of values that fall into
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the given block and have at least one matching row. The values are also inserted into SSf‘j.

For a random read R;[rid;].A; j = v; j r,rid; € [1,|R;]], Xiv?l[k/b- 1 is incremented by 1,
* 2J > i,j

and the value is inserted into SSf‘ ;-

Access Frequency: The estimated access frequency J?vi,j, . Is calculated as follows:

z { S} (vij.x) ifisHH (v j k)
Vijk = 1 L i
j Xi‘i?,[k/b,‘,j] - numHHAccesses) /(bi; numHH)} otherwise,

ifv: . h h . < 1. xval
where isHH(v; ;1) = L ifvije € D(SS ) ASS!(viju) <A Xi,j,[k/b,»,jj
0 otherwise.

_ [k/bij1-bij-1 |
numHH = Zk’:[k/bi,jybi,jZSHH(V”J”")

[k/bi j1-bi j=1

numHHAccesses = Zk,_tk/b I'b
=Lk/bi j]-bij

l'SHH(Vi’j,k/) . SSlh’j (Vi,j,k/)-

B 00_ORDERKEY>30(Orders) eecccccee XX N
9 [ d
[
< {™0_ORDERKEY=L_ORDERKEY(¢) ° H
(=l [ ]
5: =
% I Values v; ; s of O_ORDERKEY —~ecicnsinonQnIR8n2ay 2
val
v xigp o [ 2 [ s [ 4] 4
g bi T =4
S h < o 7 Li=
é Stream Summary SSi’j foije =4 [« > fuij =6
% vle—6 v,-,Jk—35
o o
g :
i Est Access Frequency fy, ; . ’ 0 I 1 I 1 |6| ll 1 I I 1 ‘

Fig. 7: Illustration of the data structure for collection F'Stat F4 for a partitioning advisor.

Figure 7 shows for a selection and a join of attribute O_ORDERKEY how the access
frequencies of values are estimated based on the block counter and the stream-summary.
For example, the value 35 stored in the stream-summary is a heavy hitter as 6 is not larger
than A - X,}j}l,lz with A = 1.2. Therefore, the counter XZ]“.’IZ is decremented by 6, which results
in an estimated access frequency of 1 for the values from the long tail, i. e., 33, 34, and 36.
In contrast, value 6 is not classified as a heavy hitter as the estimated access frequency 4 is
more than A-times larger than lejll with 4 = 1.2.
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6 Experimental Evaluation

We evaluate the presented access counters with respect to their precision, space efficiency,
and runtime overhead using real-world and synthetic benchmarks for an index advisor
(Section 6.1), a data compression advisor (Section 6.2), a buffer pool size advisor (Sec-
tion 6.3), and a table partitioning advisor (Section 6.4). We implemented our access counters
prototypically in SAP HANA [MBL17]. First, we discuss the experimental setup.

Our test system is equipped with an Intel Xeon E7-8870 v4 CPU (4 sockets) and 1 TB
DRAM. Secondary storage is provided by a RAID controller of 8 disks of type HGST
HUC101812CSS204 HDD with 10k rpm and a SAS 12 Gbit/s interface.

The first workload is the synthetic TPC-H benchmark [TP18] with scale factor 10, consisting
of 22 templated queries. To create a challenging environment for our access counters, we
consider as second workload the JCC-H benchmark [BAK18] (scale factor 10), which
extends TPC-H with data and query skew. For example, special shopping events such as Black
Friday are reflected by corresponding spikes in 0_ORDERDATE. To cover the experiments in
an acceptable time, we excluded queries Q9, Q16, Q20, and Q21 for JCC-H since parameter
combinations led to query execution times larger than five minutes due to the data and
query skew. Our third workload is the Join Order Benchmark (JOB) [Lel5]. JOB consists
of 33 different query templates (113 different queries in total) and uses real-world data from
IMDb with data skew and correlations that aggravate estimation errors.

For the evaluation, we randomly generated for each benchmark a workload of 200 queries.
The following table shows how often each templated query occurs in each workload:

QueryID 1 23 4567 891011121314151617181920 2122232425 2627282930313233

TPC-H 81111514169 5 811511107124 8 8109 9 9
JCC-H 11157 14199 912- 7 1410128 9 - 91410 - - 11
JOB 5644711455362 946111216177 49555 738535710

6.1 Use Case 1: Index Advisor

We start by evaluating Access Counter 1 for collecting workload execution statistics for an
index advisor. Since we group actual output cardinalities into intervals [5", b"*!) and count
only the number of selections per interval, we calculate the precision of our approach by
dividing the estimated output cardinality (i.e., Vb" - b"+!) by its actual output cardinality:
Qidx = |5';ZRT)| /lop (R;)]. In our experiments, we set the interval base parameter b to 2.
Hence, the actual and recorded output cardinalities differ at most by a factor of V2.

Figure 8 shows for six attributes A; ; € F(p), Yo, (R;) € T(q),VYq € W of each benchmark
the precision ¢;4y, i. €., the ratio of estimated and actual output cardinalities. Overestimation
is shown on the top, underestimation at the bottom. Each boxplot shows the 0.00, 0.25, 0.5,
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0.75, and 1.00 percentiles. We observe for all attributes and all benchmarks that ¢;4, of all
selections is at most V2 in accordance with our choice of b.
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Fig. 8: Precision of our approach for collecting workload execution statistics for an index advisor.

Precise Counting Our Approach
Workload TPC-H JCC-H JOB TPC-H JCC-H JOB
Precision ¢; 4 1.0 1.0 1.0 <V2 <V2 <V2
Memory Overhead 10.6% 10.6% 8.4% < 0.1% < 0.1% < 0.1%
Runtime Overhead 1.4% 1.5% 1.6% 1.7% 2.6% 3.1%

Tab. 4: Precision, space efficiency, and runtime overhead compared to precise counters.

Table 4 shows the results with respect to precision, space efficiency, and runtime overhead
of precise counting (i. e., one counter per output cardinality) and our approach (i. e., lazy
counters and interval counting). While precise counting achieves perfect precision, its
memory overhead varies between 8.4% and 10.6% and is thus substantial. Our approach
instead still attains reasonably accurate estimates, differing at most by a factor of V2. The
memory overhead is also negligible due to lazy counting in combination with intervals.
Both approaches yield a low runtime overhead since only the actual output cardinalities of
selections are tracked. We conclude that our access counters are precise, compact, and fast.

6.2 Use Case 2: Data Compression Advisor

We now evaluate Access Counter 2 for

collecting workload execution statistics ~_ Workload TPC-H JCC-H JOB
for a data compression advisor. Table 5 Precision 100% precise

shows the results with respect to pre- Memory Overhead | < 0.1% <0.1% <0.1%
cision, space efficiency, and runtime Runtime Overhead 4.7% 8.3% 9.1%

overhead. Our approach is 100% pre-
cise since, for each attribute, the exact

number of rows accessed sequentially

Tab. 5: Precision, space efficiency, and runtime overhead
for our access counters of a data compression advisor.
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and randomly by the workload is counted. Maintaining just two 64-bit integer counters
per attribute is also space-efficient. For example, for the Join Order Benchmark with 108
attributes in 21 relations, the total memory consumption is only 1.73 KB (= 108 - 16 bytes).
Compared to the data set size in SAP HANA (2.28 GB), this represents only 0.00008%. As
the runtime overhead is also low (between 4.7% and 9.1%), we conclude that our access
counters for a data compression advisor are precise, compact, and fast.

6.3 Use Case 3: Buffer Pool Size Advisor

In the third experiment, we evaluate Access Counter 3 for collecting workload execution
statistics for a buffer pool size advisor. Table 6 shows the results with respect to the precision,
space efficiency, and runtime overhead of naive block-level counting (i. e., updating the
frequencies of all touched pages) and our approach (i. e., updating only the frequencies
of start and end pages). Both approaches are 100% precise since, for each memory page,
all physical accesses are tracked. Compared to the data set size, the memory overhead is
at most 0.2% compared to the tables data size, given the smallest page size of 4 KB in
SAP HANA (64 bit/4 KB) [Sh19]. We use one signed 64-bit integer counter per page as
counters may become negative. The runtime overhead of naive block-level counting varies
between 8.3% and 21.8%. Our approach results only in a runtime overhead between 5.2%
and 13.5%, as updates to the counter are done in constant time for queries that span multiple
pages. We conclude that our access counters are precise, compact, and fast.

Naive Block-Level Counting Our Approach
Workload TPC-H JCC-H JOB | TPC-H JCC-H JOB
Precision 100% precise 100% precise

Memory Overhead | <0.2% <02% <02% | <02% <02% <0.2%
Runtime Overhead 8.3% 13.1% 21.8% 5.2% 9.2% 13.5%

Tab. 6: Precision, space efficiency, and runtime overhead compared to naive block access counters.

6.4 Use Case 4: Table Partitioning Advisor

Finally, we evaluate Access Counter 4 for collecting workload execution statistics for a
table partitioning advisor. To fulfill the space efficiency requirement, we limit the access
counters’ memory footprint to 1% compared to the column size (encoded column and
dictionary). For example, for O_ORDERDATE (23 MB, 2406 distinct values), we create
one counter per domain value, while for O_ORDERKEY (105MB, 15,000,000 distinct
values), domain values are grouped into ranges of 115 values each. We also maintain a
stream-summary for attributes with a block size larger than one to track the top-100 most
frequently accessed values. Finally, we set 1 = 1.2, i.e., a value is classified as heavy hitter
if its access frequency estimated by the stream-summary is at most 1.2x larger than its
value range counter. We experimentally evaluated A = 1.2 as a good choice. To calculate the
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precision of a value ¢; ; x, we divide the estimated access frequency by the actual access
frequency, i.e., @i j.k = fu, i/ foiju-

In the JCC-H benchmark, 29 of 61 attributes yield a block size larger than one, i. e., cannot
grant 100% precision within a memory budget of 1% of the column size. Figure 9 shows the
precision ¢; ; i of three approaches and six representative attributes with a block size larger
than one. Overestimation is shown on the top, underestimation at the bottom. The boxplot
displays the 0.0001, 0.25, 0.5, 0.75, and 0.9999 percentiles. Outliers are highlighted as dots
above or below the boxplot.
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Fig. 9: Precision of our approach (with and without the stream-summary data structure) compared to
naive block-level access counters for a table partitioning advisor, executing the JCC-H benchmark.

Figure 9(a) shows the precision of naive block-level counters, i.e., the block counter is
incremented by one whenever a value or sub-range of the block is read. The results confirm
the statement in Section 5.4 that access frequencies are overestimated substantially.

Figure 9(b) shows the precision of our approach that counts the number of actually accessed
block values, while the access frequency of a value is obtained by dividing the total number
of accessed values by the block size. We observe that our approach dramatically improves
precision by several orders of magnitude, most of the estimates are within a bound of factor
2. However, for all six attributes, heavy hitters are underestimated, and rarely accessed
values are overestimated (shown on the top and bottom of Figure 9(b)).

Figure 9(c) shows the precision obtained by adding a stream-summary to identify heavy
hitters. To emphasize the difference with and without the stream-summary, we mark these
values in Figure 9(b) in red, which are estimated correctly in Figure 9(c). For example, the
heavy hitters of L_ORDERKEY (shown in red at the bottom in Figure 9(b)) are estimated
precisely in Figure 9(c). Accordingly, rarely accessed values of the corresponding block
are overestimated without the stream-summary (shown at the top of Figure 9(b)) but
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estimated precisely with the stream-summary. We observe similar results for O_CUSTKEY,
L_PARTKEY, and L_EXTENDEDPRICE.

We omit measurements of the precision for the TPC-H benchmark since the results are very
similar compared to the JCC-H benchmark by ignoring the heavy hitters.

In the Join Order Benchmark, 47 of 108 attributes yield a block size larger than one.
Figure 10 shows the precision ¢; ; i for six representative attributes. We again observe
that naive block-level counters overestimate access frequencies substantially (Figure 10(a)),
while our approach improves the precision by 1-2 orders of magnitude (Figure 10(b)).
However, we do not observe substantial improvement by adding a stream-summary like for
the JCC-H benchmark (Figure 10(c)). The reason is that the JCC-H benchmark exhibits
heavy hitters by design, while the Join Order Benchmark exposes only limited data and
query skew.
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Fig. 10: Precision of our approach (with and without the stream-summary data structure) compared to
naive block-level access counters for a table partitioning advisor, executing the Join Order Benchmark.

Table 7 shows the space efficiency and runtime overhead of row-level access counters, naive
block-level access counters, and our approach, with and without the stream-summary data
structure. While row-level data access counters are 100% precise, their memory overhead is
high, and the runtime overhead is also notable. In contrast, naive block-level access counters
and our approach (without stream-summary) use a fixed memory budget of 1% and achieve

Block-Level Counters & Our approach
Row-Level Counters Our approach (- s.s.) (+ stream summary)
Workload TPC-H JCC-H JOB |TPC-H JCC-H JOB |[TPC-H JCC-H JOB

Memory Overhead [10.80% 10.82% 20.53% | <1% <1% <1% | <1% <1% <1%
Runtime Overhead 39% 147% 15.6% | 2.1% 9.7% 9.6% | 13.8% 22.7% 23.6%

Tab. 7: Memory and runtime overhead for our approach compared to row and block-level counters.
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low runtime overhead. However, naive block-level access counters are imprecise, while our
approach achieves precise estimates (Figures 9 and 10). Adding the stream-summary data
structure further improves the precision (Figure 9) at the cost of increasing the runtime
overhead. Therefore, we argue that our approach (without the stream-summary) is preferred
if the runtime overhead is critical. Otherwise, the stream-summary data structure may be
added to improve the precision with low memory overhead.

7 Conclusion

We presented data structures that solve the problem of providing workload execution
statistics with high precision, low memory consumption, and low runtime overhead to
automated physical database design tools. Since no approach in the literature collects
precise, compact, and fast workload execution statistics for an advisor tool, we presented
how existing approaches can be combined and for which advisors new data structures have
to be designed. Our evaluation showed that our data access counters outperform related
work to provide precise, compact, and fast workload execution statistics for an index advisor,
a data compression advisor, a buffer pool size advisor, and a table partitioning advisor using
real-world and synthetic benchmarks.
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Abstract: Recent trends in business and technology (e. g., machine learning, social network analysis)
benefit from storing and processing growing amounts of graph-structured data in databases and
data science platforms. FPGAs as accelerators for graph processing with a customizable memory
hierarchy promise solving performance problems caused by inherent irregular memory access patterns
on traditional hardware (e. g., CPU). However, developing such hardware accelerators is yet time-
consuming and difficult and benchmarking is non-standardized, hindering comprehension of the
impact of memory access pattern changes and systematic engineering of graph processing accelerators.

In this work, we propose a simulation environment for the analysis of graph processing accelerators
based on simulating their memory access patterns. Further, we evaluate our approach on two state-of-
the-art FPGA graph processing accelerators and show reproducibility, comparablity, as well as the
shortened development process by an example. Not implementing the cycle-accurate internal data
flow on accelerator hardware like FPGAs significantly reduces the implementation time, increases the
benchmark parameter transparency, and allows comparison of graph processing approaches.

Keywords: DRAM; FPGA; Graph processing; Irregular memory access patterns; Simulation

1 Introduction

Recently, areas in computer science like machine learning, computational sciences, medical
applications, and social network analysis drove a trend to represent, store, and process
structured data as graphs [Be19, DRF20]. Consequently, graph processing gained relevance
in the fields of non-relational databases and analytics platforms. As a possible solution to
the performance problems on traditional hardware (e. g., CPUs) caused by irregular memory
accesses and little computational intensity inherent to graph processing [Bel9, DRF20,
Lu07], FPGA accelerators emerged to enable unique memory access pattern and control
flow optimizations [DRF20]. FPGAs, compared to CPUs or GPUs with their fixed memory
hierarchy, have custom-usable on-chip memory and logic resources that are not constrained
to a predefined architecture. Example 1 illustrates the effect of irregular memory accesses
for breadth-first search (BFS) with an edge-centric approach. When not reading sequentially
from DRAM, bandwidth degrades quickly [Dr07], due to significant latency introduced by
DRAM row switching and partially discarded fetched cache lines.
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Example 1. Let each cache line consist of two values, the current BFS iteration be 1 with
root vy, and e be the current edge to be processed. Figure 1 shows an example graph with a
simplified representation in DRAM memory. The graphs edge array is stored in rows ro—r4
and the current value array is stored in r5 and rg. We begin by reading edge e, which incurs
activating ry in the memory and reading a full cache line. Then, we activate rs and read the
first cache line containing vo and v, but only use vy. Finally, we activate rg to read vs and
write the new value 1 to the same location, while wasting bandwidth of one value on each
request (i. e., reading and not writing the value of v4 respectively).

While FPGA-based graph processing accelerators show good results for irregular memory
access pattern acceleration (e. g., [Yal8, Zh19]), programming FPGAs is time-consuming
and difficult compared to CPUs and GPUs where the software stack is much better developed
[Ab19, BRS13]. Additionally, software developers currently lack the skill-set needed for
high-performance FPGA programming, making development even more cumbersome.
Aside from that, there are deficiencies in benchmarking of graph processing accelerators
due to a large number of FPGAs on the market (almost every article uses a different FPGA),
but also lack of accepted benchmark standards (cf. [DRF20]). This leads us to the two main
challenges in the field: (/) time-consuming and difficult development of accelerators for
irregular memory access patterns of graph processing, (2) differences in hardware platforms
and benchmark setups hindering reproduction and comparison.

To solve challenges (1) and (2), we propose a simulation environment for graph processing
accelerators (based on the idea in Fig. 2a) as a methodology and tool to quickly reproduce
and compare different approaches in a synthetic, fixed environment. On a real FPGA, the
on-chip logic implements data flow on on-chip (in block RAM (BRAM)) and off-chip state
and graph data in the off-chip DRAM. Based on the observation that the access to DRAM
is the dominating factor in graph processing, we however only implement an approximation
of the off-chip memory access pattern in our environment working on the graph and state
independently of the concrete (difficult to implement) data flow on the FPGA and feed that
into a DRAM simulator. While the performance reported by such a simulation may not
perfectly match real performance measurements, we see a high potential to better understand
graph processing accelerators. This results in the following hypothesis:

Hypothesis. Memory access patterns dominate the overall runtime of graph processing
such that disregarding the internal data flow results in a reasonable error of a simulation.
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Fig. 2: Graph processing memory simulation idea and achieved reproducibility error

Our simulation approach significantly reduces the time to test new graph processing
accelerator ideas and also enables design support and deeper inspection with DRAM
statistics as well as easy parameter variation. In a recent survey [DRF20], we found multiple
graph processing accelerator approaches (e. g., AccuGraph [Yal8], ForeGraph [Dal7],
HitGraph [Zh19], and Zhang et al. [ZL18] among others). Based on criteria like reported
performance numbers on commodity hardware and sufficient conceptual details, we chose
two state-of-the-art systems — namely HitGraph [Zh19] and AccuGraph [Yal8] — with
orthogonal approaches representing the currently most relevant paradigms, edge- and vertex-
centric graph processing, and evaluate our approach on their concepts. Figure 2b shows
box plots of the percentage error e = 100x]s~] e achieve for simulation performance s and
ground truth performance ¢ (taken from the respective article) grouped by accelerators and
algorithms. Without single-source shortest-paths (SSSP) on HitGraph, we get a reasonable
mean of 14.32%. We explain why this single algorithm performs so much worse and
why there are outliers for AccuGraphs weakly-connected components (WCC) algorithm in
Sect. 4.1. In this work, we make the following contributions:

1. We propose a simulation environment for graph processing accelerator engineering
and memory access abstractions based on our hypothesis.

2. We conduct a comprehensive reproducibility study for the two representative graph
processing accelerators HitGraph and AccuGraph and uncover deficiencies in perfor-
mance measurement practices.

3. We show the reduced effort of engineering new ideas with our simulation environment
by example of two novel optimizations to AccuGraph.

This article is structured as follows. In Sect. 2 we introduce basic concepts of graph processing,
FPGA-addressable DRAM, and DRAM simulation. In Sect. 3 we conceptually specify
the simulation environment, request flow abstractions, and their application to HitGraph
and AccuGraph. In Sect. 4 we reproduce and compare the performance measurements of
HitGraph and AccuGraph. We show the engineering benefits of our approach in Sect. 5,
before discussing related work in Sect. 6 and concluding in Sect. 7.
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Fig. 3: Graph partitioning and data structures

2 Background

We start this section by briefly specifying graphs, how graph processing can be implemented,
and what problems can be solved on graphs. Thereafter, we shortly introduce the memory
hierarchy of FPGAs and more specifically how DRAM works internally. Lastly, we motivate
the selection of Ramulator [KYM16] as our DRAM simulator and briefly explain how
Ramulator models memory and is configured for our purpose.

2.1 Graph Processing

A graph G = (V, E) is an abstract data structure consisting of a vertex set V and an edge
set E C V x V. Intuitively, they are used to describe a set of entities (vertices) and their
relations (edges). Figure 3 shows two possible data structure representations (both with two
partitions) of the example graph. Horizontally partitioned means dividing up the vertex
set of the graph into intervals and assigning edges to the partition which interval contains
their source vertex. Figure 3a shows the example graph as a horizontally partitioned edge
list (used by HitGraph [Zh19]), which stores the graph as arrays of edges with a source
and a destination vertex. For example, edge ep connects source vy to destination vertex
v1. Figure 3b shows the same graph as a horizontally partitioned compressed sparse row
(CSR) format of the inverted edges (used by AccuGraph [Yal8]), meaning all source and
destination vertices of the edges in E are swapped before building a CSR data structure on
them. CSR is a data structure for compressing sparse matrices (in this case the adjacency
matrix of the graph) with two arrays. The values of the pointers array at position i and i + 1
delimit the neighbors of v; stored in the neighbors array. For example, for vs in partition 1
the neighbors are the values of the neighbors array between 2 and 4, i. e., v3 and v4.

Depending on the underlying graph data structure, graphs are processed based on two
fundamentally different paradigms: edge- and vertex-centric graph processing. Edge-centric
systems (e. g., HitGraph) iterate over the edges as primitives of the graph on an underlying
edge list. Vertex-centric systems iterate over the vertices and their neighbors as primitives
of the graph on an underlying adjacency list (e. g., CSR). Further, for the vertex-centric
paradigm, there is a distinction into push- and pull-based data flow. A push-based data flow
denotes that values are pushed along the forward direction of edges to update neighboring
vertices. A pull-based data flow (e. g., applied by AccuGraph) denotes that values are pulled
along the inverse direction of edges from neighboring vertices to update the current vertex.
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In the context of this article, we consider the five graph problems implemented by HitGraph
and AccuGraph: BFS, SSSP, WCC, sparse matrix-vector multiplication (SpMV), and
PageRank (PR). The problems specify their implementations to varying degrees. For
example, BFS denotes a sequence of visiting the vertices of a graph. Starting with a root
vertex as the frontier, in each iteration, every unvisited neighbor of the current frontier
vertices is marked as visited, assigned the current iteration as its value, and added to the
frontier of the next iteration.

In contrast, SSSP only specifies the desired output, i. e., for each vertex v € V the shortest
distance to the root vertex. The shortest distance equals the smallest sum of edge weights of
any path from the root to v. If every edge is assumed to have weight 1, the result is equal to
BFS. Similarly, WCC specifies as output for each vertex its affiliation to a weakly-connected
component. Two vertices are in the same weakly-connected component if there is an
undirected path between them. There is no requirement on how these outputs are generated.

Finally, SpMV and PR specify the execution directive. SpMV multiplies a vector (equal to
V) with a matrix (equal to E) in iterations. PR is a measure to descrlbe the 1mportance of
vertices in a graph. It is calculated by recursively applying p(i) = IVI + XjeNG ) dc(/) for
each i € V with damping factor d, neighbors N and degree dg.

2.2 Memory Hierarchies of Field Programmable Gate Arrays

As a processor architecture platform, FPGA chips map custom architecture designs (i.e., a
set of logic gates and their connection) to a grid of resources (e. g., look-up tables, flip-flops,
and block RAM (BRAM)) connected with a programmable interconnection network. The
memory hierarchy of FPGAs is split up into on-chip and off-chip memory. On-chip, FPGAs
contain BRAM in the form of SRAM memory components. On modern FPGAs, there is
about as much BRAM as there is cache on modern CPUs (all cache levels combined), but
contrary to the fixed cache hierarchies of CPUs, BRAM is memory finely configurable to
the application. For storage of larger data structures, DRAM (e. g., DDR3 or DDR4 ) is
attached as off-chip memory. Subsequently, we briefly introduce the internal structure of
DDR3 and DDR4 to understand its implications on graph processing.

The internal organization of DDR3 memory is shown in Fig. 4, which at the lowest level
contains DRAM cells each representing one bit. The smallest number of DRAM cells

JESD79-3 DDR3 SDRAM Standard
JESD79-4 DDR4 SDRAM Standard
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(e. g., 16) that is addressable is called a column. Several thousand (e. g., 1,024) columns
are grouped together into rows. Further, independently operating banks combine several
thousand (e. g., 65, 536) rows with a row buffer each.

Requests to data in a bank are served by the row buffer based on three scenarios: (/) When
the addressed row is already buffered, the request is served with low latency (e. g., fcr:
11ns). (2) If the row buffer is empty, the addressed row is first activated (e. g., trcp: 11ns),
which loads it into the row buffer, and then the request is served. (3) However, if the row
buffer currently contains a different row from a previous request, the current row has to be
first pre-charged (e. g., trp: 11ns) and only then the addressed row can be activated and
the request served. Additionally, there is a minimum latency between switching rows (e. g.,
tras: 28ns). Thus, for high performance, row switching should be minimized.

Since one bank does not provide sufficient bandwidth, 8 parallel banks further form a rank.
Multiple ranks operate in parallel but on the same I/O pins, thus increasing capacity of the
memory, but not bandwidth. Finally, the ranks of the memory are grouped into channels.
Each channel has its own I/O pins to the FPGA such that the bandwidth linearly increases
with the number of channels. DDR4 contains another hierarchy level called bank groups,
which group two to four banks to allow for more rapid processing of commands.

Data in DRAM is accessed by giving the memory a physical memory address that is split
up into multiple parts internally representing addresses for each component in the DRAM
hierarchy (cf. Fig. 5). Based on this, different addressing schemes are possible. An example
addressing scheme that aids distribution of requests over channels might first address the
channels, meaning subsequent addresses go to different channels, then address columns,
ranks, banks, and rows. To further improve memory bandwidth, modern DRAM returns
multiple bursts of data for each request (also called prefetching). For DDR3 and DDR4, each
request returns a total of 64 Bytes over 8 cycles which we call a cache line in the following.

2.3 DRAM Simulators — Ramulator

To speed up the engineering of graph processing on FPGA accelerators, a DRAM Simulator
is an integral part of our simulation environment (cf. Fig. 2a). For our purposes we
need a DRAM simulator that supports DDR3 (for HitGraph [Zh19]) and DDR4 (for
AccuGraph [Yal8]). We chose Ramulator [KYM16] for this work over other alternatives
like DRAMSim2 [RCJ11] and USIMM [Ch12] because — to the best of our knowledge —
it is the only DRAM simulator which supports (among many others like LPDDR3/4 and
HBM) both of those DRAM standards (DDR3/4).
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Ramulator models DRAM as a tree of state machines (e. g., channel, rank, bank in DDR3)
where transitions are triggered by user or internal commands. However, Ramulator does
not make any assumptions about data in memory. Purely the request and response flow
is modelled with requests flowing into Ramulator and responses being called back. The
Ramulator configuration parameters that are relevant to our work are: (/) DRAM standard,
(2) channel count, (3) rank count, (4) DRAM speed specification, (5) DRAM organization.

3 Memory Access Simulation Environment

In this section, we first introduce the simulation environment based on the implications
of our hypothesis and show the abstractions we developed to implement memory access
patterns. Thereafter, we show how this can be applied to real graph processing accelerators.
As motivated in Sect. 1, we chose HitGraph [Zh19] and AccuGraph [Yal8] for that.

3.1 Simulation Environment

As we established in Sect. 1, one of the main challenges with evaluating new graph processing
ideas on FPGAs is time-consuming and difficult development of the accelerator. Thus, the
goal of our simulation environment is reducing development time and complexity within
reasonable error when compared to performance measurements on hardware. To achieve
this goal we relax the necessity of cycle accurate simulation of on-chip data flow due to
our hypothesis: Memory access patterns dominate the overall runtime of graph processing
such that disregarding the internal data flow results in a reasonable error of a simulation.
Modelling the off-chip memory access pattern means modelling request types, request
addressing, request amount, and request ordering. Request type modelling is trivial since
it is clear when requests read and write data. For request addressing, we assume that the
different data structures (e. g., edge list and vertex values) lie adjacent in memory as plain
arrays. We generate memory addresses according to this memory layout and the width of
the arrays types in Bytes. Request amount modelling is mostly based on the size n of the
vertex set, the size m of the edge set, average degree deg, and partition number p. We only
simulate request ordering through mandatory control flow caused by data dependencies of
requests. We assume that computations and on-chip memory accesses are instantaneous by
default. In the following we introduce memory abstractions we developed for modelling
request and control flow.

Figure 6 shows an overview of the memory access abstractions and their icons grouped by
their role during memory access as producer, merger, and mapper.

Producer At the start of each request stream, a producer (Fig. 6a) is used to turn control
flow (dashed arrow) triggers into a request stream (solid arrow). The producer might be
rate limited, but if only a single producer is working at a time or requests are load balanced
down-stream, the requests are just created in bulk.

Mergers Multiple request streams might then be merged with mergers, since Ramulator
only has one endpoint. We have deduced abstractions to merge requests in a direct (Fig. 6b),
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Fig. 6: Memory access abstractions

round-robin (Fig. 6¢), and priority-based (Fig. 6d) fashion. If there are multiple request
streams that do not operate in parallel, direct merging is applied. If request streams should
be equally load-balanced, round-robin merging is applied. If request streams should take
precedence over each other, priority merging is applied. For this, a priority is assigned to
each request stream and requests are merged based on that.

Mappers Additionally to request creation with producers and ordering with mergers, we
also found abstractions for request mappers. Thus, we introduce cache line buffers (Fig. 6¢)
for sequential or semi-sequential accesses that merge subsequent requests to the same cache
line into one request. We do buffering such that multiple concurrent streams of requests
benefit from it independently by placing it as far from the memory as necessary to merge
the most requests. For data structures that are placed partially in on-chip memory (e. g.,
prefetch buffers and caches), and thus partially not require off-chip memory requests, we
introduce request filters (Fig. 6f) that discard filtered requests. For control flow, we use a
callback (Fig. 6g) abstraction. We disregard any delays in control flow propagation and just
directly let the memory call back into the simulation. If requests are served from a cache
line or filter abstraction, the callback is executed, if it is present.

In our simulation environment we instantiate a graph processing simulation and a Ramulator
instance, and tick them according to their respective clock frequency. For graph processing
simulation we focus on configurability of all aspects of the simulation such that we can
quickly run differently parameterized performance measurements. Our simulation works on
multiple request streams that are merged into one and fed into Ramulator. This leads us to a
immensely reduced implementation time and complexity, gives us more insight into the
systems, and provides portability of ideas developed in the simulation environment.

3.2 HitGraph

HitGraph [Zh19] is an edge-centric graph processing accelerator that claims to be among
the best performing systems. The basic idea is to partition the graph horizontally into p
partitions, stored as edge lists (cf. Sect. 2.1), and process the partitions in two phases in each
iteration. First, updates are produced for each edge in each partition in the scatter phase.
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Fig. 7: HitGraph request and control flow

Second, all updates are applied to their respective vertex for each partition in the gather
phase. The main goal behind this approach is to completely eliminate random reads to data
and largely reduce the amount of random writes such that only semi-random writes remain.
All reads to values of vertices are served from the prefetched partition in BRAM and all
reads to either edges or updates are sequential. Writing updates is sequential, while writing
values is the only semi-random memory access. Figure 7 shows the request and control flow
modelling with our simulation environment. Execution starts with triggering a controller
that itself triggers iterations of edge-centric processing until there were no changes to vertex
values in the previous iteration. In each iteration, the controller first schedules all partitions
for the scatter phase, before scheduling all partitions to the gather phase. Partitions are
assigned beforehand to channels of the memory (four channels in [Zh19]) and there is a
processing element (PE) for each channel. After all partitions are finished in the gather
phase, the next iteration is started or the accelerator terminates.

Scatter The scatter phase starts by prefetching the 2 values of the current partition into
BRAM. Those requests go to a cache line abstraction, such that requests to the same cache
line do not result in multiple requests to Ramulator. After all requests are produced, the
prefetch step triggers the edge reading step that reads all % edges of the partition. This is
only an average value since the exact number of edges in a partition might vary because of
skewed vertex degrees. For each edge request, we attach a callback that triggers producing
an update request and merge them with a cache line abstraction. The update requests might
be filtered by an optimization resulting in less than one update per edge. The target address
depends on its destination vertex that can be part of any of the p partitions. Thus, there is a
crossbar that routes each update request to a cache line abstraction for each partition, which
sequentially writes it into a partition-specific update queue. After all edges have been read,
the edge reader triggers the controller, which either triggers the next partition or waits on all
memory requests to finish before switching phases.

Gather Similar to scatter, the gather phase starts with prefetching the 2 vertex values
sequentially. After value requests have been produced, the prefetcher triggers the update
reader, which sequentially reads the update queue written by the scatter phase before. For
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each update we register a callback that triggers the value write. The value writes are not
necessarily sequential, but especially for iterations where a lot of values are written, there
might be a lot of locality. Thus, new values are passed through a cache line abstraction.

Parallelization All request streams in each PE are just merged directly into one stream
without any specific merging logic, since mostly only one producer is producing requests at a
time. However, edge and update reading is rate limited to the number of pipelines in each PE
(which is set to 8 in the original article). Since all PEs are working on independent channels
and Ramulator only offers one endpoint for all channels combined, we employ a round robin
merge of the PE requests in order not to starve any channel. In addition, HitGraph applies
optimizations to update generation. As a first step, the edges are sorted by destination vertex
in each partition. This enables merging updates to the same destination vertex before writing
them to memory, reducing the amount of updates u from u = m to u < n X p, and providing
locality to the gather phases value writing. As a second optimization, an active bitmap with
cardinality » is kept in BRAM that saves for each vertex if its value was changed in the last
iteration. This enables update filtering, by filtering out updates from inactive vertices which
saves a significant amount of update writes for most algorithm and data set combinations.
As a final optimization, partitions with unchanged values or no updates are skipped, which
saves time spent for prefetching of values and edge/update reading for some algorithms.

Configuration HitGraph is parameterized with the number of PEs p, pipelines ¢, and the
partition size k. The number of PEs p is fixed to the number of memory channels because
each PE works on exactly one memory channel. The pipeline count ¢ is limited by the
bandwidth available per channel given as the cache line size divided by the edge size. Lastly,
the partition size is chosen such that p x m vertices fit into BRAM. HitGraph is able to use
all available bandwidth due to fitting p and g to use all memory channels and whole cache
lines of each channel per cycle. Hence, adding more compute (i. e., PEs or pipelines) would
not help to solve the problem more efficiently which is in line with our hypothesis, i. e.,
memory access dominates the performance.

3.3 AccuGraph

AccuGraph [Yal8] is a vertex-centric graph processing accelerator with pull data flow. The
basic idea is to partition the graph horizontally, store it as in-CSR data format and pull
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updates form destination vertices (cf. Sect. 2.1). The original article proposes a flexible
accumulator able to merge many updates to vertex values per cycle. Figure 8 shows the
request and control flow modelling of AccuGraph. The controller is triggered to start
the execution. It iterates over the graph until there are no more changes in the previous
iteration. Each iteration triggers processing of all partitions. Partition processing starts with
prefetching the 2 source vertex values sequentially. Thereafter, values and pointers of all
destination vertices are fetched. The value requests are filtered by the values that are already
present in BRAM from the partition prefetching. Pointers are fetched purely sequentially.
Those two request streams are merged round robin, because a value is only useful with the
associated pointers. For every value fetched in this way, neighbors are read from memory
sequentially. Since the neighbors of subsequent vertices are in sequence in CSR, this is fully
sequential. An internal accumulator collects the changes caused through the neighbors and
writes them back to memory, when all neighbors were read. The value changes are also
directly applied to the values currently present in BRAM for a coherent view of vertex values.
This is filtered such that only values that changed are written. All of these request streams
are merged by priority, with write request taking the highest priority and neighbors the
second highest because otherwise the computation pipelines would be starved. Additionally,
we rate-limit neighbors loading to the number of edge pipelines present in the accelerator.

Configuration AccuGraph is parameterized by the number of vertex and edge pipelines (8
and 16 in the original article) and the partition size. Similar to HitGraph’s PE and pipeline
fitting, the number of edge pipelines is specifically chosen to allow processing one cache line
of edges per clock cycle and thus use the entire bandwidth of the memory, again in line with
our hypothesis. The original article also describes an FPGA-internal data flow optimization
which allows to approximate pipeline stalls, improving simulation accuracy significantly.
The vertex cache used for the prefetched values is partitioned into 16 BRAM banks on the
FPGA which can each serve one vertex value request per clock cycle. Since there are 16
edge pipelines in a standard deployment of AccuGraph, performance deteriorates quickly,
when there are stalls. Thus, we implement stalls of this vertex cache in the control flow
between the neighbors and write producers. A neighbors request callback is delayed until
the BRAM bank can serve the value request.

4 Evaluation

In this section, we validate our simulation approach by reproducing the results reported for
HitGraph [Zh19] and AccuGraph [Yal8], by indeed showing a reasonable simulation error
compared to the measurements on real FPGA hardware. In addition, we illustrate for the
first time, how these completely different graph processing approaches can be compared.

We take the same data sets (Table 1) and graph problems reported in the original articles to
replicate their experiments. Only the two data sets live-journal and wiki-talk are used in both
articles. HitGraph also measured performance on high diameter, constant degree graphs
(i.e., roadnet-ca and berk-stan) and two instances of rmat synthetic graphs. AccuGraph
measured performance on additional social graphs. Both selections of data sets contain
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Name Abbr. Vertices Edges Dir.  Degs. Avg. 4 SCC
live-journal  Ij 4,847,571 68,993,773 3 b——= 1423 16 0.790
wiki-talk wt 2,394, 385 502,410 & 1 210 11 0.047
twitter tw 41,652,230  1,468,364,884 &y —— 3525 75 0.804
rmat-24-16 124 16,777,216 268,435,456 9 L—23 1600 19 0.023
rmat-21-86 121 2,097, 152 180,355,072 9 E—2 86.00 14 0.103
roadnet-ca  rd 1,971, 281 2,766,607 W E=—= 281 849 0.993
berk-stan bk 685,231 7,600,595 ) 11.09 514  0.489
orkut or 3,072, 627 117,185,083 W@ E=—— 76.28 9  1.000
youtube yt 1,157, 828 2,987,624 @ 5.16 20  0.980
dblp db 425,957 1,049,866 i 493 21 0.744
slashdot sd 82, 168 948,464 5 =3 1154 13 0.868

Abbr.: Abbreviation; Dir.: Directed; Degs.: Degree distribution on log. scale; Avg.: Average degree; ¢: Diameter;
SCC: Ratio of vertices in the largest strongly-connected component to n; €%: yes, #: no

Tab. 1: Graph data sets used by HitGraph and AccuGraph (all graphs from SNAP [LK14])

Approach ‘ Type Channels  Ranks  Speed Organization

HitGraph DDR3 4 2 1600K  8Gb_x16

AccuGraph DDR4 1 1 2400R  4Gb_x16

Comparability | DDR4 | 1 2400R  8Gb_x16

Tab. 2: DRAM configurations

Approach | Weighted | SpMV  SSSP PR WCC BFS  Vertex  Pointer
HitGraph 4] 32 32 32 32 - 32 -
AccuGraph L ] - - 32 32 8 32 32
Comparability P - 32 32 32 32 32 32

Tab. 3: Data structure configurations (type width in bits)

directed graphs, while WCC only yields correct results for undirected graphs. This does not
concern our reproducibility measurements but needs to be considered in the future.

4.1 Reproducibility

We measure the quality of the simulation as the percentage error e = w of the
simulation performance measurement s compared against the ground truth ¢ reported by the
respective article. The HitGraph numbers are extracted from a table and the AccuGraph
numbers are taken from a chart. To reproduce the experiments as closely as possible, we
parameterized the simulation environment according to configurations from the original
articles. Table 2 shows the memory configurations of the reproducibility studies and the
comparability study. Table 3 shows the data structure configurations. HitGraph uses weighted
graphs and uniformly wide value types for all problems. AccuGraph uses unweighted graphs

Not officially listed on the SNAP [LK14] website anymore
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Approach ‘ PEs  Pipelines ‘ Elements ‘ Vertex pipelines  Edge pipelines VS ES
HitGraph 4 8 256, 000 - - - -
AccuGraph - - = 8 16 8 8
Comparability 1 16 | 1,024,000 8 16 8 8

PEs: Processing elements; VS: Vertex pipeline size; ES: Edge pipeline size

Tab. 4: Parameter configurations
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Fig. 9: HitGraph measurements

and an optimized 8 bits wide unsigned integer for BFS (problematic for constant degree
graphs). Table 4 shows the respective graph processing accelerator parameters described
in Sect. 3.1 and how they are configured. Both approaches share the partition size as a
parameter. For the reproducibility study, AccuGraph is assumed to fit all vertices in BRAM
for BFS and only for PR and WCC measurements on live-journal and orkut, the partition

size is set to 1, 700, 000 vertices.

Figure 9 shows the HitGraph performance measurements for SpMV, PR, SSSP, and WCC as
runtime in seconds (raw numbers can be found in Tab. 5). Overall, we observe a consistent
outlier in the twitter graph. However, we notice that the HitGraph article reports the diameter
of the twitter graph as being 15, while we report it as being 75 (cf. Tab. 1). Thus, we assume
that our version of the graph is different and exclude it from all error averages in this article
while still showing it in the plots for completeness (error source @). SpMV and PR result in
the same simulation performance, but since ground truth values are slightly different, we
get a different error. In the original article, the authors measure only a single iteration of
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Fig. 10: HitGraph SSSP runtime variation study

SpMV and PR. However, we found that for very short runtimes of single iteration executions
differences of a few cycles can already cause large deviations leading to the errors we
observe for SpMV and PR (error source @). We advise using multiple iterations of such
algorithms in benchmarks in the future.

SSSP shows by far the worst error, with some simulations running much shorter in simulation
than in the ground truth measurements. This can be explained by the problem’s dependence
on the input root vertex (error source @). The HitGraph authors randomly choose 20 root
vertices and report the average runtime. However, wiki-talk and the rmat graphs have many
strongly-connected components (SSCs) with just one or a few vertices (cf. Tab. 1). This
causes algorithms like SSSP or BFS to immediately terminate after one iteration over the
graph with very little runtime which results in large variation in performance measurements
for root vertices from many small and few big SSCs shown in Fig. 10. The error is strongly
correlated to the coefficient of variation in the runtimes (given by % with the standard
deviation o and the mean u). This leads us to the conclusion that 20 random root vertices
are not enough to stabilize the runtime measurements for graphs with such structure. We
advocate for sharing how roots are picked in the future. Moreover, the HitGraph article
does not specify how edge weights are set in the graph, which can also influence runtimes of
SSSP (error source @). We initialized all weights to 1. We regard WCC as the most reliable
indicator for simulation quality because it does not depend on input variables and runs
long enough so fixed overheads are irrelevant. We observe a low simulation error for WCC,
which reassures us that the off-chip memory access modelling works well for HitGraph.
Besides the twitter graph (which we explicitly excluded), the simulation almost perfectly
matches the ground truth.

Figure 11 shows performance measurements for AccuGraph for BFS, PR, and WCC as
billions of read edges per second (GREPS) (raw numbers can be found in Tab. 6). We
calculate REPS as the number of actually read edges m X i (where i is the number of
iterations) divided by the runtime r, which the original article calls traversed edges per
second (TEPS). However, this is misleading since the well-known Graph500 benchmark

We generated the 20 random root vertices with the mt19937 generator in C++ with seed 3483584297.
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Fig. 11: AccuGraph measurements
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defines TEPS as the number of edges in a graph m divided by the runtime r. Thus, we
rename the performance measure to REPS. As we already saw in Fig. 2b, the average error
is very similar for all problems and fits the relative performance of the graph data sets well.

The only consistent outlier is the youtube graph which relatively performs better in all
simulation measurements than is suggested by the ground truth measurements (error source
©). The original article notes that the performance of AccuGraph logarithmically depends
on the average degree of vertices which we also reproduced (cf. Fig. 12). Thus, youtube
should perform the way our measurements suggest, because it has a slightly higher average
degree than the dblp graph. This may be an anomaly in the measurements performed by
the AccuGraph authors. WCC is slightly slower in our simulations than they are on the
accelerator and PR is slightly faster. There may be a fixed overhead that we are measuring
in our experiments and is not measured in theirs. The better performance of PR, however, is
expected, since we do not take the longer latencies and incurred pipeline stalls of floating
point arithmetics into account (error source @).

4.2 Comparability

With these encouraging reproducibility errors and the deeper insight in the approaches
configurations, Fig. 13 shows a comparison of HitGraph and AccuGraph on an equal
configuration (cf. Comparability in Tab. 2 — Tab. 4). It is not easily possible to use AccuGraph
with weighted edges, such that we chose unweighted edges for these measurements. Also it
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Fig. 13: HitGraph vs. AccuGraph on comparable configurations (with improvement of
AccuGraph over HitGraph for runtime)

was not possible to expand AccuGraph to use four memory channels, such that we took
the AccuGraph DRAM configuration, but increased the memory size to 8GB to be able to
accommodate the rmat graphs. However, even this DRAM configuration does not fit the
twitter graph which we thus excluded. Moreover, we configured HitGraph to process up to
16 edges each cycle just like AccuGraph and set the partition size to a reasonable 1, 024, 000
vertices. We show performance numbers of WCC on all graphs used in either of the original
articles, since we got the lowest error for WCC. This includes high diameter graphs (e. g.,
roadnet and berkley-stanford) that AccuGraph has not been tested on yet.

For the two graphs that both systems were originally tested on, AccuGraph (~ 1728 MREPS)
reported slightly higher numbers than HitGraph (1665 MREPS) on wiki-talk and HitGraph
(3322 MREPS) reported much higher numbers on live-journal than AccuGraph (~ 2406
MREPS) in the original articles. However, this is contrary to the absolute numbers we report
here as runtime in seconds (Fig. 13a). HitGraph performs worse on all graphs (the numbers
in the runtime chart are the factor calculated by dividing the HitGraph runtime by the
AccuGraph runtime). Even the simulation inaccuracy of a mean percentage error of 8.997%
for WCC measured in Sect. 4.1 cannot change this. This leads us to a first observation that
REPS (used as a performance indicator in the original articles) is not a reliable performance
measure due to it hiding differences in runtime.

When comparing the two approaches, we notice that AccuGraph needs fewer iterations for
WCC than HitGraph (cf. Fig. 13b). AccuGraph converges on a solution quicker because it
updates values directly. Due to the two-staged approach of HitGraph, it always works on the
values of the past iteration. Lower iteration count is exhibited especially by measurements
on high average degree, low-diameter graphs (e. g., slash-dot and orkut). Additionally,
AccuGraph shows relatively higher performance for small graphs (e.g., slash-dot and
dblp). In this scenario, all vertex value reads besides the partition prefetch are served from
low-latency, on-chip BRAM, because there is only one partition. The last two factors for
AccuGraphs higher performance are: HitGraph needs more requests to read the edges of the
graph and the updates, and HitGraph reads 64bit per edge while AccuGraph only reads 32bit
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per edge due to the CSR format. We thus expect a performance advantage of at least factor 2
on all measurements which is not achieved by AccuGraph on the rmat-24-16 graph. This is
due to the partition skipping optimization of HitGraph (not available for AccuGraph). This
leads to our second observation that AccuGraph has a categorical advantage over HitGraph
because of its direct application of value changes and compressed graph format.

4.3 Summary — Error Analysis

We saw that our simulation environment is able to reproduce the ground truth performance
measurements of the original articles with reasonable error (Sect. 4.1). This is possible for
bandwidth-bound algorithms (like HitGraph and AccuGraph) despite the radical hypothesis
of disregarding FPGA internals. Especially if relative performance behaviour of approaches
is so significantly different (cf. Sect. 4.2), an average error of e. g., 8.997% for WCC is
reasonable to make sound relative comparisons. However, we also identified six sources of
errors which we discuss in the following. For measurements with insufficiently specified
input parameters like start vertices (error source @) and edge weights (error source @) we
see large errors for some graphs. Additionally, we attribute at least some of the error to noise
in the measurements. For example, very low runtime measurements like individual iterations
of SpMV and PR (error source @) can lead to significant noise. We see overestimation of
runtime due to missing modelling of pipeline bubbles that slow down request generation
or missing modelling of e. g., floating point units that perform complicated calculations
(error source @). Lastly, there remain two graphs in twitter and youtube for which we
cannot explain performance differences based on our simulation but rather attribute these
differences to different data sets or different usage of them (error sources @ and @).

One not easily quantifiable, possible error source (error source @) we want to add here is
interpretation based on understanding of the original article’s description of their approach.
This was e. g., especially necessary for data structures with missing data type specifications.
To aid researchers trying to understand the approaches we specified the data types in Tab. 3
and advise to completely specify such parameters in the future to aid reproduction of results.

Without SSSP, we see a low mean error of 14.32%. Thus, for certain use cases, we confirm
our hypothesis: Memory access patterns dominate the overall runtime of graph processing
such that disregarding the internal data flow results in a reasonable error of a simulation. We
advise that the simulation should be used in use cases where relative performance behaviour
is compared rather than where absolute performance should be estimated. Additionally, if
the relative performance behaviour is close for the compared approaches our simulation
approach might lead to inaccurate conclusions.

5 Example for Faster Graph Accelerator Engineering

In this section, we illustrate how our approach helps to speed up graph processing accelerator
engineering by the example of two enhancements of AccuGraph that we found while
analyzing the performance in the previous section. Note that instead of implementing the
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Fig. 14: Runtime improvement of optimizations over baseline

enhancements on the FPGA itself, our simulation approach is used to quickly assess the
altered designs for the different data sets as well as potentially different DRAM types, thus
reducing the overall engineering time by a form of rapid graph accelerator prototyping.

Enhancement ideas AccuGraph writes all value changes through to off-chip memory and
also applies them to BRAM if they are in the current partition. Thus, BRAM and off-chip
memory are always in sync. Nevertheless, at the beginning of processing a partition, the
value set is prefetched even if the values are already present in BRAM. Thus, the first
optimization we propose is prefetch skipping in this case. Especially for the rmat-24-16
graph we also saw the effectiveness of partition skipping with HitGraph (cf. Fig. 13).
Thus as a second optimization, we propose adding partition skipping to AccuGraph. Both
optimizations can easily be added to AccuGraphs control flow by directly triggering the
value and pointer reading producers or completely skipping triggering of execution for
certain partitions respectively. For prefetch skipping we compare the currently fetched
partition with the next partition to prefetch and skip prefetching if they are the same. For
partition skipping we keep track if any value of the vertices of a partition were changed and
skip the partition if none changed. The optimizations also work in combination.

Results To prove their effectiveness, we measure the effect of both optimizations for BFS
and WCC separately and combined (Fig. 14). For all small graphs with only one partition we
see an improvement based on prefetch skipping. Partition skipping is not applicable to those
graphs. For some other graphs we see an improvement based on partition skipping. Prefetch
skipping only sometimes contributes a small improvement but only when combined with
partition skipping. PR as a stationary algorithm is not shown, since no partitions can be
skipped by definition. For prefetch skipping there are similar performance improvements on
PR compared to BFS and WCC. Overall we see no decrease in performance, suggesting
that both optimizations should always be applied.

Note that these insights on the two enhancement ideas were possible in a relatively short
amount of time, compared to engineering on an actual FPGA. Developing and testing a
complicated FPGA design usually takes weeks, while the implementation of a new graph
accelerator approach in our simulation environment takes days or even just hours if the
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approach is well understood before. Additionally, the iteration time is much improved.
Synthesis runs for compiling hardware description code to FPGA take hours up to a day
without many possibilities of incremental synthesis, while a complete compilation of our
simulation environment takes 33.5 seconds on a server with the possibility of easily utilizing
parameters and incremental compilation. As a downside, the simulation runs longer than a
synthesized design on an FPGA would. However, the user is not limited by special hardware
that is only available in limited numbers (FPGAs). Many runs can be executed in parallel on
one or even multiple servers. Especially for the very fragmented FPGA market, virtualized
offers for FPGAs might not be available for specific boards.

6 Related Work

To the best of our knowledge, there are no prior works on only using the off-chip memory
requests paired with a DRAM simulator to make graph processing accelerators more
comprehensible and performance measurements reproducible and comparable.

Cache miss runtime estimation [MBKO02] describe a cost model to approximate query
runtimes in relational databases based on cache misses of memory requests. They focus
on CPU cache hierarchies which allow much less fine-granular data placement than FPGA
memory hierarchies (cf. Sect. 2.2). Additionally, they do not perform simulations of requests
but model performance theoretically based on the model parameters of number of cache
misses and cache latency not applicable to FPGAs.

Comprehensibility [ZCP15] introduces a DRAM model and simulation for HitGraph. The
simulation also generates the sequence of requests, but instead of simulating DRAM runtime,
it assumes that every request results in a row buffer hit and models the performance along
the cycles needed for processing the data and approximated pipelines stalls. However, they
do not show performance numbers generated with this simulation. [Ya19] uses Ramulator
as the underlying DRAM simulator for a custom cycle-accurate simulation of the accelerator
Graphicionado [Hal6]. However, this incurs very high implementation time.

Reproducibility Regarding reproducibility, there are prior works on ways to report perfor-
mance results in such a way that it suits the own approach on parallel computing systems
[Da95, HB15]. The graph processing accelerator domain seems to suffer from similar
problems and lack of widely accepted standards in benchmarking.

Comparability Ramulator [KYM16] was previously used in a work studying the interactions
of complex workloads and DRAM types [Gh19]. They uncovered how the internal structure
and characteristics of DRAM (DDR3 and DDR4 in our work) relate to performance gains
or losses on otherwise fix benchmarks. This may be a future angle to improve graph
processing accelerator performance by fitting the DRAM type to the algorithms and data
sets. Similarly to our work, [Xul7] raises awareness to lacking comparability in graph
processing approaches, but on CPU-based cloud platforms. They find tradeoffs in approaches
between different workloads and differently structured graphs.
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7 Discussion and Outlook

In this article, we propose a simulation environment for graph processing accelerator
approaches based on our hypothesis: Memory access patterns dominate the overall runtime
of graph processing such that disregarding the internal data flow results in a reasonable
error of a simulation. The simulation environment models request flow fed into a DRAM
simulator (i. e., Ramulator [KYM16]) and control flow based on data dependencies. We
developed a set of memory access abstractions and applied these to FPGA implementations
(i.e., HitGraph [Zh19] and AccuGraph [Yal8]) representing the two dominating graph
processing approaches (i. e., edge- and vertex-centric).

Even though the simulation environment disregards large parts of the graph processing
accelerator, we showed that it is able to reproduce ground truth measurements with a
reasonable error for most workloads. In our analysis of the large errors for some workloads
we found insufficiencies in benchmark setups and attribute some error to the radical
hypothesis of our approach. We further utilized the simulation environment to compare the
two approaches on a fixed configuration, revealing insufficiencies in existing performance
measurements of graph processing accelerators. Lastly, we show that our simulation approach
significantly reduces the iteration time to develop and test graph processing approaches for
hardware accelerators by example of two optimizations for AccuGraph that we propose. In
addition, our approach allows for deeper inspection with DRAM statistics as well as easy
parameter variation without a fixed hardware platform.

In future work, we will extend the approach to an analytical performance model and study
the relationship between DRAM types (e. g., HBM, HMC, or LPDDR) and workload types,
as well as further graph processing accelerator approaches in more detail. Additionally,
there are open questions on how to reduce the relative errors of the simulation environment.
This could, e. g., be achieved by studying the simulation environment in more depth on a
graph accelerator we implemented and fully control the benchmark setup for.
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A Appendix

Graph
Algorithm ~ Measurement type ~ berkstan ~ wikitalk ~ roadnet  live-journal twitter ~ rmat-21 rmat-24
SPMV Ground truth 0.0032 0.0050 0.0028 0.0362  0.6525 0.0567 0.1435
Simulation 0.0026 0.0066 0.0027 0.0411  0.8184 0.0484 0.0770
PR Ground truth 0.0030 0.0045 0.0027 0.0327  0.5904 0.0534 0.1403
Simulation 0.0026 0.0066 0.0027 0.0411  0.8184 0.0484 0.0770
SSSP Ground truth 0.7824 0.0255 1.1133 0.5921  5.5768 0.9671 0.9213
Simulation 1.2554 0.0027 1.3436 0.3872  6.2380 0.0725 0.1111
wee Ground truth 1.7690 0.0460 1.4800 0.4130  6.6170 0.4500 1.1080
Simulation 1.8578 0.0461 1.4526 0.4694  9.4139 0.4653 0.9307
Tab. 5: HitGraph measurements in seconds
Graph
Algorithm  Measurement type  slashdot dblp  youtube  wikitalk  live-journal orkut
BES Ground truth 2.867  2.397 1.899 1.653 3370  3.638
Simulation 2.880 2515 2.530 1.999 2946  3.192
PR Ground truth 2242 1931 1.560 1.318 1.921 2587
Simulation 2.518 1944 1.978 1.283 1.926  2.920
wee Ground truth 2950  2.468 1.954 1.729 2.407  3.365
Simulation 2,634 2.183 2.284 1.532 2.254 2998

Tab. 6: AccuGraph measurements in GREPS
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Umbra as a Time Machine: Adding a Versioning Type to SQL

Lukas Karnowski! Maximilian E. Schiile? Alfons Kemper,3 Thomas Neumann*

Abstract: Online encyclopaedias such as Wikipedia rely on incremental edits that change text strings
marginally. To support text versioning inside of the Umbra database system, this study presents the
implementation of a dedicated data type. This versioning data type is designed for maximal throughput
as it stores the latest string as a whole and computes previous ones using backward diffs. Using this
data type for Wikipedia articles, we achieve a compression rate of up to 11.9 % and outperform
the traditional text data type, when storing each version as one tuple individually, by an order of
magnitude.

1 Introduction

Version management of texts is still an important issue due to various use cases. The
highlighted example is Wikipedia [Sc17], where people work decentrally on the creation
of articles. In order to review their work, version management is mandatory, as it allows
administrators to restore any previous version. As even versions of 2001—the founding
year of Wikipedia—are accessible, an efficient storage of the data is necessary. Such a data
storage should allow fast retrieval of previous versions, new versions to be inserted quickly
and consume as little memory as possible.

Temporal databases such TQuel [Sn87] or as included in the SQL:2011 standard [KM12]
restrict each tuple’s validity to an added time range. In contrast, systems for relational dataset
versioning such as Decibel [Mal6] lock on a higher granularity to track the history of whole
tables. VQuel [Ch15], OrpheusDB [Hul7] and LiteTree> aim at combining SQL [Sc19] and
versioning, but do not compress similar text strings. A stand-alone system that includes text
compressing is Forkbase [Li20] but it is not interoperable with database systems.

CREATE TABLE wikidiff (title text, content difftext);
INSERT INTO wikidiff (SELECT 'example', BUILD('first', 'first.version', 'second._version'));
SELECT GET_CURRENT_VERSION(difftext) FROM wikidiff;

List. 1: Proposed data type DiffText for text versioning.

To measure the potential of compressing text strings, we have benchmarked storing strategies
on popular relational database systems using the Wikipedia page edit history. This work
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continues the study about versioning in main-memory database systems [SKS+19]: We
propose a versioning data type, that can be used as an SQL attribute to store multiple
versions of a text within one tuple (see List. 1). The developed data type for the Umbra
database system [NF20] is presented in Section 2 by considering the diff algorithm, the
memory layout and the implementation of the operations. Section 3 provides an evaluation
of the data type’s performance. Finally, Section 4 summarises the findings.

2 DiffText Data Type

In this section, we propose a DiffText data type to compress multiple versions of a text string
as one database attribute within a tuple. The data type is based on the BLOB or TEXT data
type that is available in many database systems to store byte sequences of any length. It thus
inherits their properties with regard to the memory layout. This includes flexible size within
a tuple to be enlarged as required, which is necessary when adding new versions. The data
type is used as an SQL attribute: its values are overwritten on updates and copied for each
occurrence as a column. This section presents the used algorithm for compressing strings,
the data type’s memory layout and necessary operations to retrieve versions out of a tuple.

2.1 Delta-Compression Algorithm

The DiffText data type applies delta compression to multiple versions of a string. It relies on
difference-based versioning as it stores at least the latest version as a snapshot and restores
the remaining ones using relative changes to the current version (backward diffs).

The idea is to access each byte of both versions only once. A function find_diff()
determines the first and the last differing byte between two consecutive versions. First, both
texts were compared from the beginning until the first differing byte has been found. The
process is then repeated from the end of the texts. All bytes between these two boundaries
found are called a patch and are part of the resulting diff even if they have bytes in common.

Example: The first step of the call find_diff(aacbb, adddbb) terminates after the second
byte (a # d). The second step terminates after the third character from the back (¢ # d).
The resulting diff is the string ddd, called patch, with the additional information that the
second and third characters in the first text must be replaced. A complete diff thus consists
of three parts, patch, start and end. The interval at which the patch must be applied is called
patchStart and patchEnd.

When more than two versions exist, an order must be defined in which direction the patches
will be applied. We decide in favour of backward diffs: The most current version is always
available as a complete text, whereas older versions are stored as the difference to the
version that was inserted afterwards.
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Example: Assuming a newer version T replaces the current one 7. Having two similar
text strings, the function find_diff() calculates the diff Dr,_,1; =: Dy, so that 7} can be
reconstructed out of 7> and D . The entire text of 7} is then discarded and replaced by D).
If another version 73 is added, the diff D7,_,7, =: D, will be calculated and saved to replace
T,. If we want to reconstruct 77, we will first apply D, to get T, and then apply D to get T;.

This process creates a chain of diffs that must be applied to restore older versions. Specifically,
the number of involved patches increases with the number of inserted versions. For this
reason, it is advisable to periodically save the complete version instead of calculating a
diff. This allows constant access times in O(1) to any version. Assuming that every third
version should be complete and two additional versions 74, Ts are inserted, the chain of diffs
would look like in Figure 1. Only two versions are complete and the remaining ones can be
restored using diffs.

| D1y | Dryor, | Ta | Dryory | Ts |

Fig. 1: Chain of diffs, with every third version as a complete snapshot (bold).

2.2 Memory Layout

To enable efficient operations later on, all versions of a text string are stored as one object.
This leads us to the memory layout, which corresponds to the output of the presented
algorithm out of patches and corresponding ranges. The actual patch is saved separately
from the start and end of the diff. Figure 2 shows the schematic representation of the memory
layout of the DiffText data type and Figure 3 the associated code.

Variable Length Data
Header Version Array Diffs and Full versions

Current Offset + Length _arraySize diffsToFullCount : offset full patchStart patchEnd ... Patches ... Current Version Text

Fig. 2: Structure of a DiffText tuple.

struct DiffTextRepresentation {
uint32_t currentOffset; // Offset of current version in data section
uint32_t currentLength; // Length of current version
uint32_t arraySize; // The size of the version pointer's array
uintl6_t diffsToFullCount; // Counter of diffs until next full version
struct { // Array of pairs, pointing into the data section
uint32_t offset; // Offset of version in data section
bool full; // Is this a full version?
uint32_t patchStart; // Start of patch
uint32_t patchEnd; // End of patch
} versionPointers[];
// Data section follows this struct immediately
i

Fig. 3: Source-code of the DiffText representation.
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The layout starts with a header that indicates the size of the subsequent area. This variable-
sized area contains all versions as diffs and is further divided into two parts: The first part
contains a version array out of an offset, a flag full, and a range (patchStart, patchEnd).
patchStart and patchEnd indicate the position that need to be changed in order to restore
the previous version. The offset acts as a pointer to the last area in which the associated
patch is located. Consequently, the last memory section is the concatenation of all patches
and complete versions from which any version can be restored.

Since the latest version is always stored as a complete snapshot, the header contains an offset
to the latest version in the data area in order to accelerate its access. The header also contains
the current number of diffs that must be applied to restore a version (diffsToFullCount).
Its value is incremented when a new version has been added. After reaching a predefined
number, instead of calculating a patch, a complete snapshot will be saved, as presented in
Section 2.1. This method ensures that each version can be extracted in O(1). As the text’s
length is not stored, the tag full in the version array indicates whether the corresponding
version has been stored as a complete snapshot instead of a patch.

For the offsets in the data area, 32 bit numbers have been used as Umbra’s text-based data
types are limited to 232 bytes. This restrains the DiffText data type as all versions concatenated
may not exceed a maximum size of 4 GiB. 16 bit was chosen for diffsToFullVersion, to
avoid diff chains longer than 65536 as the runtime increases linearly with the number of
patches.

Furthermore, only the offset is saved and the length of the patch is omitted. This is possible
as the offset of the subsequent diff determines the end of the previous one. An exception is
made for the current version, whose length is saved for fast retrieval.

2.3 Example for a DiffText object

For a better understanding of the memory layout, this section demonstrates the construction
of a DiffText object by the following example: The initial version “First” will be changed to
“First Version” by adding “Version”. Then the current version is set to “Second Version™.
The resulting DiffText objects are listed in Figure 4.
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currentOffset 5
currentLength 14
currentOffset 0 . arraySize 2
diffsToFullCount 2
currentLength 13
arraySize 1 offset 0
currentOffset 0 diffsToFullCount 1 full false
currentLength 5 offset 0 patchStart 5
arraySize 0 full false patchEnd 13
diffsToFullCount 0 patchStart 5 offset 0
- full false
l Data [ First ‘ patchEnd 13
st patchStart 0
irs
(a) One only version: “First” patchEnd 6
Data LVers -
ion First
Dat Secon
(b) First modification to “First Ver- ata d, ,Ver
sion”. sion

(¢) Second modification to “Sec-
ond Version”.
Fig. 4: States of a DiffText object when updating its entry with the following versions: (a) “First”,
(b) “First Version” and (c) “Second Version”. The current version is reconstructed out of the text
string in Data using currentOffset and currentLength.

Figure 4a shows the initial state with only one version. The version array is empty (arraySize
= 0) and the only content in the variable-sized memory area is the current version “First”.

After updating the entry, Figure 4b shows the second state with the version array containing
one entry. Since backward diffs are used, this entry contains information on how to restore
the previous version “First Version” from the current version “First”. In this case, the
content has to be cut off after “First”. Accordingly, the coded patch in the version is a
character string with a length of 0 (offset = 0). Since no length is stored in the version
array, the length is implicitly calculated from the start of the subsequent version. In this case
the following version is the current one, which is why the field currentOffset is considered.
The length of the patch is therefore currentOffset-versionPointers[0].offset=0. The
fields patchStart and patchEnd indicate at which point the patch must be inserted: In this
case, the interval [5, 13) corresponds to the added character string . version”.

Figure 4c depicts the final state after inserting “Second Version”. The version array now
contains two entries: the first entry remains unchanged, whereas the second specifies how
to restore “First Version” out of “Second Version”. This is done by replacing the word
“Second” with “First”, so the patch must contain the latter character string. The interval
[0, 5) results from the offset entry in the array and currentOffset in the header, i.e. the
first five characters in the data area (“First”). This patch is inserted in-between patchStart
and patchEnd in the area [0, 6) of the current version, which corresponds to the already
mentioned replacement of the first word.
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Also of interest is the field diffsToFullCount, which is equal to arraySize in our example.
If more versions are inserted and diffsToFullCount reaches a predefined threshold value,
a complete version will be saved, which is indicated by the tag full in the version array.
diffsToFullCount is then reset to 0 and the process starts again.

2.4 Implementation of the Corresponding Operations

Since the data type was developed in Umbra, which currently does not support UPDATE
operations, a copy of the previous state must be created for each operation. The data type
supports the following functions:

. BUILD(TY, ..., Tn) creates a DiffText object from a set of N versions. 77 corresponds
to the oldest version and Ty to the latest one. This can be used for recovery operations,
for example, when creating backups out of bare text strings.

. APPEND(D, T}, ...,Tn) is a generalisation of the BUILD operation. It expects a Diff Text
object D, to which the versions 77y are appended.

. SET_CURRENT_VERSION(D, T) is a specialisation of APPEND, as it modifies a single
version only, the standard operation for adding a new version.

. GET_VERSION_BY_ID(D, N) extracts version N from the given DiffText object. SQL
is typically indexed starting with 1, with lower numbers indicating older versions and
higher numbers corresponding to newer versions.

. GET_CURRENT_VERSION(D) returns the latest version. If the data type contains M
versions in total, it is equivalent to GET_VERSION_BY_ID(D, M). For performance
reasons, a separate and optimised operation is offered to retrieve the latest version.
The structure of the DiffText data type is designed to extract the latest version as
quickly as possible. This will be discussed later in more detail.

In addition, EXPAND(D, M, N) is a unary database operator that extracts the versions within
the interval [M, N] out of a single DiffText object. It expects a relation with a DiffText
column as input and returns N — M + 1 output tuples per input tuple. For performance
reasons, newer versions appear first (the output order is Ty, Ty —1, - - - » Tar).

This subsection presents the implementation of the previously presented operations for the
DiftfText data type.

2.4.1 Accessing Versions

Accessing an arbitrary version demands for the complete reconstructed text string. This
is trivial for GET_CURRENT_VERSION, which is stored as a snapshot. In addition, its access
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does not require to query the version array, only the offset and the length are read from the
header. Furthermore, instead of allocating memory for the returned string, a view to the
substring containing the snapshot is sufficient as return value.

The same optimisation will apply if the version requested by GET_VERSION_BY_ID is available
as a snapshot (full = true in Figure 3). If this is not the case, a new buffer must be created
for the return string. For performance reasons, the buffer size must be determined in advance.
This is not trivial, since any diffs in-between might increase, decrease or leave the length of
the resulting text unchanged. For this reason, GET_VERSION_BY_ID consists of 3 steps:

1. Finding the next complete version. This iterates from the requested version upwards
through the version array until a complete snapshot is found. This could also be the
latest version, this special case must be considered, since the most current version is
not contained in the version array.

2. Calculating the buffer size. This requires again an iteration but in reverse order. In
each step, the patchStart and patchEnd fields are used to calculate the resulting
buffer size. The required buffer size is the maximum of all sizes found during all
iterations.

3. Applying patches. In the last step, the version array is iterated downwards again and
the corresponding diff is applied in each step. After this process, the requested version
is available in the allocated buffer and ready to be returned.

This explains the separation into patchStart/patchEnd information and the actual patches
within the memory layout: The first two steps do not require the actual patch, but only the
meta information of each diff. This ensures optimal cache utilisation.

A further optimisation applies to EXPAND: Instead of iteratively calling GET_VERSION_BY_ID
for each requested version, the patch is applied incrementally, starting with the last requested
version. The implementation first calls GET_VERSION_BY_ID for the last requested version
and then uses a function getPreviousVersion(D,T) to determine the predecessors. This
implies that the order of the versions of the EXPAND operator is exactly counter-intuitive:
starting with newer and ending with older versions. For performance reasons, however, this
sequence is advantageous because only one step in the version array has to be carried out
for each tuple output.

2.4.2 Creating a DiffText object

The trivial case when creating a DiffText object is with exactly one existing version. For this,
the currentLength of the DiffTextRepresentation is set to the length of the single version.
The remaining fields are initialised with O, the version array is empty and the variable data
area contains the current version only.
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If more than one version exists, the resulting object will hold all information for their
restoration. For this purpose, the diff is formed between two adjacent text strings by iterating
once over all bytes and forming the patch between the current and the subsequent version. If
the buffer already contains the text string to be inserted, no patches will be copied, but the
corresponding offsets have to be saved. After all patches have been created, the texts are
iterated again and the part relevant for the diff is copied into the data section of the newly
created DiffText object. Thus BUILD consists of two phases (1) Calculating the diffs and
(2) copying the patches to the final buffer.

APPEND is a generalisation of BUILD, because in addition to the new versions, an existing
DiffText object is specified, to which the versions are appended. Apart from this, APPEND
does not differ to BUILD, why it will not be discussed in more detail. The same applies to

SET_CURRENT_VERSION, the specialisation of APPEND, which reuses the two phases mentioned
above.

3 Evaluation

This section discusses the performance of the implemented DiffText data type. The Wikipedia
dumps from 09/01/2019 were used as test data, specifically pages 971896 to 972009. The
measurements have been conducted on an Ubuntu 18.04 LTS server with an Intel Xeon
CPU ES5-2660 v2 processor with 2.20 GHz (20 cores) and 256 GiB DDR4 RAM.

The full dump has an uncompressed size of 119.9 MiB. First we evaluate the memory
consumption after all available versions have been inserted. We add all versions of all pages
in a DiffText object to better estimate the memory consumption. The result is shown in
Figure 6. Instead of a patch, a complete snapshot will be stored every 50th version. This
threshold, which restricts the chain length of patches, is referred to as X in the following.
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Fig. 5: Memory consumption depending on the frequency of stored snapshots.

The full size of the DiffText object is 8.9 MiB, which is a reduction down to 15.2 % of the
original size. Figure 5 shows the total size of the DiffText object depending on the maximum
chain length. Once a value of X = 20 has been exceeded, the memory consumption does
not improve significantly the longer the chains become.
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The best improvement achieve a chain length of

X = 10000 with a reduction to 11.9 % of the original Snapshots
size. Compared to a value of X = 50, this means an

improvement of only 3.3 percentage points condon-

ing slower access to older versions. In [SKS+19] we ——+279, Header and Array
achieved a compression to 5 %, which could not be CoC

reproduced in this work as the used Wikipedia dump

. . . P h
includes less versions per article. atches

Let us now consider the runtime of the operations. A  Fig. 6: Memory consumption with a
comparison with the normal TEXT data type is made by ~complete snapshot every 50th version.
inserting the same versions of a text into a table with

TEXT data as well as into a DiffText object. All revisions of one article are stored as one
single DiffText tuple, while each snapshot is stored individually as a tuple. The comparison
is therefore not representative as it compares different functions of the database system with
one another. Nevertheless, the same amount of information is stored in both cases and a
tenth of the memory is consumed in the case of the diff approach.

Insert (Compile) M Insert (Execution) Il Select (Compile) M Select (Execution) ‘

Snapshot | 1 T T
Diff 1 \ ! ! ! |

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 24

Time in seconds

Fig. 7: Comparison: Storing each version as a single snapshot or in one DiffText object.

The following query inserts data into DiffText objects and retrieves text strings out of them:

INSERT INTO t (text) VALUES (BUILD(T1, ..., TN)); SELECT EXPAND(text, 1, N) from t;

List. 2: Benchmark queries using the DiffText data type.

The snapshots of all texts are inserted into the database as follows and then queried again:

INSERT INTO t (rev_id, text) VALUES (1, T1), ..., (N, TN); SELECT text from t;

List. 3: Benchmark queries using one tuple for each version.

Figure 7 compares the cumulative compilation and execution times of both approaches.
The diff approach performs better than the snapshot approach in all metrics. The snapshot
approach creates a tuple for each version and requires significantly more operations to insert
the content.
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4 Conclusion

In this work an implementation of a diff-based data type was presented, which is required for
use cases like Wikipedia. New versions are created regularly, although older texts must still
be accessible. The data type presented is implemented for the Umbra database system and is
based on the normal text data type. The memory layout is designed for cache efficiency and
consists of a header, a version array and the data area with patches and complete versions.
The diff algorithm used is simple and can create diffs with just a single pass over the text.

The data type achieves a compression rate of up to 11.9 % of the original size for Wikipedia
articles and is faster than the direct comparison with normal texts in both compilation and
execution time. No other database system offers a similar data type so far, and research in
this area is rather limited. Possible future optimisations for the data type include a larger
storage capacity, storing older versions on background memory and a diff algorithm with
stronger compression.
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Abstract: Cardinality estimation is a fundamental task in database query processing and optimization.
As shown in recent papers, machine learning (ML)-based approaches may deliver more accurate
cardinality estimations than traditional approaches. However, a lot of training queries have to be
executed during the model training phase to learn a data-dependent ML model making it very
time-consuming. Many of those training or example queries use the same base data, have the same
query structure, and only differ in their selective predicates. To speed up the model training phase,
our core idea is to determine a predicate-independent pre-aggregation of the base data and to
execute the example queries over this pre-aggregated data. Based on this idea, we present a specific
aggregate-based training phase for ML-based cardinality estimation approaches in this paper. As
we are going to show with different workloads in our evaluation, we are able to achieve an average
speedup of 63 with our aggregate-based training phase and thus outperform indexes.

Keywords: cardinality estimation; machine learning; database support; pre-aggregation

1 Introduction

Due to skew and correlation in data managed by database systems (DBMS), query optimiza-
tion is still an important challenge. The main task of query optimization is to determine an
efficient execution plan for every SQL query, whereby most of the optimization techniques
are cost-based [Le15]. For these techniques, cardinality estimation has a prominent position
with the task to approximate the number of returned tuples for every query operator within
a query execution plan [HN17, Le15, MNS09, YW79]. Based on these estimations, various
decisions are made by different optimization techniques such as choosing (i) the right
join order [FM11], (ii) the right physical operator variant [Rol5], (iii) the best-fitting
compression scheme [Dal9], or (iv) the optimal operator placement within heterogeneous
hardware [KHL17]. However, to make good decisions in all cases, it is important to have
cardinality estimations with high accuracy.

As shown in recent papers [Kil9b, Lil5], including our own work [Wo19b], machine
learning-based cardinality estimation approaches are able to meet higher accuracy re-
quirements, especially for highly correlated data. While traditional approaches such as
histogram-based and frequent values methods assume data independence for their esti-
mation [Lel5], ML-based approaches assume that a sufficiently deep neural network can
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model the very complex data dependencies and correlations [Kil9b]. For this reason,
ML-based cardinality estimation approaches may thus give much more accurate estimations
as clearly demonstrated in [Kil9b, Lil5, Wo19b]. However, the main drawback of these
ML.-based techniques compared to traditional approaches is the high construction cost of
the data-dependent ML-models based on the underlying supervised learning approach.
During the so-called training phase, the task of supervised learning is to train a model,
or more specifically learn a function, that maps input to an output based on example
(input,output) pairs. Thus, in the case of cardinality estimation, many pairs consisting of
(query, output-cardinality) are required during the training phase. To determine the
correct output-cardinalities, the queries have to be executed [Kil9b, Wo19b], whereby
the execution of those example queries can be very time consuming, especially for databases
with many tables, many columns, and millions or billions of tuples resulting in a heavy load
on the database system.

Core Contribution. To overcome these shortcomings, we propose a novel training phase
based on pre-aggregated data for ML-based cardinality estimation approaches. Usually, as
described in [Kil9b, Wo19b], every example query is (i) rewritten with a count aggregate
to retrieve the correct output-cardinality and (ii) executed individually. However, many
of those example queries use the same base data, have the same query structure, and only
differ in their selective predicates. To optimize the query execution, our core idea is to
provide a predicate-independent pre-aggregation of the base data and to execute the example
queries over this pre-aggregated data. Consequently, the set of similar example queries has
to read and process less data because the pre-aggregation is a compact representation of
the base data. To realize this pre-aggregation, the most common solution in DBMS is to
create a data cube for storing and computing aggregate information [Gr96]. However, this
pre-aggregation is only beneficial if the execution of the example queries on the data cube
plus the time for creating the data cube is faster than the execution of the example queries
over the base data. As we are going to show with different workloads of example queries
in our evaluation, we are able to achieve an average speedup of 63. We also compare our
approach to standard query optimization with index structures on the base data and show
their limited benefit for this use case.

Contributions in Detail and Outline. Our aggregate-based training phase consists of two
phases: (i) creation of a set of meaningful pre-aggregated data sets using data cubes and (ii)
rewrite and execute the example queries on the corresponding data cubes or the base data.
In detail, the contributions in this paper are:

1. We start with a general overview of ML processes in DBMS in Section 2. In particular,
we detail cardinality estimation as a case study for ML in DBMS. We introduce
global and local models as two representatives for ML-based cardinality estimation
approaches. Primarily, we show their properties in terms of example workload
complexity and conclude the need for optimization of such workloads.

2. Based on this discussion, we introduce our general solution approach of an aggregated-
based training phase by pre-aggregating the base data using the data cube concept and
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executing the example queries over this pre-aggregated data. Moreover, we introduce
a benefit criterion to decide whether the pre-aggregation is beneficial or not.

3. In Section 4, we present our aggregate-based training phase for ML-based cardinality
estimation approaches in detail. Our approach consists of two components: Analyzer
and Rewrite. While the main task of the Analyzer component is to find and build all
beneficial data cubes, the Rewrite component is responsible for rewriting the example
queries to the constructed data cubes if possible.

4. Then, we present experimental evaluation results for four different workloads for
the training phase of ML-based cardinality estimation in Section 5. The workloads
are derived from different ML-based cardinality estimation approaches [Kil9b,
Wo19b] on the IMDB data set [IM17]. Moreover, we compare our approach with the
optimization using index structures.

Finally, we conclude the paper with related work in Section 6 before concluding in Section 7.

2 Machine Learning Models for DBMS

In this section, we start with a brief description of the general process of machine learning
(ML) in the context of DBMS. Moreover, we discuss ML-based cardinality estimation for
DBMS as an important case study and revisit two ML-based approaches solving this specific
challenge. Finally, we analyze the specific query workloads for the training phases and
clearly state the need for optimized database support.

2.1 Machine Learning Support for DBMS

Most ML-supported techniques for DBMS are supervised learning problems. In this
category, there are amongst others: cardinality estimation [Kil9b, Lil5, Wol9b], plan cost
modeling [MP19, SL19], and indexing [Kr18]. The proposed ML solutions for those highly
relevant DBMS problems have a general process in common as shown in Figure 1. This
process is usually split into two parts: forward pass and training phase.

Training phase: ML Model Forward pass:

- model requests example - DB requests information
data from DB from model

- takes hours - takes milliseconds

- done once - done regularly during DB

run time

DBMS

Fig. 1: The general process of supervised ML in DBMS.
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Forward pass: This pass consists of the application of the model triggered by a request of the
DBMS to the ML model. Each request pulls some specific information from the model
such as an estimated cardinality or an index position [Ki19b, Kr18, Lil5, Wo19b]. The
execution time of each forward pass request is normally in the range of milliseconds.
This is advantageous because forward passes occur often and regularly during the run
time of the DBMS [Ki19b, Kr18, Lil5, Wol9b].

Training phase: To enable the forward pass, a training phase is necessary to construct the
required ML model, whereby the challenge for the model lies in the generalization
from example dat [Ki19b, Kr18, Lil5, Wo19b]. Therefore, the model usually requests
alot of diverse labeled example data—pairs of (input, output)—from the DBMS to
learn the rules of the underlying problem. Even though the training is performed once,
its run time may take hours. This is mainly caused by the generation and execution of
a large number of queries against the DBMS to determine the correct cardinalities.

As a consequence, the training phase of ML models to support DBMS usually generates a
spike high load on the DBMS. Compared to the forward pass, the training is significantly
more expensive from a database perspective. Therefore, the training phase is a good
candidate for optimization to reduce (i) the time for the training phase and (ii) the spike load
on the DBMS. Thus, database support or optimization of the training phase is a novel and
interesting research field leading to an increased applicability of ML support for DBMS.

2.2 Case Study: Cardinality Estimation

As already mentioned in the introduction, we restrict our focus to the ML-based cardinality
estimation use case [Kil9b, Lil5, Wol9b]. In this setting, each forward pass requests an
estimated cardinality for a given query from the ML model. In the training phase, the ML
cardinality estimator model requires example queries as example data from the DB where
the queries are labeled with their true cardinality resulting in pairs of (query, cardinality).
These cardinalities are retrieved from the DB by executing the queries enhanced with a count
aggregate. Two major approaches for user-workload-independent cardinality estimation
with ML models have been proposed in recent years: global and local models.

Global Model Approach

A global model is trained on the complete database schema as the underlying model
context [Kil9b]. It is effective in covering correlations in attributes for high-quality
estimates [Kil9b]. In Figure 2, this is depicted by a single model stated and mapped to the
complete schema. Global models have downsides like (i) the complexity of the ML model
and (ii) the very expensive training phase. Both disadvantages arise for the following reason:
the single ML model handles all attributes and joins in the same way leading to a huge
problem space. This huge problem space is directly translated to the model complexity as
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Global model Generating Example Data

Sampled Queries True Cardinalities

SELECT count(*)

FROM table

WHERE Brand = ‘Ferrari’ and
Color = ‘Red" and

Local models
Year = 2018';
Ferrari Red 2018 FROM table
—_— T WHERE Brand != 'VW' and 1675
Blue 2017 o - { 1675 |

Color = ‘Blue’ and

201

2018 Year =2017";

Toyota Blue
ﬁ - - SELECT count(*)
FROM table
\ WHERE Brand = ‘Ferrari’ and 1280
Color = ‘Red" and
Year < 2018";

Fig. 2: Overview of ML-based cardinality estimation approaches.

well as to a high number of example queries to cover all predicates and joins over the whole
schema as shown [Kil9b].

Local Model Approach

To overcome the shortcomings of the global model approach, the concept of local models
has been introduced [Wo19b]. Local models are ML models which only cover a certain
sub-part of the complete database schema as their model context. This can be a base table or
any n-way join. Again, Figure 2 details several local models each covering a different part
of the schema. As each of them focuses on a part of the schema, there are many advantages
compared to global models. Firstly, local models produce estimates of the same quality as
global models [Wo19b]. Secondly, their model complexity is much smaller, because they
cover a smaller problem space in different combinations of predicates and joins. The lower
complexity stems from a more focused or localized problem solving. A local model has to
generalize a smaller problem than the global, i.e. the cardinality estimate of a sub-part of a
schema and not the whole schema at once. The lower complexity leads to faster example
query sampling and training because the easier problem requires fewer queries during
training. A major disadvantage of local models is the high number of models needed to
cover all objects touched by a query within the forward pass. Therefore, a separate local
ML model needs to be constructed for each part of the schema. Additional queries need
to be generated because every local model requests the same amount of example queries.
However, these queries are less complex because there are fewer combinations of predicates
and tables in a local context.

2.3 Training Phase Workload Analysis

Fundamentally, the global as well as the local ML-based cardinality estimation approach
use the same method to sample example queries for the training phase. This procedure is
shown on the right side of Figure 2, where a local model is trained on an example table
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Fig. 3: Analysis of ML-workload complexity for 1 global and 1 to 3 local models for the IMDB.

consisting of three attributes Brand, Color, and Year. To train the local data-dependent
ML-model, a collection of count queries with different predicate combinations over the
table is generated. In our example, the predicates are specified over the three attributes using
different operators #, <, <, =, >, > and different predicate values. Thus, all queries have
the same structure but differ in their predicates to cover every aspect of the data properties
in the underlying table. An example query workload to train a global model would look
similar. However, the different contexts for global and local models have an impact on the
number and the complexity of the example queries. In general, the query complexity is
given by the combinations of joined tables and predicates in a query. The larger the model
context, the more complex the example queries. Thus, global models have workloads with a
higher number of variations for predicates and joins because they cover the whole schema.
Local models are trained with workloads with lesser variation [Wo19b].

To better understand the query workload complexity for the training phase, we analyzed the
workloads published by the authors of the global [Kil9a] and local approach [Wo19a]. In
both cases, the authors used the IMDB database [IM17] for their evaluation, because this
database contains many correlations and is thus very challenging for cardinality estimation.
Our analysis results are summarized in Figure 3 and 4.

For a global model and an increasing number of local models, Figure 3a shows the workload
complexity in terms of numbers of example queries used per workload. While the global
model requires up to 100,000 example queries for the IMDB database [Kil9b], the local
model only requires 5,000 example queries per local model [Wo19b] to determine a stable
data-dependent ML model. In general, the number of example queries is much higher for a
global model, but the number of example queries also increases with the number of local
models. Thus, we can afford more local models before their collective query count exceeds
the number of queries for the global model.

Figure 3b specifies the workload size in terms of data access through the number of
joined tables per workload. Similar to the previous figure, the global model has the highest
complexity because it requires example queries over more tables to cover the whole schema
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at once. Each local model covers only a limited part of the schema and therefore queries
fewer tables per model. Thereby, the complexity of accessed data for local models increases
with the number of models.

Another important aspect to describe the workload complexity is the number of predicates
per query as shown in Figure 3c. Here, the global model workload has a much larger spread
over the number of predicates. The local models detail a more focused distribution with
little variation. Again, the local model workload does not require the amount of alternation
in predicates of a global model workload because it covers a smaller fragment of the schema.
Additionally, Figure 4 gives an overview of the distribution of occurrences of all predicate
operators in the workloads as a box plot with mean values. The global model workload only
uses the operators <, =, >, whereas the local model workloads use the full set of operators
#,<, <, =,>, >. As described by both authors, the predicate operators in each example query
are sampled from a uniform distribution [Kil9b, Wo19b]. The slight variation between the
operators per workload is due to the fact that both approaches filter O-tuple queries which
do not occur uniformly.

3 Training on Pre-Aggregated Data

As discussed above, the global as well as the local ML-based approach for cardinality
estimation generates many example queries with a count aggregate function during the
training phase. Depending on the model context, there is a small variance in the number
of accessed tables, but there is a high variance for predicates in terms of (i) number of
predicates, (ii) used predicate operators, and (iii) predicate values in general. So, many
queries work on the same data but look at different aspects. Executing such workloads
in a naive way, i.e. executing each example query individually on large base data, is very
expensive and generates a high spike load on the database system. The utilization of index
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structures for an optimized execution in database systems appears to be an ideal technique at
a first glance. However, their benefit is limited as we will show in our evaluation. The same
can be said about materialized views. We omitted their evaluation because the experiment
did not finish within 30 days.

To tackle this problem more systematically, our core idea is to pre-aggregate the base
data for different predicate combinations and to reuse this pre-aggregated data for several
example queries. In general, aggregates compress the data by summarizing information and
reducing redundancy. This lessens the amount of data to be scanned by each example query
because the aggregates can be smaller than the original data. The aggregate pre-calculates
information with the result that the workload queries need to scan less data during execution.
Therefore, it is important that the construction of the aggregate does not take longer than
the reduction of the workload execution time.

3.1 Grouping Sets as Pre-aggregates

It might sound expensive to aggregate all possible combinations of predicates. However,
DBMS already offer substantial supportive data structures for this kind of aggregation. The
basic idea of such grouping comes from Online Analytical Processing (OLAP) workloads.
These aggregate-heavy workloads spawned the idea of pre-aggregating information in
data cubes [Gr96] helping to reduce the execution time of OLAP queries by collecting
and compressing the large amount of data accessed into an aggregate. The concept of
data cubes is well-known from data warehouses for storing and computing aggregate
information and almost all database systems are offering efficient support for data cube
operations [Ag96, Gr96, HRU96, Sh96, ZDNO97].

Each attribute of a table or join generates a dimension in the data cube and the distinct
attribute values are the dimension values. The cells of a data cube are called facts and
contain the aggregate for a particular combination of attribute values. To instantiate the
concept of a data cube in a DB, there are different cube operators. Usually, these are CUBE,
ROLLUP, and GROUPING SET. The CUBE operator instantiates aggregates for the power set
of combinations of attribute values. The ROLLUP operator builds the linear hierarchy of

Ferrari red 2019 black
VW black 2018
VW red 2017
Toyota black 2017 GRO:;,]I:,NG
Toyota blue 2018 red

count ()
blue

Color

VWb

Ferrari &
Toyota Q§°

2017 2018 2019
Year

Fig. 5: Aggregating information with grouping sets.
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Given Table or Join Generating Example Data (Grouping Set)

Brand Color Year 1 Sampled Queries I True Cardinalities |
ISELECT SUM(count) ! !

Ferrari Red 2018 ] 1 1
1 FROM cube 1 1

VW Blue 2017 I WHERE Brand = ‘Ferrari‘ and 1
Color = ‘Red” and :

Year = 2018%; 1

1

1 SELECT SUM(count)

100 8 1 FROM cube

T WHERE Brand !=‘VW" and
Color = ‘Blue’ and
Year = 20174

2017 2018 2019
Year

8,
- — —

Grouping set ‘ 1 SELECT SUM(count)

WHERE Brand = ‘Ferrari’ and
Ferrari Red 2018 201 1 rand = ‘Ferrari® an

Color = ‘Red” and
VW Blue 2017 512 Year < 2018%;

Fig. 6: Illustration of database-supported training phase based on pre-aggregated data/grouping sets.

attribute combinations. The GROUPING SET operator only constructs combinations with all
attributes. This characteristic of a grouping set is the major advantage for our use case. With
the grouping set aggregation, we compress the original data and avoid the calculation of
unnecessary attribute combinations. Figure 5 details an example of a grouping set for a
count aggregate over discrete data. The example data has a multidimensional structure after
aggregating where each dimension is a property of a car. The cells of the grouping set are
filled with the aggregate value, i.e. the count of cars with a particular set of properties.

Given the grouping set data structure, we adapt the generation of example queries from
Figure 2. By introducing the data cube, we add an intermediate step before executing the
workload. This step constructs a data cube, i.e. grouping set, and rewrites the workload
to fit the grouping set. Figure 6 details the construction and the rewrite of queries for the
sample data. On the left side, the construction builds a table matching the multidimensional
character of the grouping set. Due to this new table layout, the rewrite must include a
different aggregate function as shown in Figure 6. For a count aggregate, the corresponding
function is a sum over the pre-aggregated count. Last, the rewritten workload is executed
and retrieves the output-cardinalities. After the sampling of example queries, the queries
and cardinalities are fed to the ML model in the same way as in the original process. This is
an advantage of our approach because it does not interfere with other parts of the training
process. Therefore, it is independent of the type of ML model and can be applied to a
multitude of supervised learning problems.

Even though our approach is independent of the ML model, it is not independent of the data.
In general, grouping sets are only beneficial if the aggregate is smaller than the original data.
A negative example would be an aggregate over several key columns. Here, the number
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Fig. 7: Execution times and speed ups on synthetic data.

of distinct values per column equals the number of tuples in the table. If such a grouping
set is instantiated, each of its dimensions has a length equal to the number of tuples. This
grouping set is larger than the original data because it includes the aggregate. With all that
in mind, we need to quantify the benefit of a grouping set for our use cases.

3.2 Benefit Criterion

To find a useful criterion when to instantiate grouping sets, we evaluate the usefulness of
these sets on synthetic data. Again, we need to find a way to express the compression of
information in a grouping set. From the synthetic data, we will derive a general rule for
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the theoretical improvement of a grouping set on a given table or join. Our experiment
comprises six steps per iteration. The first step generates a synthetic table given three
properties. These properties are: the number of tuples in a single table or in the largest table
of a join N, the number of columns C, and the number of distinct values per column D. We
vary the properties in the ranges:

N e {1000, 10000, 100 000, 1 000 000} (1)
C e{1,2,3,4,5} ()
D € {5, 10, 100, 1 000, 100 000, 1 000 000} 3)

Changing one property per iteration, this leads to |[N| - |C| - |[D| =4 -5 -6 = 120 different
tables or iterations. The values in a column are uniformly sampled from the range of distinct
values. With an increasing number of distinct values per column, we simulate floating point
columns which have a large number of different values. Columns with few distinct values
resemble categorical data. In the second step, we sample 1,000 count aggregate queries as
an example workload over all possible combinations of columns (predicates), operators,
and values in this iteration. In the third step, we execute these queries against the table
and measure their execution time. This is equivalent to the standard procedure to sample
example cardinality queries for an ML model. The fourth step constructs the grouping sets
over the whole synthetic table and measures its construction time. Next, in step five, we
rewrite the queries in a way that they can be executed against the grouping set. We measure
their execution time on this grouping set. In the final step, we divide the execution time of
the workload on the grouping set by the run time of the workload on the table. This speed
up factor ranges from close to zero for a negative speed up to infinity for a positive speed
up. All time measurements are done three times and averaged. We use PostgreSQL 10 for
the necessary data management.

Figure 7 shows the results of all 120 iterations. Blue values mean either better execution
times or higher speed up, whereas red means longer execution times or lower speed up.
White indicates a speed up factor of one. The first column shows the execution time of the
workload against the table. The next column shows the execution time of the workload
against the grouping set including the construction time of the grouping set. The last column
is the quotient of the second and first column. This is the achieved speed up by using a
grouping set. In each row, only two properties are changed while the third property is kept
fixed. The first row keeps the number of tuples, the second row the number of columns,
and the last row the number of distinct values fixed. From this figure, we can derive three
conclusions.

First, we notice that few distinct values in a few columns are beneficial for the aggregation.
Next, the more tuples N are in a table, the more distinct values per column can be there
for the speed up to be sustained. As the last conclusion, this also applies to the number of
columns. All in all, the larger the original table the more distinct values and columns still
lead to a speed up. Our experiments show that a grouping set is only beneficial if its size is
smaller than the original table. Only then the aggregate compresses information and causes
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Input : workload wl, database
Output : grouping sets

1 grouping sets: tables — attributes

2 for query g in wl do // Analyze
3 tables, attributes of q // step 1
4 grouping sets[tables] =
5 grouping sets[tables] U attributes
6 end
7 for grouping set gs in grouping sets do

N = max ([tuples]| of all tables of gs) // step 2
9 for attribute p in attributes of gs do
10 | dv=dv U |distinct values of p|
11 end

. [Tdv

12 scaling factor = N // step 3
13 if scaling factor > 1 then
14 ‘ grouping sets[tables] = attributes where H]\}j Y <1
15 construct grouping set
16 end

Algorithm 1: Analyze component.

less data to be scanned by the queries. Given our evaluation, this happens if the product of
the distinct values of all columns is smaller than the table size. We can model this as an
equation to be used as a criterion for instantiating beneficial grouping sets.

c
. 1 .
scaling factor = I 1_[ |distinct_values(column,)| @)

c=1

If this scaling factor is smaller than one, we call a grouping set beneficial. The scaling factor
is also a measure of data compression. Therefore, it shows how much faster the scan over
the aggregated data can be.

4 Implementation

In this section, we describe the implementation of our aggregate-based training phase for
ML-based cardinality estimation in DBMS in detail. In our implementation, we assume
that a regular DBMS with an SQL interface provides the base data and the ML models are
trained outside the DBMS, e.g., in Python. Based on this setting, we added a new layer
implemented in Python? between these systems to realize our aggregate-based training
phase in a very flexible way. Thus, the input of this layer is an ML workload that is necessary
for training the ML model. Then, the main tasks of this layer are:

2 We plan to make the code base publicly available in case of paper acceptance.
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Input : workload wl, grouping sets
Output : rewritten workload wl’

1 for query g in wi do // Rewrite
2 tables, attributes of q
3 if artributes = grouping sets[tables] then
4 | rewrite g to match grouping set
5 add q to wl’
6 end
Algorithm 2: Rewrite component.

1. discover as well as create as many beneficial grouping sets in the DBMS as possible
for the given ML workload

2. rewrite as well as execute the workload queries according to the grouping sets and
base data.

The output of this layer is an annotated ML workload with the retrieved cardinalities
on which the ML model is trained afterward. To achieve that, our layer consists of two
components. The first component is the Analyzer which is responsible for the construction
of beneficial grouping sets. The second component is the Rewrite rewriting and executing
the queries of the ML workload against the constructed grouping sets. In the following, we
introduce both components in more detail.

4.1 Analyzer Component

Algorithm 1 gives a more detailed overview over the Analyzer Component. Given an ML
workload and a database instance, our Analyzer consists of three steps to find and build all
beneficial grouping sets. In step one, the Analyzer scans all queries in the ML workload and
collects all joins or tables and their respective predicates in use. This generates all possible
grouping sets as a mapping from tables building the grouping set to the predicates on those
tables. In Algorithm 1, this is covered in lines 1 to 6. The second step then collects the
number of distinct values per predicate attribute (regardless of their type) and the maximum
number of tuples of all tables in the grouping set from the metadata (statistics) of the
database. This is shown in lines 8 to 11. In the third and final step, our defined benefit
criterion (Equation (4)) is used to calculate the scaling factor and therefore the benefit of
each grouping set. If the scaling factor is smaller than one, the Analyzer constructs the
grouping set with all collected predicates. If the scaling factor is larger than or equal to one,
the grouping set is constructed with the maximum number of predicates where the scaling
factor still is smaller than one. This may disregard certain queries that are subsequently not
executed against the grouping set if they have more predicates than the grouping set. On
the other hand, queries on the table or join with the predicates in the grouping set can still
benefit from it. Moreover, all queries to be executed against a grouping set are marked for
rewriting. This final step is detailed in lines 12 to 15.
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4.2 Rewrite Component

With all beneficial grouping sets instantiated by the Analyzer Component, it is necessary to
modify the ML workload queries to be able to use the pre-aggregates. For this, all queries
which can be run against any grouping set will be rewritten in the Rewrite component. The
Rewrite component receives information about each query from the Analyzer and rewrites
queries in a way that they can be executed against the grouping sets. All queries where the
Analyzer does not recognize a grouping set are kept as they are and will be executed over
the base data. The Rewrite component is described in Algorithm 2.

When all queries have been processed, the optimized workload is executed as a whole on
the database. If a query has been rewritten, it will be executed against the grouping set,
otherwise, it will be executed against the original data. Finally, the retrieved results (i.e.
cardinalities) are forwarded to the ML system to train the ML model.

5 Evaluation

To show the benefit of our novel aggregate-based training phase, we conducted an exhaustive
experimental study with both presented types of ML models for cardinality estimation (cf.
Section 2). Thus, we start this section by explaining the experimental settings followed
by a description of selective results for the local as well as global ML model approaches.
Afterward, we summarize the main experimental findings.

5.1 Experimental Setting

For our experiments, we used the original workloads for the local and global ML model
approaches [Kil9a, Wo19a] on the IMDB data set [IM17]. The IMDB contains a snowflake
database schema with several millions of tuples in both the fact and the 20 dimension tables.
As already presented in Section 2.3, the global model workload contains 100,000 queries.
For the local models, we used three workloads where each workload has 5,000 queries more

model Base Data Base Data  Construction  Execution Total Coverage

w/o Index w/ Index GS GS GS GS
local 1 2h30m 1h44m 6.17s 191.34s  197.51s 100%
local 2 Th53m 5h 10m 23.70s 20591s  229.61s 100%
local 3 107 12m 6h 56m 29.10s 430.365  459.46s 100%
global full - 4d 14h 2h22m 20d20h  20d22h 100%
global opt - 4d 14h 34m 29s 2d 11h 2d 12h 55%

Tab. 1: Execution times ML workloads (GS: grouping sets).
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Fig. 8: Local model evaluation based on our aggregate-based training phase (GS: Grouping Sets).

than the previous one. These workloads correspond to one, two, and three trained local
models. Overall, we have four workloads for our experiments: one for a global model and
three workloads for an increasing number of local models. Moreover, all experiments are
conducted on an AMD A10-7870K system with 32GB main-memory with PostgreSQL 10
as the underlying database system.

In our experiments, we measured the workload execution times, whereby we distinguish
three different execution modes:

Base Data w/o Indexes: ML workload is executed on the IMDB base data without any
indexes on the base data.

Base Data w/ Indexes: ML workload is executed on the IMDB base data with indexes on
all (join) predicates in use.

Grouping Set (GS): ML workload is executed on pre-aggregated data as determined by
our approach.

The first two execution modes represent our baselines because both are currently used in the
presented ML model approaches for cardinality estimation [Kil9b, Wol9b, Lil5].

5.2 Experimental Results: Local Model Workloads

Figure 8 shows the results for the three local model workloads. The first workload contains
the necessary queries to build one local ML model to estimate the cardinalities for the join
titleramovie_keyword. The second workload adds 5,000 queries to the first workload to
construct a second ML model for the join titler<movie_info. The third workload adds
another ML model for an additional join titler<movie_companies. Therefore, we increment
the number of local ML models.
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Fig. 9: Global model evaluation results.

Figure 8a details the execution times for all three local model workloads for all investigated
execution modes. In each of the three groups, the left bar shows the complete workload
execution time on the IMDB without indexes, the middle bar on the IMDB with indexes,
and the right bar the execution time with our grouping set approach. As we can see, indexes
on the base data are already helping to reduce the workload execution times compared
to execution on the base data w/o indexes, but the speedup is very marginal as shown in
Figure 8b because the DBMS might decide to abstain from using the indexes. In contrast to
that, our grouping set approach has the lowest execution times in all cases and the achieved
speed ups compared to execution on the base data w/o indexes are in the range between
45 and 125 as depicted in Figure 8b. Thus, we can conclude that our aggregation-based
training phase is much more efficient than state-of-the-art approaches.

For each considered join, our aggregation-based approach creates a specific grouping set
containing all columns from the corresponding workload queries. According to equation (4),
the scaling factors are: 0.02, 0.003, and 0.05 for the three joins. Thus, the instantiation of
grouping sets is beneficial. So, all grouping sets achieve a very good compression rate and
the rewritten workload queries on the grouping sets have to read much less data compared
to the execution on base data. Moreover, all workload queries can be rewritten, so that the
coverage is 100% and every query benefits from this optimization. Nevertheless, the three
scaling factors differ explaining the different speed ups.

The construction of the grouping sets can be considered a drawback. However, as illustrated
in Table 1, the construction times for the grouping sets are negligible because the reduction
in execution time is significantly higher. From a storage perspective, index structures and
grouping sets need some extra storage space, where the storage overhead for grouping sets
is larger than for indices. But, as illustrated in Figure 8c, the speed up per additional MB for
grouping sets is much larger than for indices. All in all, we gain a much larger speed up
making grouping sets the more efficient approach.
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5.3 Experimental Results: Global Model Workload

Figure 9 shows the evaluation results in terms of execution and construction times for the
global model workload. As shown in the previous experiment, the utilization of indices is
always beneficial. Thus, we only compare the execution on base data with indices and the
execution on the aggregated data in this evaluation.

In general, there are 21 grouping sets possible for the global workload. However, some of
these grouping sets have a scaling factor larger than one. Therefore, our Analyzer component
disregards the attributes of some grouping sets until the scaling factor is smaller than one
(cf. Section 4). As a consequence, only 55% of the global workload queries can be rewritten
to this optimal set of grouping sets. This strategy called GS opt in Figure 9a reduces the
workload execution time of the global workload. The speed up compared to the execution
on the base data with indexes is almost 2 (Figure 9b).

To show the benefit of our grouping set selection strategy, we also constructed all grouping
sets with all attributes (GS full). There, we are able to rewrite all global workload queries to
be executed on these aggregated data. As shown in Figure 9a, the overall workload execution
time is longer than the execution on base data with indices. Therefore, grouping sets have to
be selected carefully. Moreover, this experiment shows that our definition of a beneficial
grouping set is applicable because (i) not all grouping sets are beneficial and (ii) not all
queries can or need to be optimized with a grouping set. The benefit criterion considers
both aspects to reduce workload execution times.

5.4 Main Findings

For both types of ML models for cardinality estimation, our aggregation-based training
phase offers a database-centric way to reduce execution time. Table 1 summarizes our
evaluation results. The overhead introduced by the construction of a grouping set is much
smaller than the savings in execution time. So, grouping sets reduce the workload execution
times and amortize their own construction time. The simpler structure of the local model
workloads is better supported by grouping sets because they contain fewer combinations
of columns and fewer distinct values. These are exactly two of the assets for grouping
sets identified in Section 3. This leads to a higher performance speed up for local model
workloads than for global model workloads with consistent high-quality estimates. Thus,
we can afford a larger amount of local models to reach the schema coverage of a global
model. Even if these models request more queries than the global model, their benefits from
the use of grouping sets outweigh the higher number of queries.
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6 Related Work

In this section, we detail the importance of database support for machine learning in other
works. We look at the motivation for pre-aggregates from both the database system and the
machine learning point of view.

When looking at the synergy of database and machine learning systems, there are three
possible interactions: (i) integrate machine learning into database systems, (ii) adapt database
techniques for machine learning models, and (iii) combine database and machine learning
into one life cycle system [KBY17]. Based on that, we classify our work in category (iii).
However, the focus in this area is more on feature and model selection and not on sampling
example data. We argue that the direct support of machine learning training phases with
databases should be treated with the same attention.

To the best of our knowledge, there is only little research on directly optimizing the sampling
of workloads for machine learning problems. The authors of [Kil9b] detail their method of
speeding up query sampling in [Kil9c]. They use massive parallelism by distributing the
workload over several DB instances. We see this as a promising step because our approach
can also profit from parallel execution. Especially the instantiation and the querying of
grouping sets can be done in parallel because grouping sets are orthogonal to each other.

Another thing to look at is the availability of supportive data structures in database
systems. The cube operators are established in databases and benefit from a wide-ranged
support [Ag96, Gr96, HRU96, Sh96, ZDN97]. The ability of a database to deliver necessary
meta information is also important. For example, fast querying for the distinct values of
each column has a large impact on performance. A simple solution for this is a dictionary
encoding of the data in the database. Some database systems already use dictionary coding
for all their data [Fd12]. This is beneficial for our approach because from a dictionary
encoded column it is easy to yield the number of distinct values with a dictionary scan.
Moreover, dictionary encoding directly supports the transformation of the data into the
grouping set dimension and the definition of ranges of these dimensions.

Aside from machine learning, database support for data mining has already been an important
research topic [AS96, CWC09, HLHO03, NeO1, OC00]. For example, [HLHO03] identifies
that aggregation in sub-spaces formed by combinations of attributes is a common task in
many data mining algorithms. Based on that observation, we see a large potential for tighter
coupling of databases and mining algorithms.

7 Conclusion

We made the case for cardinality estimation as a candidate for database support of machine
learning for DBMS. We detailed an approach for pre-aggregating count information for
cardinality estimation workloads. It uses grouping sets, a well-known database operator, to
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reduce the data to be scanned by example queries for cardinality estimation with machine
learning models. This reduces the execution time of a given workload even though we spend
extra time to construct the intermediate data structures.

This case has a strong potential to be applied to the other similar machine learning problems,
like plan cost modeling or indexing. We see parallels between the potential for machine
learning workloads and any of these machine learning problems where information about
the data in the DB is aggregated. These parallels make grouping sets and therefore DB
support beneficial for ML for DBMS in general.
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Using FALCES against bias in automated decisions by
integrating fairness in dynamic model ensembles
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Abstract: As regularly reported in the media, automated classifications and decisions based on
machine learning models can cause unfair treatment of certain groups of a general population.
Classically, the machine learning models are designed to make highly accurate decisions in general.
When one machine learning model is not sufficient to define the possibly complex boundary between
classes, multiple “specialized” models are used within a model ensemble to further boost accuracy. In
particular, dynamic model ensembles pick the most accurate model for each query object, by applying
the model that performed best on similar data. Given the labeled data on which models are trained,
it is not surprising that any bias possibly present in the data will reflect in the classifiers using the
models. To mitigate this, recent work has proposed fair model ensembles, that instead of focusing
(solely) on accuracy also optimize global fairness, which is quantified using bias metrics. However,
such global fairness that globally minimizes bias may exhibit imbalances in different regions of the
data, e.g., caused by some local bias maxima leading to local unfairness. In this paper, we propose
to bridge the gap between dynamic model ensembles and fair model ensembles and investigate the
problem of devising locally fair and accurate dynamic model ensembles, which ultimately optimize
for equal opportunity of similar subjects. Our evaluation shows that our approach outperforms the
state-of-the-art for different types and degrees of bias present in training data in terms of both local
and global fairness, while reaching comparable accuracy.

Keywords: Model fairness; bias in machine learning; model ensembles

1 Introduction

In decision support systems (DSS), machine learning models are frequently used to make
recommendations or even decisions. While these unquestionably simplify many processes
and tasks arising in modern life, critical situations arise in automatic classification scenarios
such as credit scoring, or predictive policing applications. There, critical DSS automatically
assign people to classes that have the possibility to deeply affect their lives in a positive or
negative way. Recent real-life examples where the use of such DSS had to be revoked due to
underlying biased classifiers include an algorithm that determined A-Level grades of British
students who were unable to take their exams due to COVID-19 regulations [Co20]. Based
on the teachers’ assessment of the student’s performance and the school’s performance in
subjects, each student was assigned A-Level grades. Using these features, about 40% of
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male | female
positive class 13 11
negative class 12 14

(b) Training data statistics.

Approach False positives | False negatives
Single model 7 4
Model ensemble 0 9

(c) Model performance statistics. Accuracy of single

(a) Decision boundary for a classifier using a single model reaches 0.78, model ensemble reaches 0.82.

model (solid line) and a model ensemble (dotted line).

Fig. 1: Example binary classification scenario deciding about employee raises.

British students received lower grades than recommended by their teachers, as the model
indirectly favored students from private schools and wealthy areas. After a public outcry,
the algorithmic decisions were revoked and replaced by the teachers’ assessments. Another
example is a recruitment tool developed by Amazon [Dal8]. The tool was supposed to
automatically assign scores to job applicants based on their application to support making
hiring decisions. However, it exhibited discrimination against women, a problem that could
not be resolved, leading to the project being discarded after several years of investment.

Classification tasks performed by DSS are, by themselves, not trivial to solve. For instance,
consider Figure 1, which summarizes a simple classification problem when deciding on
employee salary raises. We visualize the training data in Figure 1a, where we place similar
employees close to each other and use different shapes to distinguish male (circle) and
female (triangle) employees. The goal of the trained classifier is to divide in two classes,
which we distinguish by color: employees in blue have a positive outcome and get a raise,
while employees labeled in red are associated to the negative class (no raise). Opting for a
simple classifier, let us assume we obtain the decision border shown as solid black line in
Figure 1a. It classifies all employees below the line into category “blue” and all persons
above the line into category “red”. Using this simple classifier, a number of people are
assigned to the wrong class (see Figure 1c). We see that the simple classifier yields an
accuracy of 0.78, computed as the fraction of correctly classified points vs all data points.
To obtain a classifier that more faithfully reflects the complex decision boundary in our
example and thus improves accuracy, we can resort to model ensembles. There, different
(simple) models are trained and then combined, e.g., to reach a classifier with the decision
border shown as a dashed line in Figure 1a. This allows us to improve the accuracy from
0.78 to 0.82 in our example.

While the above example illustrates one means to boost the accuracy of classifiers, it leaves
aside any consideration of fairness. The term fairness is often used in the literature to refer
to non-discrimination. In the introductory examples, we see that not all students or job
applicants were treated equally and some discrimination was unintentionally introduced
to the classifiers. Such unfair behavior is commonly linked to some bias. There are many
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Approach Accuracy | Fairness
Single model 0.78 0.76
Model ensemble 0.82 0.66
Fair model ensemble 0.78 0.81

(b) Model performance statistics.

(a) Decision boundary for a fair model ensemble that combines
classifiers for male (left) and female employees (right) and
illustration of a locally unfair situation (circle).

Fig. 2: Example binary classification scenario deciding about employee raises (Figure 1 continued).

different kinds of bias that can be introduced through the data or human decisions. For
instance, while it may seem reasonable to consider student’s past performance as a feature,
e.g., on mock-exams to assign a final grade, wealthy students who benefit from regular
tutoring may be at an advantage over students that learn for exams on their own. In case of
automatic resume analysis, having a training dataset with CVs predominantly from male
applicants possibly causes models that favor terms more commonly used by men than
women while penalizing terms associated to women. Returning to our fictional example,
based on the numbers reported in Figure 1b, we see that the training data is reasonably
balanced in terms of men and women being assigned a positive or negative label, which
is a good starting point. To assess the classifiers in terms of fairness, we can use one
of many available bias metrics. The American Title VII of the Civil Rights Act of 1964
prohibits employment discrimination and, for example, states that there is discrimination
when the probability of a woman getting a positive outcome divided by the probability of
a man getting a positive outcome is less than 0.8. In the case of the single classifier and
model ensemble, the value is 0.76 and 0.66 respectively (see Figure 2b) and thus below the
threshold. So using these classifiers would be against the law in the US.

With metrics quantifying bias being available, recent approaches have considered these
to prevent bias. In particular, Dwork et al. [Dw18] have introduced fair model ensembles.
Given a pre-defined set of sensitive groups (e.g., women), their approach learns classifiers
dedicated to these groups and then calculates the best combination of classifiers according
to a metric that combines both fairness and accuracy. By training classifiers specialized to
different groups, the approach can better capture different patterns exhibited by different
groups. Optimizing for both fairness and accuracy compromises between fair treatment
of the different groups and model performance. Figure 2 illustrates the effect of using the
method for fair model ensembles in our example. It combines two classifiers, for which
we show the decision borders: one trained for male employees (left hand side) and one
for women (right hand side). Instead of a fairness of 0.66, the positive classification of
negatively labeled women by the dedicated classifier raises fairness to 0.81 and therefore (at
least according to American law) no longer exhibits discrimination.
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While the approach illustrated above comes closer to the goal of treating members of
different predefined groups (e.g., male, female) equally, it does so from a global perspective.
Thus, localized inequalities remain. For instance, looking again at Figure 2a, while the goal
of non-discrimination between women and men is met, the subregion within the depicted
circle exhibits local unfairness. As a reminder, we have placed persons in the 2-dimensional
representation close to each other when they have similar features, e.g., all persons in
the circled region may have similar age and number of sick days. Clearly, despite similar
features, women in this region are significantly less likely to get a raise than men. This
corresponds to a local bias. The approach presented in this paper aims at solving this issue.

The fact that optimization goals are only fulfilled globally and not locally is not a peculiarity
of fairness. Dynamic model ensembles tackle this problem when optimizing accuracy.
Intuitively, a model or model ensemble is dynamically selected for each new decision based
on model performance in similar situations. This paper uses a similar rationale to optimize
the overall local fairness of a model ensemble by combining ideas of both fair model
ensembles and dynamic model ensembles. More precisely, our contributions are as follows:

. We present a framework for addressing the novel problem of mitigating locally unfair
decisions. In an offline phase, it trains a diverse set of models to get accurate and
fair models for different groups. In an online phase, it dynamically selects the model
ensemble best suited for the different groups when focusing on group members similar
to the subject to be classified. This combines ideas previously devised for (static) fair
model ensembles and dynamic model ensembles specialized on accuracy.

. We present FALCES, which implements our framework using several algorithms. It
comes in different variants, depending on whether the training data is further spilt
before training classifiers or if trained classifiers are further pruned based on an initial
assessment of their global combined performance in terms of fairness and accuracy.
It also relies on a novel metric for a combined quantification of fairness and accuracy.

. We implement our algorithm variants and evaluate them on both synthetic and real
data. Our results show that while we cannot fully eliminate bias, FALCES outperforms
the state-of-the-art in both global group fairness and local group fairness, the latter
quantified using a newly defined metric for local fairness. At the same time, our
solution does not jeopardizse accuracy.

The remainder of this paper is structured as follows. Section 2 reviews related work. We
present our framework in Section 3 and discuss algorithms implementing the framework in
Section 4. Our implementation and experimental evaluation are presented in Section 5. The
paper concludes with a summary and outlook on future research in Section 6.
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2 Related work

Our proposed solution builds on previous work on model ensembles and fairness in machine
learning, in particular fair model ensembles and dynamic model ensembles.

2.1 Model ensembles

The idea of model ensembles is to train multiple models and select or combine the best
of these models [Po06]. Hereby, the optimization goal typically is the improvement of the
accuracy of predictions [SHX19, DSM19, Zh19]. Combining the outputs of several models
has proven to be preferable compared to single-model systems. By combining the results of
several models, model ensembles can, for example, reduce the risk of choosing a model that
performs poorly, which reduces the overall risk of a bad decision, or overcome complex
decision borders that may not be able to be implemented by a chosen model because they lie
outside the functional space of the model. The same rationale underlies fair model ensembles
(discussed further below), which set an additional optimization focus on increasing fairness.

2.2 Fairness in machine learning

As already described in the introduction, the term fairness in machine learning commonly
refers to the fact that models must not discriminate against people because of bias(es). Based
on various laws, social definitions and understood meanings, different measures to quantify
fairness have been defined [KC09, PRTO08, Z117]. They can be broadly classified into two
categories. A group of metrics for individual fairness (or equality or equality of treatment)
focuses on providing equal treatment to equal people [FSV16]. However, we will focus on
the second notion of fairness: group fairness. It is also known as equality of outcome or
equity. Here, groups with different preconditions are treated differently, so that in the end
everyone, despite their differences, has the same opportunities. This is intended to overcome
social inequalities and offer equal opportunity to different groups [FSV16].

Based on these fairness metrics, methods have been developed which allow the development
of individual fair models using fair data, new machine learning algorithms, or techniques
for modifying existing models [KC09, PRT08, Gal9].

2.3 Fair model ensembles

While there is now a visible body of research on measuring fairness and learning single
fair models, only few works leverage multiple models in order to achieve fairness, thereby
bringing the advantages of using model ensembles to the the realm of improving fairness.
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Calders and Verwer [CV10] create fair naive Bayes model ensembles. To this end, they split
the dataset according to the favored and discriminated groups and learn a naive Bayes model
on each subset with the intention to classify independently of a given sensitive attribute. An
overall naive Bayes model chooses the decision of either model depending on the group
of incoming data tuples to be classified. While this approach yields fairer models, it is
specialized to and does not extend beyond naive Bayes models.

Dwork et al. [Dw18] combine multiple machine learning classifiers to improve group
fairness. They provide different versions of their algorithm, where the models are either
learned on the different subgroups as in [CV10] or on larger data subsets in order to prevent
accuracy loss. Their approach uses a joint loss metric that optimizes for both accuracy and
fairness in order to assess which model should be used for which group of the dataset. While
this approach does consider both accuracy and fairness at group level using any type of
classifier, it may suffer from local unfairness.

2.4 Dynamic model ensembles

Dynamic classifier selection [CSC18] selects one classifier during runtime for each new
sample which has to be classified. This is based on the rationale of model ensembles that
not every classifier is an expert in all local regions of the feature space. Usually, for each
new sample the local region is first identified, for example using k-nearest-neighbors (kNN).
Then, the quality of available classifiers is determined and the best one(s) are selected.
Dynamic ensemble selection is similar, it merely selects ensembles instead of classifiers.
One example is the Dynamic Classifier Selection by Local Accuracy (DCS-LA) algorithm
by Woods et al. [WKBO97]. First, it uses kNN to identify the local region. Then, local
accuracy of classifiers is evaluated as percentage of correctly classified samples in the local
region. Alternatively, it uses local class accuracy, which is the accuracy of classifiers in the
local regions with respect to the class the classifiers assign to the new sample. Only the
most accurate classifier is then used to classify the unknown sample.

3 Framework for fair and dynamic model ensembles

As motivated in the introduction, our goal is to combine the benefits of fair model ensembles
on the one hand and dynamic model ensembles on the other hand to devise a solution
that resolves not only global bias among different groups, but also local bias, while not
compromising overall accuracy. The rationale is that, while it is typically possible to define
groups that should be treated fairly (and that are often defined by law), it is quite challenging
to fully anticipate variations (sub-groups) within these groups that indirectly cause local
bias. Techniques to counter local bias can potentially help in reaching equal opportunity
among groups with similar features or similar trajectory. In this section, we first formalize
our problem statement to counter locally unfair decisions. We then present a framework
where we combine the ideas of fair and dynamic model ensembles to solve this problem.



Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 161

3.1 Locally unfair decisions

As illustrated in Figure 2a, the problem with locally unjust decisions is that while existing
solutions (reviewed in Section 2) are optimized to make globally fair and accurate decisions,
there are still local regions where data points of different groups are treated unfairly. To
address this problem, the decision should be optimized so that the optimal (i.e. fair and
accurate) decision can be made at a local level. Our emphasis in this paper is on group
fairness, i.e., equal opportunities between groups.

Formally, we consider as given a labeled data set D, a similarity metric s, a positive integer k,
an optimization metric af combining fairness and accuracy, and a set of machine learning
models (classifiers) M for the same classification task. Furthermore, D can be partitioned
into groups G, for which equal opportunity is relevant. We further assume a new test
sample 7 that belongs to one of the groups G. Then, we define our goal of locally fair and
accurate classification as a classification task that classifies ¢ using a model m € M with the
best performance according to the af metric in the local region of D around ¢. This local
region includes the k items in D most similar to ¢ according to s.

3.2 Framework

To address the problem defined above, we combine the rationales underlying both fair and
dynamic model ensembles described in Section 2 into a new framework for fair and dynamic
model ensembles. The main components of this framework are visualized in Figure 3. We
distinguish between an offline phase (bottom part), where suited model ensembles are
trained and selected, and an online phase (upper part), where a previously unseen test
sample ¢ is classified by dynamically selecting the model ensemble most appropriate for 7.

Offline phase. The first step of the offline phase, named model training, is a step common
to model ensemble approaches. Here, using training data taken from the labeled dataset D,
a diverse set of classifiers is trained. Given that we target both fair and accurate decisions,
model training can benefit from using different subsets of data based on the different
groups G present in D, which has for instance been proposed for fair model ensembles
(see Section 2). We denote the set of classifiers resulting from model training considering
different groups G as M = {(my,g1),(m2,£2),. . .,(my, g,)}, where each m; is a model and
gi identifies the group it is trained for. Among these classifiers, not all may be suited to
make both fair and accurate decisions. Also, too many classifiers to be considered during
the online phase (further discussed below) can be computationally prohibitive. Therefore,
during model pruning, the framework assesses all model combinations or ensembles
possible with the classifiers in M that use exactly one classifier per group g;. Assessment is
done with respect to the global performance metric af that considers both accuracy and
fairness. Only the best classifier combinations are retained after model pruning, resulting in
MC = {[((m11,81)...,(m1n 8], - - ., [((Me1,81) - - ., (Men> gn)]}, @ set of model ensembles
(in square brackets) s.t. for each ensemble, g; # g; wheni # j and n = |G].
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Fig. 3: Framework for locally fair classifications by combining fair and dynamic model ensembles

Online phase. When a new test sample ¢ is to be classified, the framework determines the
local region ¢ belongs to as part of local region determination. To this end, it performs
a kNN search of t on each g;, where g; is a group in G = {g;,...,gn}. The framework
specifically selects an equal number of members similar to ¢ of each group, to have a locally
balanced data region with respect to the different groups. Then, for this particular region,
dynamic ensemble selection assesses which ensemble E € MC achieves the best local
performance with respect to af. Intuitively, this dynamically selects the optimal model
ensemble comprising a dedicated model for each group for the region most relevant to
t. With this approach, our framework combines previous techniques separately devised
for fair and dynamic model ensembles. The identification of the locally best model is
performed according to dynamic model ensemble techniques using fair model ensemble
metrics. Therefore the classifiers are tested on the local region of the test sample using an
af metric. Finally, the best classifier m.; such that (m,, g;) € E and g; corresponds to the
group ¢ belongs to is used in the final step of locally fair classification to classify ¢.

4 Algorithms implementing the framework

Section 3 discussed the general framework that we propose for locally fair and accurate
classifications. There are a variety of techniques from both fair and dynamic model ensemble
research, which can be applied or extended to implement its components. In the following,
we discuss the algorithms we consider to implement the framework that stand behind our
FALCES system (standing for Fair and Accurate Local Classifications using EnsembleS).
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4.1 Model training

As mentioned before, the set of classifiers should be diverse in order to benefit from
combining them to model ensembles. To this end, we vary both the set of machine learning
techniques used to train classifiers as well as the data from D that is considered for training.

In principle, any machine learning technique suited for classification tasks can be considered
as candidate technique. In our evaluation, we will resort to simple techniques, e.g., decision
trees, logistic regression, or nonlinear support vector machines.

Concerning the data, following previous research on fair model ensembles [Dw18, CV10],
we consider splitting the input dataset D on pre-defined sub-datasets that correspond to the
different groups for which we aim to achieve group fairness (e.g., we divide by sex (male,
female) and race (white, others) in our experiments which creates four subgroups). This
effectively partitions D into G = {gi,...,gn}, assuming n distinct groups. Then, models
are trained separately for the different partitions. Different training datasets not only have
the advantage of learning different models that exhibit their strengths in certain areas of the
feature space. Indeed, as shown in Calders et al [CV10], the label does not depend directly
on the sensitive group. In addition, complex decision borders between the two groups,
which originate from different behavioral patterns, can be better modeled, thus increasing
accuracy [Dw18].

As aresult, similar to [Dw18, CV10], we obtain classifiers that are “specialized” on some
group. More precisely, in this variant, we obtain M = {(my,g1),. .., (my, g,)} where each
(m, g;) associates a classifier m; to a group g;. For any two (m;, g;),(my, &), it holds that
m; # my,and g;, g € G, butit is possible that g; = g.

Example 1. As a simple example, consider we spilt a sample dataset following the gender
of employees, which results in a group for each gender, e.g., gr for female employees and
gm for male employees. Assuming my,my, m3 are trained on gy and mg, ms,mg ON g, we
obtain M = {(my,8gm ), (m2, gm), (M3, gm ), (ma, g ), (ms, g ), (e, gF)}-

On the downside, splitting the data as described above can lead to a too small dataset to train
on, which often results in loss of accuracy for the classifiers. Hence, we further consider the
option of training models on the complete dataset D rather than on individual partitions of
G. In this setting, we have M = {(m,gp),. .. (mu,gp)}, where gp = D.

To distinguish the two variants for implementing model training described above in FALCES,
we will append a suffix SBT (for Split Before Training) for the first option, while absence of
this suffix indicates training is performed on the full training data set.
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4.2 Model pruning

In the offline phase, the number of classifiers can already be reduced based on their global
performance in order to improve the efficiency of the online phase later. Indeed, the less
classifiers need to be considered in the online phase, the faster the classification of a new
test item is. As we shall see in the evaluation (Section 5.4), this has only little impact on
making locally fair and accurate decisions, while runtime may improve significantly.

To assess the performance of a model when considering both accuracy and fairness, we
rely on a metric that combines these two dimensions, denoted as af. To the best of our
knowledge, the state-of-the art metric that accounts for both accuracy and fairness is the
metric proposed by Dwork et al. [Dw18] for fair model ensembles, defined as follows.
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Here, the number of tuples in a labeled dataset D is denoted as |D|, each tuple #; € D has
an actual and predicted label denoted as y; and z; respectively, |G| represents the number
of different groups in G, g;, € G represents the group a tuple #; belongs to, and 0 < 1 < 1
balances the relative weight of the accuracy and the fairness part of the equation. Intuitively,
in the first part of the metric, accuracy is measured by comparing the predicted and actual
label for each data tuple (also known as L; loss). The second part of the metric determines
the fairness of the classifier combination that associates a classifier to each group. It sums
up the difference between the sum of predicted values of each group and the overall sum of
labels divided by number of groups. Note that for both sides, higher values actually mean a
poorer performance, we thus qualify them as inaccuracy and unfairness.

This metric combines both accuracy and fairness, however, the fairness-part is sensitive to
differences in the relative size of groups. Assume for instance there is a larger group gy and
a smaller group gs with equal sum of z;, i.e. equal number of positively classified tuples.
Indeed, the metric considers the situation to be fair among these two groups (unfairness-part
drops to 0), even though the probability that a member of gy, is assigned a positive label
is smaller than the probability of a member of gg being assigned a positive label. While
this may well serve minorities that are considered protected groups and are thus indirectly
favored by being part of the smaller group, it does not accurately reflect equal opportunity.

We propose a variation of af that modifies the fairness-related part of Equation 1 to also
consider the number of tuples |g;| in a group g; € G. This results in the following metric.
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While the accuracy part still determines L; loss, the fairness part has slightly changed. For
each group, its mean value is set in relation to its group size and compared to the overall
mean value of positive predicted labels. These are then again summed up and divided by
the number of groups to allow for an arbitrary number of groups.

Using the metric proposed in Equation 2, model pruning aims at retaining only a “good”
selection of ensembles formed by models of M obtained during model training. Given that
we are using model ensembles, this evaluation of model quality is performed by considering
all possible combinations of classifiers in M when choosing one classifier per group, and
keeping only the best ones. In our implementation, we keep ensembles up to a predefined
rank. Another possibility would be to use a threshold for the maximally acceptable af score.

Example 2. Continuing our previous example, given that we have three classifiers dedicated
to gr and gy, respectively, we have a total of 9 combinations to test using af. Let us assume
that the top-2 ensembles according to af are (my,my), (ma, ms). Assuming FALCES is config-
ured to the top-2 combinations, we obtain MC = {[(my, gp), (4, gF)], [(m2, gpr), (ms, gr) ]}

Similarly to model pruning, we consider running FALCES with or without model pruning
enabled. When active, we append PFA to the algorithm name.

4.3 Local region determination

Moving on to the online phase, the task is to classify a new tuple ¢ in a locally accurate and
fair manner. Our framework defines locality relying on a similarity measure s and considers
retrieving the k most similar tuples to 7 in D.

One way to determine the & most similar tuples are kNN algorithms [Bh10]. FALCES uses
the kd-tree nearest neighbor approach [Be75] because it is simple and efficient. This method
creates a k-dimensional tree that can be precomputed during the offline phase in which
the tuples from D are arranged and stored according to the dimensions. During the online
phase, when the tuple 7 is to be classified, the tree can then be searched in O(log|D|) time.

While searching for the nearest neighbors, we need a similarity metric to identify tuples
similar to 7. To compare two tuples #; = (x1,...,x,) and t, = (y1,...yn), FALCES uses

1
the Minkowski-Distance md(r1,12) = (X |x; — yi|”) 7. It is a generalization of both the
Manhattan distance (p=1) and the Euclidean distance (p=2) and has already proven useful
for similar problems such as K-Means algorithms [SYR13].



166 Nico Lissig, Sarah Oppold, Melanie Herschel

Using this distance measure, we identify the nearest neighbors of r. However, it must be
ensured at this step already that the af metric used in the next step of FALCES receives
the necessary information to calculate group fairness. For this, it needs to receive tuples
from all groups to be able to produce meaningful results. Therefore, in FALCES, the kNN
algorithm is applied to each group separately, which results in |G| trees and |G| * k nearest
neighbors for |G| groups.

4.4 Dynamic ensemble selection

Based on the |G| * k tuples defining the local region for a given test sample ¢, dynamic
ensemble selection identifies the ensemble E = [(mc,,g1);...,(mc,,8p)] € MC that
achieves the best local performance. To this end, FALCES follows previous research on
dynamic model ensembles [WKB97] and combines these techniques with the af metric.
More precisely, using as input M C, we evaluate all model combinations based on af when
they classify the |G| * k nearest neighbors of t. The combination E with the lowest af-score
is retained.

Example 3. Assume we want to classify a male employee t that is thus considered to be
part of gpr. Assuming k = 20, kNN retrieves the 20 male and 20 female samples in D most
similar to t. The two combinations possible with the classifiers retained after model pruning
(see Example 2), i.e., [(m1,gm),(m4, gr)] and [(ma, gar), (ms, gr)], are evaluated using the
af metric and focusing on the 40 samples of D that form the local region. In our example,
let this result in E = [(my, gnm ), (ma, gr)] as this combination reaches the lowest score.

Note that through previous model pruning during the offline phase, the above example
needed only to consider 2 instead of 25 classifier combinations. In addition to reducing the
number of comparisons, we further reduce the complexity of an individual combination
assessment, because the computation of classification predictions for all sets of classifiers
and all local |G| * k tuples can be quite time consuming. That is, FALCES precomputes all
classification predictions for all tuples in D using all models in M. This allows dynamic
ensemble selection to simply look up the necessary predictions instead of repeatedly
computing them by applying the classifier for each test sample during the online phase.

4.5 Locally fair classification

Finally, the classifier of the previously identified model ensemble E that achieved best local
performance with respect to the af metric and that is associated to the same group as ¢ is
used to classify ¢.

Example 4. Continuing our running example with E = [(my, g ), (ma, gr)], my is finally
used to classify t, because t belongs to gp. Considering a different t’ of group gy may
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result in a different local region, where for instance E = [(ma,gpm ), (ms, gr)] performs
better, resulting in the use of my instead.

5 Evaluation

We have implemented the algorithms discussed in Section 4 and present their evaluation in
this section. We first describe our experimental setup. We then present and discuss results
on combined accuracy and fairness, differences observed for the two af metrics, as well as
runtime results on the online phase.

5.1 Experimental setup

This section summarizes which different algorithm variants and baseline solutions we
compare in our evaluation. We further discuss datasets and metrics we use for benchmarking.

Compared algorithms. We have presented different variants of FALCES, depending on
whether or not the training data is split before training and whether or not model pruning
is applied. In addition, we compare to the state-of-the-art algorithms. More precisely, we
consider the algorithms summarized in Table 1. For the different FALCES variants as well
as DCS-LA, which also relies on kNN search, we set k = 15.

Datasets and ML models. We use both synthetic and real benchmark data in our evaluation.

We developed a synthetic data generator in order to control different types and degrees of
bias in order to study how the different algorithms are affected by these. It generates labeled
data for two groups and a binary classification task and allows to control (i) the group

Algorithm Description

FALCES Our baseline algorithm without splitting before training and without model pruning.

FALCES-SBT This variant of FALCES splits the dataset for training but does not apply model pruning.

FALCES-PFA In this variant, model pruning is applied on models trained over the complete training dataset.

FALCES-SBT-PFA The offline phase performs model pruning on models that have been trained on sub-sets of the
training dataset, which has been split according to considered groups.

DCS-LA [WKB97] A baseline algorithm for dynamic model ensembles that optimizes accuracy, which we extended
for FALCES.

Decouple [Dw18] State-of-the-art algorithm for fair model ensembles, when models are trained using the full

training dataset.
Decouple-SBT [Dw18]  Variant of Decouple that trains models on a previously split training dataset.

Tab. 1: Overview of the algorithms compared in our evaluation

Bias type Parameter settings

Group balance 0.1,0.2,0.3,04, 0.5
Social bias 0,0.1,0.2,0.3,04,0.5
Implicit bias 0,0.1,0.2,0.3,04,0.5

Tab. 2: Different configurations for synthetic data, default values in bold
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balance, (ii) the degree of social bias, and (iii) implicit bias. Group balance describes the
percentage group g; represents in the full dataset (g, implicitly making up the remainder of
the dataset), which can be very unbalanced (e.g., only 10% of the training data belongs to
g1) or perfectly balanced at 50%. Social bias refers to bias directly related to the protected
attribute defining a group (e.g., gender in our example), reflected by different probabilities
for a positive label in the different groups (e.g., women have a lower probability for a
positive label than men). Such bias is sometimes also called historical bias, because it
reflects direct discrimination of a group in a dataset that commonly labels data based on
historical decisions. In our experiments, a social bias of 0 means probabilities are equal
for both groups (no discrimination), 0.1 if the probability for g; differs by 0.1, and so on.
Implicit bias is present in a dataset when, even though groups are not directly discriminated,
their label depends on an unfavorable attribute value that occurs more frequently in the
protected group, i.e., that is correlated to the protected group. Note that both examples from
the press mentioned in the introduction are likely linked to such indirect bias. Similarly to
social bias, we vary indirect bias from O (none) in increments of 0.1. The generated data in
all cases consists of approximately 13,000 tuples. Table 2 summarizes the configurations
we used for testing. When not mentioned otherwise, the values are set to the default values
highlighted in bold.

We chose the Adult Data Set [DG19], a census income dataset with data from 1994, which
is a commonly used dataset in multiple machine learning experiments. This dataset consists
of approximately 49,000 tuples and contains various variables, including a binary salary
value of yearly income with the threshold of 50K$, which is our label in the experiments.
We chose the attribute “sex” with values “male” and “female” as a sensitive attribute, as
well as a combination of the attribute “sex” with the attribute “race” with values “white”
and “others”, where we grouped together all other races, because all other races make up
~ 10% of the dataset.

Each dataset (synthetic and real) is split randomly such that 50% of the dataset serve as
training data for model training, 35% for validation to determine emsembles, and 15% for
testing the quality of predictions in the online phase.

To get a diverse set of classifiers, we train five different classifiers on our datasets: (i) Decision
Tree, (ii) Logistic Regression, (iii) Softmax Regression, (iv) Linear Support Vector Machine,
and (v) Nonlinear Support Vector Machine. Given that we have two groups, this results in
ten classifiers when we split before training, and five when training on the full dataset.

Metrics. Given that we aim for a good compromise of accuracy and fairness, we use
metrics to assess the different algorithms in these two dimensions. We use the well known
accuracy-metric commonly used to evaluate machine learning techniques. For fairness,
we distinguish between global and local fairness. To study global fairness, we use the
“unfairness part” of the metric given by Equation 2 (setting A = 0), to which we refer to as
global bias (lower values are better). To measure local bias, we define a local region bias
metric, which we call local region discrimination (LRD):
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where Ry, o is the local data region of 7; comprising the kNN of #; in group g;. In this metric
the probability of a positive predicted label of each group in the local region is measured
against the average probability of a positive predicted label amongst all points in the local
region. In this way, the metric reflects the average local fairness.

Using the experimental setup described in this section, we now discuss results we obtained.

5.2 Comparative evaluation in terms of accuracy and fairness

We first present results we obtained when using different algorithms on our synthetic dataset
in terms of accuracy, global bias, and local bias.

As a first baseline, we start with a “clean” dataset with no social or implicit bias, and see
if changes in group balance have an impact on our three metrics. Essentially, we expect
only a marginal effect on accuracy and a low global and local bias, because the input data is
a priori unbiased. This is confirmed by the results depicted in Figure 4. Note that instead
of plotting absolute accuracy for all methods, we plot the deviation algorithms have in
accuracy from the accuracy reached by DCS-LA, reported as percentage points. DCS-LA
is not considering bias and optimizes solely for accuracy, which is between 0.76 and 0.79
for DCS-LA over the whole range of considered group balance. The ordinate reporting
percentage points, a deviation of -1 means that an algorithm reaches for instance 0.77 instead
of 0.78 reached by DCS-LA.

In Figure 4, we observe that all algorithms perform similarly, i.e., for all algorithms, there
is some very small fluctuation in accuracy and global bias remains low. For local bias,
while being generally low as well, we observe that it steadily increases with increasing
imbalance, reaching a relative increase of up to 64% from the balanced case (0.5) to the
highest imbalance (at 0.1, where only 10% of the dataset concern one group).

Next, we perform the same analysis again, but this time with an additional social bias of
0.3 introduced to g;. The results are summarized in Figure 5. With the introduction of
social bias, we observe that deviations in accuracy become more pronounced, in particular
for the two variants of the Decouple algorithm. Least affected in terms of accuracy is
FALCES-SBT-PFA, actually having comparable or better accuracy than DCS-LA. For
both local and global bias, we see that all FALCES variants consistently outperform both
Decouple variants and DCS-LA. Also, compared to the previous experiment without social
bias, the field has overall shifted upwards. This shows that we cannot fully counter bias
originally present in the dataset, but FALCES is best in reducing it while maintaining high
accuracy.
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Fig. 6: Results on synthetic data with varying social bias, group balance of 0.5, and no implicit bias.

Our next analysis focuses on the impact different degrees of social bias have on the overall
performance, assuming balanced groups without additional implicit bias. Figure 6 reports
our results. For accuracy, we observe that all methods fluctuate, but the degradation in
accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more
robust to social bias than the state-of-the-art Decouple variants, the PFA variants generally
being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input
data, the more bias the ensemble generates. However, the gradient of our approaches is less
steep and consistently below the baseline methods. This means that the more social bias in
the data, the more effective our approaches are in countering the bias to optimize (local)
group fairness compared to the state-of-the-art. FALCES-SBT is best in terms of global
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Fig. 7: Results on synthetic data with varying implicit bias, group balance of 0.5, and no social bias.

and local bias, but FALCES-SBT-PFA has similar performance and thus presents a good
compromise in datasets with mainly social bias.

We perform a similar analysis for implicit bias in the source data, again assuming a balance
of groups (balance = 0.5) and setting social bias to 0. Figure 7 visualizes the results of
this set of experiments. Our first observation is that implicit bias impacts all metrics more
than the previously considered social bias. As before, in terms of variations in accuracy,
these are strongest for the Decouple variants, whereas the PFA variants of our algorithm
outperform FALCES and FALCES-SBT. However, looking at both local and global bias, our
algorithms without model pruning typically perform better than their counterpart with PFA.
The reason for this is that model pruning during the offline phase can prune classifiers that
would, during the online phase, be better compared to those retained after model pruning.
Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

We validate our findings on artificial data on the real-world dataset as well. Given that it
includes two sensitive attributes (sex and race), we study accuracy, global bias, and local
bias when just one attribute is used to form groups (resulting in two groups) and when two
attributes are used (resulting in 4 groups). Figure 8 shows results for global and local bias.
Results on accuracy confirm that all algorithms perform similarly, it consistently ranges
between 0.790 (Decouple) and 0.799 (DCS-LA). As before, we observe that FALCES
variants typically are comparable or outperform the three baseline algorithms, both in terms
of global and local fairness. With the increasing number of sensitive attributes, we observe
that the bias increases for all methods.

In conclusion, we see that our methods improve on the state of the art by offering a better
accuracy-fairness compromise than the state of the art Decouple approach (considering
global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable.
Our methods are also the most robust to different types and degrees of bias (we studied
group balance, social bias, and implicit bias). An added benefit is that our methods
inherently consider local fairness as well, and our evaluation of local fairness shows that
the classifications performed using our algorithms get us closer to equal opportunity for
different predefined groups.
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5.3 Impact of different accuracy-fairness metrics

Section 4.2 has discussed two alternative metrics for af, used both during model pruning in
the offline phase and dynamic classifier selection in the online phase. All experiments so far
have used our extended metric (Equation 2). The next series of experiments investigates
how the two options potentially impact the result. We refer to the state-of-the-art metric of
Equation 1 as SOA, while our extended metric is labeled NEW. As a reminder, our extension
aims at countering the effect on fairness in presence of unbalanced groups. Therefore, we
focus our study on evaluating both the global and local bias for different configurations of
group balance. As before, accuracy is comparable across all approaches, whether we use
SOA or NEW. Figure 10 reports our results on global bias, whereas Figure 11 focuses on
local bias. For better readability, we omit the results of Decouple-SBT and DCS-LA, their
relative performance to the other approaches being analogous to our previous discussion.

For both global bias and local bias, we see that FALCES variants without model pruning
(dotted lines) are comparable when using SOA or NEW. The effect of using a different
metric only becomes apparent when model pruning is active. Overall, we see that NEW
closes the “bias gap” between FALCES variants with model pruning (solid lines) and
those without. This allows our methods to consistently exhibit low bias, especially in
comparison to state-of-the-art algorithms like Decouple. This behavior can be explained by
the fact the af is used by model pruning where group imbalance can cause the pruning of
otherwise good classifier combinations. Note that the use of af during the online-phase is
not sensitive to the choice of the two metrics, because it ensures class balance in the local
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region by selecting k members of each group to form a region. Consequently, FALCES and
FALCES-SBT are not significantly affected by the choice of metric.

5.4 Runtime evaluation

We also evaluate the efficiency of our approach in its online phase. In particular, we study
the effect of model pruning in the offline phase on the online performance. To this end,
we run the four variants of FALCES and measure the average runtime to perform online
classification for all tuples for which we want a prediction. We report results in Figure 9 on
our real-world dataset, on which we can vary the number of groups (either 2 or 4), given
two sensitive attributes. In any configuration, we see that model pruning during the offline
phase improves the average runtime to classify a test tuple during the online phase. While
this improvement is moderate when limiting to two groups, the difference increases as the
number of groups increases. This can be explained based on the fact that for two groups and
five models trained per group, we have 25 combinations to consider during the online phase
when none are previously pruned. This exponentially increases with the number of groups,
e.g., for 4 groups, 5% combinations need to be tested. Combined with the performance
in terms of accuracy and fairness (see Section 5.2), FALCES-SBT-PFA is the method of
choice when the number of groups increases.

6 Conclusion

This paper studied the novel problem of making locally fair and accurate classifications
to foster equal opportunity decisions. We have presented a general framework to address
the problem, as well as FALCES, an implementation of the framework that combines
and extends techniques of dynamic model ensembles and fair model ensembles. Our
experimental evaluation demonstrated that FALCES generally outperforms the state of the
art when it comes to balancing accuracy and fairness for several types and degrees of bias
present in the training dataset. Possible avenues for future research include methods that
diversify the set of trained models in a controlled way or dynamic and adaptive setting of
the parameter k of the kNN search, depending on the density of the data region.
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Cluster Flow — an Advanced Concept for
Ensemble-Enabling, Interactive Clustering

Sandra Obermeier! Anna Beer! Florian Wahl! Thomas Seidl!

Abstract: Even though most clustering algorithms serve knowledge discovery in fields other than
computer science, most of them still require users to be familiar with programming or data mining
to some extent. As that often prevents efficient research, we developed an easy to use, highly
explainable clustering method accompanied by an interactive tool for clustering. It is based on
intuitively understandable kNN graphs and the subsequent application of adaptable filters, which can
be combined ensemble-like and iteratively and prune unnecessary or misleading edges. For a first
overview of the data, fully automatic predefined filter cascades deliver robust results. A selection of
simple filters and combination methods that can be chosen interactively yield very good results on
benchmark datasets compared to various algorithms.

Keywords: Clustering; Interactive; kNN; Ensemble; Explainability

1 Introduction

Researchers in virtually all areas can benefit from clustering their data at some point. From
natural sciences over social studies to economics — data is gathered everywhere. Clustering
provides many advantages: while the main goal is to find groups of similar objects, it can
also help gather valuable hidden information from the data or identify essential attributes.
While researchers are experts in their field, they often do not have sufficient background
knowledge about clustering methods and, for the sake of simplicity, use old traditional
algorithms that may not even fit their data.

As datasets from different research areas contain different types of clusters, ensemble
methods proved themselves as suitable for users without profound knowledge in data science.
Nevertheless, ensemble methods can be even less understandable “black boxes” than only
one algorithm, as they combine different clustering algorithms. Interactive and visual
approaches offer great possibilities to make these black boxes more accessible and embody
a good solution for the desired balance: To make the powerful tool of clustering accessible
to researchers from all fields so that they can create the most meaningful and transparent
clusterings with as little effort and background knowledge as possible.
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A high explainability is thus equally important as public availability. Due to the lack of those
in current methods, surprisingly, many researchers still group their data manually, which is
disastrous regarding the reproducibility of results and the whole research’s objectivity.

Especially complex clustering methods such as ensemble methods are hard to visualize, and
accordingly, it is tough to create interaction possibilities on intermediate levels that allow
the user to intervene, guide and better understand the process.

To solve these problems, we developed a concept with a prototypical implementation
called Cluster Flow. It combines kNN-based approaches for clustering on graphs with
a modular and easy to understand architecture. It is simple but simultaneously provides
enough flexibility to accomplish difficult clustering tasks. We publish our code at https://
github.com/sobermeier/cluster-flow. Cluster Flow combines the advantages of ensemble
clustering with interactive clustering: users of all areas can easily apply and compose various
intuitively understandable cluster improvement steps iteratively to explore and cluster their
data. Our method, which we describe in detail in Section 3, is based on kNN graphs as
they represent one of the best foundations for clustering and offer several advantages: they
are highly explainable, suitable for anytime changes, and interactive approaches, and they
can enable finding non-convex shaped clusters as well as clusters of different densities. We
developed multiple intuitively understandable filter methods partially based on existing
methods to prune edges connecting clusters. They can be combined sequentially or in parallel
(ensemble-like). Users can fine-tune parameters, change filters, and explore the dataset at
any time, guided by a well-structured prototypical user interface as explained in Section
4. Extensive experiments in Section 5 show that our concept, applying pruning-strategies
on kNN graphs, achieves better clusterings than several other algorithms with their best
parameter settings. Simultaneously, the method is robust and suitable for exploring data:
with fixed parameters for all tested datasets, our fully automatic predefined filter cascades
yield better results than comparative methods. Our main contributions can be summarized
as follows.

. We propose Cluster Flow, an advanced clustering concept based on kNN graphs by
deleting edges through filters.

. Due to its well-thought-out modular design, interactions can be easily integrated on
intermediate stages while also providing step-by-step visualizations of the intermediate
clustering results.

. Even beyond this, we provide predefined filter cascades that achieve competitive
results fully automatically.

. A prototypical implementation serves as a proof-of-concept and demonstrates the
power of our proposed approach.
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2 Related Work

We address here the three main components that comprise our Cluster Flow concept. As
most filter methods are based on diverse graphs describing the data, and we need to evaluate
our clustering results objectively, we introduce some graph-based methods in Subsection 2.1,
which we also use as a baseline for our experiments in Section 5. Combining the filters can
be seen as an ensemble approach; thus, we introduce the most relevant ensemble-based
clustering methods in Subsection 2.2. Subsection 2.3 concludes this section by setting our
concept into context regarding existing interactive approaches.

2.1 Graph-Based Clustering

Clustering algorithms can rely on different graphs extracted from the original data, e.g.,
e-range graphs or diverse variants of kNN graphs, where we focus on the latter. Some
approaches rely on a mutual kNN graph (MKNN, see Section 3.1). Existing works include
taking the plain MKNN graph, where a connected component with two or more points form
a cluster and otherwise are considered outliers [Br97], or slightly advanced ones where
a weighted MkKNN graph is used to capture clique-like structures [SB14]. Choosing the
optimal value for k is especially difficult for MKNN, which are inherently sparser than, e.g.,
symmetric KNN graphs (see Section 3.1).

The hierarchical clustering algorithm CHAMELEON [KHK99] is based on symmetric kKNN
graphs and consists of two phases. First, the kNN graph is partitioned into small sub-clusters
by repeatedly splitting the currently largest sub-cluster, such that the edge cut is minimized
until the largest sub-cluster contains fewer nodes than a user-given parameter MinSize.
Secondly, these sub-clusters are recombined using an agglomerative hierarchical clustering
algorithm concerning their relative inter-connectivity and closeness. The merging algorithm
terminates when only one cluster remains, or no pair of clusters satisfies the condition of
having high enough relative inter-connectivity and relative closeness.

Girvan-Newman Algorithm [GNO2] is an approach for detecting community structures in
graphs. The authors introduce a measure called edge betweenness which corresponds to
the number of shortest paths that run along this edge. All shortest paths between nodes of
different communities go along at least one edge that connects the communities. Thus, the
edge betweenness score of such an inter-community edge is higher. The algorithm iteratively
removes the edge with the highest edge betweenness and recalculates it for the remaining
edges until there are no more edges in the graph. The result of the algorithm is a dendrogram
that reveals the community structure of the underlying graph. However, this method has a
relatively high runtime with O (m? - n) for graphs with m edges and n nodes.

Spectral Clustering [SMO00] is based on a similarity graph and its weighted adjacency
matrix, the first k eigenvectors are calculated. A kNN graph can be used as a similarity
graph with distances between points as weights. Clustering is then performed with k-means
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on the matrix’s rows, which contains the previously calculated eigenvectors as columns.
The resulting clustering assignment of k-means corresponds to the clustering alignment of
the original points. Spectral clustering also inherits the disadvantages from the additional
partitioning step, such as k-means to a certain degree.

2.2 Ensemble based Clustering

Our approach is closely related to ensemble clustering methods since our filter strategy
allows combinations to find a consensus. Cluster ensembles, sometimes also referred to
as clustering aggregations or consensus clustering, combine several cluster algorithms
to obtain a single result of better quality than each cluster individually. Usually, they are
based on two steps, namely the generation, where different partitions are obtained, and the
consensus, where these partitions are integrated into one final partition. Ensemble methods
should at least meet the following four criteria [VPRS11]:

. Robustness: The average performance must be better than the single clustering
algorithms.
. Consistency: The combined result should be very similar to all combined single

clustering algorithm results.

. Novelty: The ensemble must allow finding solutions unattainable by single clustering
algorithms.
. Stability: The results must be less sensitive to noise and outliers.

However, according to the same authors, identifying the best result is hard, but the general
idea behind ensemble methods is that several algorithms’ combined decisions should be
more reliable than any individual one. Several existing works focus on the clustering
techniques [Lil5, FJ05, Wul3] while others focus on finding the right consensus [SG02],
and allow for using different clustering methods.

However, in these approaches, determining the consensus functions is only applicable
for experts and integrating different techniques is even more complex and challenging to
understand to scientists from other domains. In contrast to that, our edge-deletion concept
allows for a smooth integration of establishing consensus across filters while at the same
time the intermediate results are always visible and understandable. Our approach differs
from existing approaches since it is possible to apply the ensemble clustering paradigm as
an intermediate step. The user can access the result at a fine-granular level and directly see
how different filters agree upon activities to identify crucial spots or steer the end product
into a more conservative or progressive direction. These advantages come because our
approach combines the power of ensemble clustering and interactive clustering. We discuss
the latter in the next section.
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2.3 Interactive Clustering

The overall goal of interactive clustering is to engage the user as far as possible in the
clustering process, not only to allow the user to make the result fit their preferences but
also to make it understandable. In our context, we utterly differentiate from methods that
solely enable visual exploration of the result and are only considering methods that allow
interaction within the algorithmic loop. [Ba20] provide a thorough survey of interactive
clustering. Over 100 papers related to interactive clustering are analyzed regarding the stage
and type of interaction, user feedback, evaluation criteria, data, and clustering methods.
The authors distinguish three groups of stages in which interaction occurs. (1) Interaction
on clustering results, (2) interaction on model/algorithm level, and (3) machine-initiated
interaction. Our concept belongs to the second group since the user’s interactions directly
happen at the algorithm level by tweaking parameters rather than at the clustering results.
We evaluate the clustering result on an objective basis rather than conducting a user study for
subjective evaluation. A user study might help develop an appealing and intuitive graphical
user interface but is not within this work scope. Also, visualization methods for supporting
interactive ensemble clustering like AUGUR [HHL10] could be incorporated for future
work.

To conclude this section and put our work into the context of related works, our concept
combines three main components that fit together enormously well. First, KNN-graphs
are inherently well understandable for humans. Second, based on the kNN-graph, filter
strategies are applied. The filters focus on different hidden structures in the data, but all
result in the same action, namely deleting edges. Therefore, finding a consensus among
them in an ensemble-like manner does not require complex mathematical functions but
rather comparison on edge level and can thus be well visualized and understood. Third,
the modular design allows interaction on each stage and the continuous visualization of
intermediate results.

3 Cluster Flow

Cluster Flow works on a kNN graph of the input, for which we present multiple options in
Section 3.1. Elaborated filters, which we introduce in Section 3.2, delete edges between
clusters, and thus the graph decomposes into several smaller graphs representing one cluster
each.

3.1 Build KNN Graphs

Cluster Flow allows to choose between different variants of the kNN graph, as they can
have a severe impact on the clustering result [MLHO09]: basic kNN graphs, symmetric KNN
graphs, and mutual kNN graphs.
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Within this paper, we use the following notation: Let U be an arbitrary set and DB C
U, |U| < o be a dataset. A kNN graph consists of nodes corresponding to the points of
a dataset and directed edges from every node to its k nearest neighbors (kNN). The kNN
graph is a directed graph where an edge (p;, p;) from point p; to point p; exists if and only
if p; belongs to the k-neighborhood of p; [HKFO04]:

edges = {(pi,p;) |Vpi,pj € DB:i# jAp;j € kNN(p;)} (D

A symmetric kNN graph has a higher connectivity than the KNN graph: it is an undirected
graph where an edge (p;, p;) from point p; to point p; exists if p is part of k-neighborhood
of p; or vice versa [HKF04, MHVLO7]:

edges ={(pi,p;) | Vpi,pj € DB:i # j A (p; € KNN(p;) vV pi e KNN(p;)}. (2)

A Mutual k-Nearest Neighbor (MkNN) graph is an undirected graph, where edges
exist between two points p; and p; if both points belong to each other’s k-neighborhood
[Br97, HKF04]:

edges = {(pi,p;) |Vpi,pj € DB:i# jAp; e kKNN(p;) Ap;j € KNN(p))}. (3)

The RKNN graph connects points to their reverse nearest neighbors, i.e., its adjacency
matrix is the transpose of the adjacency matrix of the corresponding kNN graph. A point p
is a reverse nearest neighbor of a point g, iff ¢ is a nearest neighbor of p.

As we later only delete edges and never add edges, points of a cluster must have a connection
in the graph. Thus, a symmetric kNN graph with its inherent rather high connectivity is
usually suitable for our approach. If users are interested in the most significant clusters or
the core points of a cluster, an MkNN graph can be a good choice [MHVLO07]. Note that
k for MKNN graphs should be higher than for symmetric kNN graphs to ensure a certain
degree of connectivity. Even though we use unweighted graphs for all filters, we save and
reuse the distances calculated in this step if needed.

3.2 Filters

In the following, we introduce filters that can be applied to the kNN graph. Filters are easily
accessible for users of diverse domains and delete different edges depending on the graph’s
properties, as we illustrate with selected example graphs shown in Figure 1.

3.2.1 Edge-Distance Filter (EDF)

Since points that are close to each other and connected by a short edge in the kNN
graph are likely to be in the same cluster, EDF deletes edges longer than a threshold ¢,
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Fig. 1: Application of the Filters. Top: Symmetric kNN graph with k=10 of the original datasets.
Bottom: After filter application. Each connected component, i.e. cluster, is indicated by a different
color.

granting certain reachability for the clusters. The filter considers each connected component
individually, which has two advantages: (1) We can run the filter in parallel on several
connected components to save computation time, and (2) ¢ is not global but can be chosen for
each connected component individually, depending on its edges. This enables maintaining
connected components with different densities, which will later result in clusters. The
threshold ¢ depends on the mean y and standard deviation o of the edge distances in a
connected component, on which the filter is applied, where o is weighted by a parameter
p € Rit = u+p-o. Anempirically good value for p is between 1 and 3. Figure 1(a) shows
an example application of this filter on the Compound dataset. The top image displays the
symmetric kNN graph with k=10 on the original dataset, which is the input for this filter.
The bottom figure displays the result after applying EDF with p=2 where several unwanted
edges have been removed correctly. The filter runs with a complexity of O (m) where m is
the number of edges. Note that the distances between all points can be reused from the KNN
graph generation.

3.2.2 Edge-Betweenness Filter (EBF)

This filter is based on the Girvan-Newman algorithm and uses the edge betweenness measure
to identify and reduce inter-community connections. It works on the assumption that loosely
connected components belong to different clusters. This filter iteratively removes the edges
with the highest edge betweenness, where i is the number of iterations and p is the number
of edges to delete. As smaller clusters have fewer paths connecting all nodes than larger
clusters, misclassification, i.e., deleting wrong edges, has a higher impact on them. To
overcome this, we make our filter more restrictive, i.e., we scale the number of removed
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edges per iteration by the total number of edges |edges| within a connected component. We
also constrain that in each iteration, a minimum of one edge is deleted. Parameter r is then
defined by: r = max(|edges| - p,1).

Figure 1(b) shows an example application of the edge betweenness filter on the Aggregation
dataset. The input graph on top is generated with k£ = 10. We set the filter parameters as
follows: i = 5; i.e., five iterations were performed, and p = 0.0075; i.e., 0.75% of the edges
were removed from each connected component in each round. The bottom figure shows the
result after all iterations. The inter-community connections have been detected correctly,
and the initial five connected components have been divided into seven, which fit the ground
truth clusters and are highlighted by different colors.

The original Girvan-Newman algorithm has a worst-case complexity of O(m? - n), where
n is the number of nodes and m is the number of edges. In our modified setting, we can
decrease this complexity. First, instead of performing a full hierarchical clustering down to
every node, we only run the algorithm for i iterations to identify the top inter-community
connections, where i << m. Secondly, originally only one edge is removed in each iteration.
In our case, we increase the number of edges that are deleted in each round to the value of a
parameter r. This way, the user can decide how precise the final result should be. Since
the complexity for one round of the original algorithm is O (m - n), the filter’s application
with 7 rounds has the complexity of O(m - n - i). It is advisable not to apply the filter in the
beginning but rather when the complete dataset is already segmented in several connected
components to reduce the complexity (For example, by first applying a filter with lower
complexity, e.g., the EDF).

3.2.3 Inter-Density Connection Filter (IDCF)

This filter assumes that two points located in regions of different densities also belong to two
different clusters. The sparseness of the neighborhood of a point is defined by the average
distance to its k-nearest-neighbors, which equals to the sparseness estimation presented in
[SRS00] and is used for outlier detection. We call an edge between two nodes with very
different dense neighborhoods inter-density connection. The inter-density connection filter
aims at detecting these edges to classify them as unwanted. The density difference of an
edge is defined as the absolute difference of the sparseness of the two nodes it connects.
If this density difference is higher than a threshold ¢, the edge is classified as unwanted.
Given u as the average of the density difference of all edges, o as its standard derivation
and p as a user-defined parameter to regulate the sensitivity of the filter, the threshold # is
defined as: t = y+ p - 0. Again, the filter is applied to each connected component separately.
The sparseness estimation is made on the basis of the directed kNN graph, but only the
edges which also exist in the current state of the undirected graph will be considered so
that each point has 0 to k considered nearest neighbors. We need the directed graph for
this filter, since edges to outliers, which more likely exist in an undirected graph where
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the outlier only needs to belong either to the kNN or the reverse kNN set, may lead to
misclassification. A connected outlier forces an increase in the sparseness estimation for the
whole connected component and may lead to the deletion of edges between actual cluster
nodes. Nevertheless, we do not have to recompute all kNN relationships since we have
created and saved a directed kNN graph at the graph generation step that contains all KNN
relationships and distances. Figure 1(c) shows an example application of the inter-density
connection filter on a sample from the Compound dataset. On the top, the original input
graph is depicted (symmetric KNN graph with k = 10). On the bottom, the resulting graph
after applying the filter two times with p = 1.5 is shown. The filter can separate the inner,
more dense cluster from the outer data points.

3.2.4 Distance of Incoming Edges Filter (DoIEF)

Similar to the EDF, this filter considers the length of edges. However, unlike the aforemen-
tioned, this filter focuses on each node separately and uses the directed kNN graph. The
filter considers all incoming edges of a node and therefore requires a calculation of the
reverse kNN relationships based on the directed kNN graph in advance. We classify the
incoming edges of a node, i.e., edges connecting nodes of the reverse kNN set of the node,
as unwanted if their length exceeds a threshold 7. The threshold ¢ is defined as: t = u+p - o,
where y is the average edge length, and o is the standard derivation of the edge lengths. This
filter is used for separating outliers or boundary nodes from other connected components.
The intuition behind this filter is that nodes with long edges to their k-nearest neighbor are
likely to be outliers or at least probably not part of the cluster to which that neighbor is
currently connected. We use the incoming edges for this filter because this is more restrictive
than using the outgoing edges. The RkKNN and the kNN relationship are not symmetric,
i.e., every node has the same number of outgoing edges, but not every node has incoming
edges. If we took the outgoing edges, every node in the whole graph would be considered,
including those that do not belong to the kNN set of any other node. However, by taking
the incoming edges, we limit the considered nodes to those that are part of the kNN set of
at least one other node and thus decrease the computational costs and the probability of
deleting wanted edges. Figure 1(d) shows a symmetric KNN graph as input on the top, which
was generated with k = 10 on the Compound dataset. The result after the first application
of the DolEF with p = 2 is shown on the bottom. The illustration shows that the DolEF
deletes edges that connect boundary points of different clusters.

3.3 Combination of Filter Results

We present two different filter strategies: using filters sequentially and using filters in
parallel. The former applies filters consecutively, using results from the previous filter as
input for the next filter. Filters can be applied multiple times, and different types of filters
can be concatenated. As filters are applied on each connected component separately, an
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iterative application of the same filter often leads to better results than a one-time application
with relatively high respectively low threshold values. In the beginning, there might be
only one component connecting all points. Iterative filters can consider different cluster
structures, and the individual clusters can develop selectively. The second strategy embodies
the classical cluster ensemble approach’s central idea, where different clustering algorithms
are performed on the same input, and afterward, a consensus between the different results is
determined. We adopt this idea for our concept by applying different filters in parallel on
the same input graph. Each filter determines independently which edges should be deleted.
Afterward, a common consensus is determined, which can be chosen conservatively, e.g.,
all filters must agree to the deletion of an edge to ensure a safe deletion within the final
result, or progressively, e.g., only 50% of filters need to propose the deletion of an edge to
result in a deletion within the final result. Cluster Flow is designed so that the two strategies
can be easily combined.

3.4 Concept Overview and Discussion

Figure 2 abstracts a possible manifestation of the Cluster Flow architecture. A gray box
represents an atomic building block (either the initial graph generation step, one of the
proposed filters, or a consensus component). Important is the graph construction at the
beginning, which is the basis for the further procedure. After this mandatory first step, the
user can apply any filter presented in the previous paragraphs. Interaction possibilities to
tweak parameters and visualizations of intermediate results are integrated at each building
block and enable maintaining the overview at all times. The red, solid framed box indicates
a sequential filter chain, while the blue dotted framed box shows a parallel filter strategy. A
filter always works on the result of the previous building block. Each filter in the parallel
component works on the input from the previous filter independently. Finding a consensus is
also an independent building block that determines how many parallel filters need to agree
upon deleting an edge to delete an edge ultimately. The output of the consensus-building
block results in a subsequent filter’s input, if one is applied, or in this case, as the final result.
We also want to emphasize that the modular design allows storing intermediate results that
do not require recalculation whenever a subsequent filter is updated. With this, it is possible
to try out different parameters without starting from the bottom. The user experience greatly
benefits from this architecture. The experiments were not runtime optimized, but a single
filter’s execution is in the millisecond to second range for the tested datasets. A significant
advantage of our concept is its great flexibility, but in some sense, it might also be challenging
to find a good way to start. We recommend relying on a filter-refinement-like strategy to
start with a fast, non-exact deletion of edges and go over to more costly fine-tuning. The
EDF is the most simple filter in our repertoire and is also runtime-efficient. Though it does
not delete edges between, e.g., clusters of different densities like IDCF, it is a perfect start to
delete many unnecessary edges without complex computations, allowing additional filters
to work on a fraction of the original edges. The EBF is the most complicated filter, which
is well suited to be applied at the end as a refinement step. The combination of filters is
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a good strategy for either the start or the end, depending on the goal of the clustering. If
a conservative approach is generally preferred, the combination of filters can be applied
initially, which, depending on the consensus function, deletes only obviously unwanted
edges to prevent premature deletion of edges. However, the combination is also suitable to
serve as a refinement step.
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Fig. 2: Design concept of Cluster Flow.

4 Interactive Clustering with Cluster Flow

Due to the modular character and the step-by-step application of the filters, Cluster Flow is
well suited for interactive clustering. As a proof of concept, we implemented a lightweight
tool that provides a simple interface for loading datasets in CSV format, creating and saving
individual projects. Within each project, it is possible to add filters, either at each step for
the sequential case or several filters included in one step for the parallel case. One step is
represented by a tile containing one or more inner cards, which offer a visualization of
the current result on the left and configuration options on the right. For simplicity, each
card offers the option to visualize the current result graph within a 2D view, a 3D view,
or to apply PCA decomposition [Pe01] for dimensionality reduction. The first step within
a project is always the kNN graph generation. Here users can choose the graph type, i.e.,
symmetric or mutual, and the value for k. Users can attach filters to form a chain in which
each filter is executed one after another. Each filter step can be executed and adjusted
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Tab. 1: Evaluation datasets with number of clusters ¢ and number of dimensions d.

Set 1 (Gaussian) Set 2 (Non-Convex) Set 3 (Mixture)
Name cd Size‘Name cd Size‘Name c d Size
Cassini3 3 2 1000|Two Moons® 2 2 300|Aggregation[GMTO07]* 7 2 788
Cuboids3 4 3 1002 | Donutcurves® 4 2 1000 |Compound[Za71]4 6 2 399
Hypercube3 8 3 800|Long23 2 2 1000 | Pathbased[CYO08]* 32 300
Cure-t0-2000n-2D3 3 2 2000|Dartboard1®> 4 2 1000 |Lsun3 3 2 400
Pmf3 5 3 649 |Donut33 3 2 999|Spiralsquare? 6 2 1500
Twenty3 20 2 1000 |Smile23 4 2 1000 | Longsquare? 6 2 900
Twodiamonds3 2 2 800|Zelnik13 3 2 299|Dpc? 6 2 1000
Spherical_4_33 4 3 400|Zelnik53 4 2 512|Target? 62 770
Zelnik43 5 2 622|Jain[JLOS]* 2 2 373|RI1_complete’ 4 2 600
R15[VRBO2]# 15 2 600 |Spiral[CY08]* 3 2 312 |Mouse® 4 2 500

separately, allowing a high degree of transparency and intervention. However, if a previous
filter parameter has been changed so that the resulting KNN graph changes, all subsequent
filters are recalculated because their input has changed. A traffic-light system indicates
the status of computations. The tool is a local web application written in Python, so it is
platform-independent. We used Flask! as web framework and SQLite? for the database.
Figure 3 shows an example screenshot of the interactive tool. Our prototype can reuse
already computed values when chaining filters as far as possible to prevent the calculation
costs from increasing proportionally per added filter and ensure a pleasant, smooth usage. It
fulfills all criteria of [VPRS11] explained in Section 2: (1) robustness, (2) consistency, (3)
novelty, and (4) stability. (1) Cluster Flow is robust, i.e., the ensemble is on average better
than its single components. Especially when looking at complex datasets with diverse types
of clusters, the superiority of combining several filters becomes obvious. (2) Since Cluster
Flow’s consensus strategies are simple operations on sets or majority votes, results are
comprehensibly similar to their components’ results. (3) The combination of filters produces
novel results, which cannot be achieved by a single filter since there are datasets for which
one filter cannot delete all necessary edges for correct clustering, even though another one
could. E.g., datasets containing clusters of different densities and clusters connected by a
chain. Combining both can lead to a perfect result. (4) Using an adequate consensus strategy
reduces the sensitivity regarding noise and outliers.

1 https://palletsprojects.com/p/flask/

2 https://www.sqlite.org/index.html

3 https://github.com/deric/clustering-benchmark/tree/master/src/main/resources/datasets/
artificial

4 http://cs.joensuu.fi/sipu/datasets/

5 https://github.com/wahlflo/Datasets

¢ https://elki-project.github.io/datasets/
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Fig. 3: Screenshot of the prototypical interactive clustering tool. The top row contains parallel filters
where the green frame indicates that the calculation has been finished. The bottom row shows a single
sequential filter, which is still working.
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Tab. 2: Parameter settings used for Cluster Flow.

Parameter Description Range PFC1 PFC2
graph_type Type of the generated graph. [symmetric, mutual] symmetric symmetric
k Number of nearest neighbors. [10, 12, 14] 14 14
EDFp Parameter p of the EDF. [1.5,2,2.5,3] 3 2.5
DolEF , Parameter p of the DolEF. [1.5,2,2.5,3] - 1.5
IDCF ), Parameter p of the IDCF. [2,3,4,5] - 5
EBF ) Parameter p of the EBF. [0.0025, 0.005, 0.0075] 0.0075 0.0075
EBF; Number of iterations of the EBF. [0,1,2,3,5,7,9] 7 7
Consensus,  Number of filters to agree upon deletion. [2, 3] - 2

5 Experiments

5.1 Datasets

We evaluate Cluster Flow on 30 publicly available clustering benchmark datasets as
described in Table 1. We grouped them into three groups based on the type of clusters they
contain: In the first set, data sets contain Gaussian-like clusters, in the second set, they
contain non-convex clusters, and in the third set, they contain a mixture of different types.
Additionally, we evaluate on several high dimensional datasets taken from [FS18] and first
introduced by [FVHO06]. These all have 16 clusters and 1024 points, their dimensionality is
d € [32,64,128,256,512], and they are called dim032, dim064, dim128, etc.

5.2 Baseline

We want to evaluate our approach on an objective basis. For this, we compare our concept
with relevant graph-based methods and other established clustering methods. More precisely,
we evaluated using the following methods and performed a grid search on the corresponding
parameter settings:

° k-means [LI82]: kx—means: {¢ =2, ..., ¢c+2}7

. CHAMELEON: k: [5, 10, 15], MinSize: [2%, 3%], a: [1.5, 2.0, 2.5]

. MKNN clustering: k: {3,4, ...,20}

. Rock [BKS19]: tmax: [10, 15, 20]

. DBSCAN [Es96]: MinPoints: {2,3,...,15}, €: {0.01,0.02, ..., 0.4}

° Spectral clustering [VLO7]: kgpnn: {10, 15}, kk—means: {¢ =2, ..., c+2}7

7 ¢ stands for the number of ground truth clusters
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5.3 (Predefined) Filter Cascades

An essential characteristic of Cluster Flow is its high level of flexibility. To ensure better
reproducibility and comparability, we here describe filter cascades, which consist of a
defined filter composition. The first filter cascade (F'C/) solely relies on the sequential
strategy and incorporates the EDF and the EBF. The EDF is applied repeatedly until no
edges are newly classified as unwanted. After that, the EBF is applied multiple times.

The second filter cascade (FC2) relies on a combination of the sequential and the parallel
strategy. The EDF, DolEF and the IDCF are applied in parallel on the same input dataset.
An edge is classified as unwanted if, at minimum, two of the three filters classified it as
such. Afterward, the EBF filter is applied multiple times. To make our concept as simple
as possible and to obviate time-consuming parameter searches, we also tested both filter
cascades with constant, predefined parameters over differently structured data sets, i.e., in a
fully automatic setting without user interaction. Table 2 summarizes the tested parameters
and their ranges in general as well as the fixed hyper-parameters for the predefined filter
cascades (PFCI1, PFC2) that were used in the subsequent analysis. Figure 4 shows the
construction of PFC1 and PFC2 for a better understanding. These two filter cascades follow
different goals. PFC1 is a more progressive approach that tries to remove many edges
directly from the beginning. The EDF is a good choice for this, as the focus is solely on
the distance between two edges without considering the neighborhood. It is also one of
the simplest and fastest filters we propose and thus serves as a good first filter to delete
the most obvious edges. The EBF is more complex but also more powerful since it can
detect bridges between communities. This filter takes more runtime than the other filters,
and we recommend applying it towards the end where a refinement is needed. FC1 could
also be seen as a filter-refinement procedure, where the EDF deletes the most obvious
edges fast, and the EBF fine-tunes the result. PFC2, in contrast, is more conservatively
constructed; that is, in case of doubt, an edge is rather not deleted so as not to cause clusters
to decay prematurely. The parallel building block in the beginning only deletes an edge if
the majority of the three filters agrees upon it to give a more reliable result. The powerful
EBF is then used again for fine-tuning the result. In terms of objective evaluation, PFC1
often performs better, but for sensitive applications where the dataset must not be split up in
too many clusters too fast, PFC2 is a good option.

5.4 Performance with varying parameters

The left part of Table 3 shows the average F1-scores of all evaluated clustering algorithms
for each of the combined sets and for all 30 data sets, whereby we allowed different
hyperparameter values for each experiment, to achieve the best possible results at the dataset
level. The algorithms are sorted in descending order by their total average performance. To
show the importance of the filters, we have evaluated the performance of the KNN graph with
different values for k without any filters (CF in the table). FC1, DBSCAN, FC2, and MKNN
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Fig. 4: Structure of predefined filter cascades 1 (PFC1) and 2 (PFC2).

Tab. 3: AVG F1-Score of Cluster Flow compared to the baseline. Left: Performance of all methods
with varying parameters. Right: Performance of the best baseline algorithms, PFC1 and PFC2 with
constant parameters.

Changing Parameters

Constant Parameters

Algorithm ‘ Setl Set2 Set3  AVG total H Algorithm ‘ AVG total
FC1 09972 0.9985 0.9754 0.9902 || PFCI 0.995
DBSCAN 0.9967 0.9999 0.9716 0.9894 || DBSCAN 0.828
FC2 0.9967 0.9938  0.9599 0.9834 || PFC2 0.931
MKNN 0.9494  0.9990 0.9029 0.9504 || MKNN 0.904
CF (no filters) 0.9224  0.9993 0.7979 0.9065
CHAMELEON | 0.8793  0.8377  0.8401 0.8519
Spectral 0.9605 0.6857 0.8153 0.8205
k-means 0.9360 0.6505 0.7407 0.7757
Rock 0.6935 0.6124  0.7326 0.6795

based clustering achieved the best results. On ser2, MKNN performed a little bit better
than the kNN clustering approaches. On the other two sets, FC1 and FC2 outperformed
the MKNN clustering significantly. In total, FC1 achieved the best results with an average
F1-score of 0.990, while DBSCAN came second with 0.989. However, FC1, FC2, and
DBSCAN achieved very similar results on all sets apart from small fluctuations. DBSCAN
is known to perform well on many of the selected sets. The goal here was to reveal that
Cluster Flow consistently delivers better or equally strong results, even on data sets with
distributions predestined for DBSCAN or other competitors. However, we also want to
explicitly point out situations where our approach significantly outperforms DBSCAN, i.e.,
identifying clusters with varying densities. Therefore regard Figure 5: (a) shows the best
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Fig. 5: Qualitative example where PFC1 outperforms DBSCAN as it is able to detect clusters of
varying densities.

clustering result of DBSCAN after testing different parameter settings and (b) shows the
clustering result of the fully automatically PFC1 on a self created dataset® with varying
densities.

5.5 Performance while maintaining constant parameters

In the previous analysis, we explicitly determined the optimal parameters for each algorithm
and data set individually to achieve the best possible result. However, choosing the right
parameters is a laborious and time-consuming task, especially for laymen, since the optimal
hyperparameters can vary significantly from dataset to dataset. Thus, we evaluated the
performance when using the same parameter settings for all 30 low dimensional data sets.
As baseline we used DBSCAN (e = 0.08, MinPoints = 3) and MKNN (k = 10), as these
gave the best results in the upper analysis. The right side of Table 3 summarizes the achieved
results of each algorithm constraint to not changing parameters across all 30 benchmark
datasets. Here, PFC1 and PFC2 outperformed the other algorithms. These results show the
potential of predefined filter cascades in general and that PFC1 and PFC2 are well-suited to
obtain a useful clustering without adjusting the parameters, especially without knowing
the type or the distribution of the data in advance. Most algorithms only work for specific
shapes and distributions of clusters but then fail for other cluster forms. In the real world,
however, data distribution is not known in advance, so it is of great importance to offer
clustering algorithms that can achieve consistently good results regardless of the distribution
and shape of the clusters without having to tweak the hyperparameters. While PFC1 is
more progressive in that it deletes all edges considered unwanted, PFC2 offers a more

8 Dataset different_density on https://github.com/wahlflo/Datasets
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conservative approach, where a certain percentage of filters must share a consensus to force
the deletion of edges.

We also performed experiments on the previously described high-dimensional datasets
dim032, dim064, etc., which consist of well-separated, randomly sampled Gaussian clusters.
In total, the F1-scores of PFC1 (0.96, 0.93, 0.95, 0.97, 0.97) were slightly better or equal to
the scores of PF2 (0.95, 0.93, 0.94, 0.94, 0.93). In general, both showed consistently good
results.

6 Conclusion

We developed Cluster Flow, a new advanced concept to cluster data based on kNN
graphs. Our approach’s key components are modularity, which is also the key for offering
intermediate interaction stages, explainability, and simultaneously identifying various cluster
shapes. Experiments on more than 30 benchmark datasets show that the proposed technique
consistently achieves superior results when used interactively, i.e., varying parameters for
different datasets. On top of that, even not seen in an interactive context, the predefined filter
cascades PFC1 and PFC2 can be used as entirely autonomous clustering algorithms that work
fully automatically and achieved remarkable results over various experiments. Non-convex
clusters are found as well as clusters of varying density. The easy to understand concept
allows researchers from all areas with no previous knowledge in clustering to explore, cluster,
and understand the data in depth. Hence, we have shown an efficient clustering concept that
can successfully find diverse clusters and is highly understandable. As the focus of this
paper is developing a concept of how to compose easy steps so that laymen can understand
what their clustering and results mean, we leave a user study for an even more beautiful
visualization and potentially better usability for future work. Additionally, in future work,
one could integrate other data types than numerical data and investigate further filter and
combination methods. Another goal is to generate branches within the interactive clustering
workflow, i.e., to work with several independent intermediate states in parallel or use a
change history. To further support the user in the decision process metadata of the nodes or
other interesting properties could be displayed. Of course, current acceleration methods
like accelerating the kNN graph computation [CLR20] could be integrated, too. For high
dimensional data, kNN could be computed according to the subspace importance [Ba04].
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When Bears get Machine Support: Applying Machine
Learning Models to Scalable DataFrames with Grizzly
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Abstract: The popular Python Pandas framework provides an easy-to-use DataFrame API that

enables a broad range of users to analyze their data. However, Pandas faces severe scalability issues in

terms of runtime and memory consumption, limiting the usability of the framework. In this paper

we present Grizzly, a replacement for Python Pandas. Instead of bringing data to the operators

like Pandas, Grizzly ships program complexity to database systems by transpiling the DataFrame

API to SQL code. Additionally, Grizzly offers user-friendly support for combining different data

sources, user-defined functions, and applying Machine Learning models directly inside the database

system. Our evaluation shows that Grizzly significantly outperforms Pandas as well as state-of-the-art
frameworks for distributed Python processing in several use cases.

1 Introduction

Python has become one of the most widely used programming language for Data Science
and Machine Learning. According to the TIOBE index the languages popularity has steadily
grown and was awarded language of the year in 2007, 2010, and 20183. The popularity
obviously comes from its easy-to-learn syntax which allows rapid prototyping and fast
time-to-insight in data analytics.

Python’s success is also founded in the vast amount of libraries that help developers in
their tasks. Nowadays, the most popular framework for loading, processing, and analyzing
data is the Pandas library. Pandas had a huge success as it has connectors to read data in
different file formats and represents it in a unified DataFrame abstraction. The DataFrame
implementation keeps data in memory and comes with a variety of operators to filter,
transform, join the DataFrames or executing different kinds of analytical operations on the
data. However, the in-memory processing of Pandas comes with serious limitations and
drawbacks:

e Data sizes are limited to the main memory capacity of the client machine, as there is
no way of automatic disk-spilling and buffer management as found in almost every
database systems.

! Technische Universitit Ilmenau, Germany, steffen.klaecbe @tu-ilmenau.de
2 Technische Universitiit Ilmenau, Germany, stefan.hagedorn @tu-ilmenau.de
3 https://wuw.tiobe.com/tiobe-index/python/, October 2020

E©®O® doi:10.18420/btw2021-10


https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-10

196 Steffen Klébe, Stefan Hagedorn

e Even if the data to process resides in a database system on a powerful server, Pandas
will load all data onto the data scientist’s computer for processing. This is not only
time consuming, but one can also assume that a companies sales table will quickly
become larger than the memory of the data scientist’s work station.

o Operations on a Pandas DataFrame often create copies of the DataFrame instead of
performing the operation in place, occupying additional precious and limited memory.

In order to solve the memory problems, many users try to implement their own buffer
manager and data partitioning strategies to only load parts of the original input file. However,
we believe that scientists trying to find answers in the data should not be bothered with data
management and optimization tasks, but this should rather be addressed by the storage and
processing system.

Besides data analytics, Machine Learning models have become more and more popular
during recent years. There are numerous frameworks for Python to create, train, and
apply artificial neural network models on some input data. Often, these Machine Learning
frameworks directly support Pandas DataFrames as input data. However, the programming
effort to apply these models to data situated in arbitrary sources is high and not all
users trained the models themselves, but want to use existing pre-trained models in their
applications. This use case is therefore also of high importance in the field of data analytics,
but not yet integrated into Pandas in an easy-to-use way.

Contribution In this paper we present our Grizzly* framework, which provides a
DataFrame API similar to Python Pandas, but instead of shipping the data to the program,
the program is shipped to where the data resides.

In [Hag20] we sketched our initial idea of the Grizzly framework, a transpiler to generate
SQL queries from a Pandas-like API. We argue that for many scenarios data is already
stored in a (relational) database and used for different applications. Therefore, analysts
using this data should neither be bothered with learning SQL to access this data nor with
implementing buffer management strategies to be able to process this data with Pandas in
Python. In this paper we present an extension to the initial overview in [HK21] by providing
API extensions and make the following contributions:

e We present a framework that provides a DataFrame API similar to Pandas and
transpiles the operations into SQL queries, moving program complexity to the
optimized environment of a DBMS.

e The framework is capable of processing external files directly in the database by
automatically generating code to use DBMS specific external data source providers.
This especially enables the user to join files with the existing data in the database
directly in the DBMS.

4 Available on GitHub: https://github.com/dbis-ilm/grizzly
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o User-defined functions (UDFs) are also shipped to the DBMS by exploiting the
support of the Python language for stored procedures of different database systems.
By automatically generating the UDF code to apply the models to the data, Grizzly
enables users to apply already trained Machine Learning models, e.g., for classification
or text analysis to the data inside the database in a scalable way.

The remainder of the paper is organized as follows: We discuss related work and compare
existing systems with a Pandas-like DataFrame API in Section 2. In Section 3 we present the
architecture of our Grizzly framework as well as the transpilation of DataFrame operations
to SQL code. Afterwards the important features of Grizzly are explained in detail, namely
the external data source support in Section 4, the UDF support in Section 5 and the model
join feature in Section 6. We evaluate the performance impact and scalability of Grizzly in
Section 7 before concluding in Section 8.

2 Related work

There have been several systems proposed to translate user programs into SQL. The RIOT
project [ZHYO09] proposed the RIOT-DB to execute R programs 1/O efficiently using a
relational database. RIOT can be loaded into an R program as a package and provides new
data types to be used, such as vectors, matrices, and arrays. Internally objects of these types
are represented as views in the underlying relational database system. This way, operations
on such objects are operations on views which the database system eventually optimizes
and executes. Another project to perform Python operations as in-database analytics is
AIDA [DDK18], but focuses mainly on linear algebra with NumPy as an extension besides
relational algebra. The AIDA client API connects to the AIDA server process running in the
embedded Python interpreter inside the DBMS (MonetDB) to send the program and retrieve
the results. AIDA uses its TabularData abstraction for data representation which also serves
to encapsulate the Remote Method Invocation of the client-server communication.

Several projects have been proposed to overcome the scalability and performance issues
in the Pandas framework. These projects can be categorized by their basic approaches of
optimizing the Python execution or transpiling the Pandas programs into other languages.
Modin [Pet+20] is the state-of-the-art system for the Python optimization approach. By
offering the same API as Pandas, it can be used as a drop-in-replacement. In order to
accelerate the Python execution, it transparently partitions the DataFrames and compiles
queries to be executed on Ray [Mor+18] or Dask3, two execution engines for parallel and
distributed execution of Python programs. Additionally, Modin supports memory-spillover,
so (intermediate) DataFrames may exceed main memory limits and are spilled to persistent
memory. This solves the memory limitation problem of Pandas. However, Modin also uses
eager execution like Pandas and still requires the client machine to consist of powerful
hardware, since data from within a database system is fetched onto the client, too.

Shttps://wuw.dask.org/
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In the field of systems that use the transpiling approach, Koalas® brings the Pandas API
to the distributed spark environment using PySpark. It uses lazy evaluation and relies on
Pandas UDFs for transpiling. The creators of the Pandas framework also tackle the problem
of the eager client side execution in IBIS?. IBIS collects operations and converts them into
a (sequence of) SQL queries. Additionally, IBIS can connect to several (remote) sources
and is able to run UDFs for Impala or Google BigQuery as a backend. Though, tables from
two different sources, such as different databases, cannot be joined within an IBIS program.
With a slightly modified API, AFrame [SC19] transpiles Pandas code into SQL++ queries
to be executed in AsterixDB. In contrast, in Grizzly we produce standard SQL which can be
executed by any SQL engine and use templates provided in a configuration file to account
for vendor-specific dialects.

An approach to integrate Machine Learning into columnar database systems was proposed
in [Raa+18]. The approach uses handcrafted Python UDFs to train the model inside the
database, store the model as a DBMS-specific internal serialized object and apply the
model by deserializing it again. In comparison, Grizzly supports pre-trained, portable model
formats, automatically generates code to apply the models and also introduces a caching
approach to cache the model, which reduces the loading (or deserialization) overhead and is
therefore of major importance for deep and complex neural networks.

The main features of the presented systems are compared to Grizzly in Tab. 1. Grizzly
also uses the approach of transpiling Python code to SQL, making it independent from the
actual backend system and therefore being more generic than Koalas or AFrame. Similar
to the proposed systems, Grizzly provides an API similar to the Pandas DataFrame API
with the goal to abstract from the underlying execution engine. However, Grizzly extends
this API with two main features that clearly separates it from the other systems. First, it
provides in-DBMS support for external files. This enables server-side joins of different
data sources, e.g. database tables and flat files. As a consequence, performance increases
significantly for these use cases compared to the client-side join of the sources that would be
necessary in the other systems. Additionally, the result of the server-side join remains in the
database, enabling subsequent operations to be also executed in the DBMS instead of the
client machine. Second, Grizzly offers an easy-to-use API for applying Machine Learning
models directly in the DBMS. Compared to the other systems where this feature could be
simulated by handcrafting UDF code to apply the model on the client side, Grizzly exploits
the UDF feature of DBMS and automatically generates code to cache the loaded model in
memory and apply the pre-trained models directly on the server side. Furthermore, applying
the model requires several (Python) functions, which can only be realized non-optimally
using handcrafted UDFs. Again, as results remain in the DBMS, subsequent operations can
be executed efficiently by the DBMS before returning the result to the client. Besides the
performance aspect, this feature makes it significantly easier to apply Machine Learning
models to the data compared to handcrafted UDFs.

Shttps://www.github.com/databricks/koalas
7http://ibis-project.org/
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Modin Koalas IBIS AFrame Grizzly
Approach  Python Transpiling Transpiling Transpiling Transpiling
optimization
Backends Ray, Dask Spark Arbitrary AsterixDB Arbitrary
DBMS with DBMS with
SQL-API SQL-API
Query Eager Lazy Lazy Lazy Lazy
Evaluation
UDF On local Over In-DBMS In-DBMS In-DBMS
Support Pandas Pandas UDFs  execution for  execution for  execution for
DataFrames Impala and AsterixDB Postgres and
BigQuery Vector
Ext. File Read to Read to Read to Read to In-DBMS
Support DataFrame DataFrame DataFrame DataFrame support using
ext. tables/
foreign data
wrappers
ML Model Handcrafted  Handcrafted Handcrafted ~ API for API for
Support UDFs UDFs UDFs Scikit models ~ ONNX,
Tensorflow,
PyTorch

Tab. 1: Comparison of available systems with Pandas-like API.

3 Architecture

There are two major paradigms of data processing: data shipping and query shipping [Kos00].
While in the data shipping paradigm, as found in Pandas, the possibly large amount of
data is transferred from the storage node to the processing node, in query shipping the
query/program is transferred to where the data resides. The latter is found in DBMSs, but
also in Big Data frameworks such as Apache Spark and Hadoop.

In this section we discuss the architecture of our Grizzly framework which is designed to
maintain the ease-of-use of the data shipping paradigm in combination with the scalability
of the query shipping approach. Grizzly is available as Open Source and in its core it consists
of a DataFrame implementation and a Python-to-SQL transpiler. It is intended to solve the
scalability issues of Pandas by transforming a sequence of operations on DataFrames into
a SQL query that is executed by a DBMS. However, we would like to emphasize that the
code generation and execution is realized using a plug-in design so that code generator for
other languages than SQL or execution engines other than relational DBMSs (e.g., Spark or
NoSQL systems) can be implemented and used. In the following, we show how SQL code
generation is realized using a mapping between DataFrames and relational algebra.

Figure 1 shows the general (internal) workflow of Grizzly. As in Pandas, the core data
structure is a DataFrame that encapsulates operations to compute result data. However,
in Grizzly a DataFrame is only a hull and it does not contain the actual data. Rather,
the operations on a DataFrame only create specific instances of DataFrames, such as
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Fig. 1: Overview of Grizzly’s architecture.

ProjectionDataFrame or FilterDataFrame, to track the operations. A DataFrame
instance stores all necessary information required for its operation as well as the reference
to the DataFrame instance(s) from which it was created. This lineage graph basically
represents the operator tree as found in relational algebra. The leaves of this operator tree are
the DataFrames that represent a table (or view) or some external file. Inner nodes represent
transformation operations, such as projections, filters, groupings, or joins, and hence, their
results are DataFrames again. The actual computation of the query result is triggered via
actions, whose results are directly needed in the client program, e.g., aggregation functions
which are not called in the context of group by clause. To view the result of queries that
do not use aggregation, special actions such as print or show are available to manually
trigger the computation.

Building the lineage graph of DataFrame modifications, i.e., the operator tree, follows
the design goal of lazy evaluation behavior as it is also found in the RDDs in Apache
Spark [Zah+12]. When an action is encountered in a program, the operator tree is traversed,
starting from the DataFrame on which the action was called. While traversing the tree, for
every encountered operation its corresponding SQL expression is constructed as a string
and filled in a SQL template. For this, we apply a mapping of Pandas operations to SQL
statements. This mapping is shown in Table 2. Based on the operator tree, the SQL query
can be constructed in two ways:

1. generate nested sub-queries for every operation on a DataFrame, or

2. incrementally extend a single query for every operation found in the Python program.

In Grizzly we implement variant (1), because variant (2) has the drawback to decide whether
the SQL expression of an operation can be merged into the current query or a sub-query has
to be created. Though, the SQL parser and optimizer in the DBMSs have been implemented
and optimized to recognize such cases. As an example, Figure 2 shows how a Python script
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Python Pandas SQL
Projection df [’A’] SELECT a FROM ...
af[[’A’,’B’]] SELECT a,b FROM ...
Selection df [df[°A°] == x] SELECT * FROM ...WHERE a = x
Join pandas.merge(dfl, df2, SELECT * FROM df1
left_on="x’, right_on=’y’, inner|outer|right|left join df
how=’inner|outer|right|left’) ON dfi.x = df2.y
Grouping df .groupby([’A’,’B’]) SELECT * FROM ...GROUP BY a,b
Sorting df .sort_values(by=[’A’,’B’]) SELECT * FROM ...ORDER BY a,b
Union df1.append(df2) SELECT * FROM df1i
UNION ALL SELECT * FROM df2
Intersection pandas.merge(df1, df2, SELECT * FROM df1
how=’inner’) INTERSECTION SELECT * FROM df2
Aggregation df[’A’].min() SELECT min(a) FROM ...
max () Imean() | count () | sum() max(a)lavg(a)|count(a)|sum(a)
df[’A’] .value_counts() SELECT a, count(a) FROM ...
GROUP BY a
Add column df (’new’] = df[’a’] + df[’b’] SELECT a + b AS new FROM ...

Tab. 2: Basic Pandas DataFrame operations and their corresponding SQL statements.

# load table (t0)
df = grizzly.read_table("tab")
# projection to a,b,c (t1)

df = df[['a','d','c']]

# selection (t2)

df = df[df.a == 3]
# group by b,c (t3)
df = df.groupby(['b’

(a) Source Python code.

(&),
),
E
()

,'c'])

(b) Operator tree.

SELECT t3.b, t3.c FROM (
SELECT * FROM (
SELECT ti1.a, tl.b, tl.c FROM (
SELECT * FROM tab tO
) t1
) t2 WHERE t2.a = 3
) t3 GROUP BY t3.b, t3.c

(c) Produced SQL query.

Fig. 2: Steps for transpiling Python code to a SQL query: The operations on DataFrames (a) are
collected in an intermediate operator tree (b) which is traversed to produce a nested SQL query (c).

is transformed into a SQL query. Although the nested query imposes some overhead to the
optimizer for unnesting in the DBMS and bears the risk that it fails to produce an optimal
query, we believe they are very powerful and mostly well tested, so that it is not worth it
to re-implement such behavior in Grizzly. The generated query is sent to a DBMS using
a user-defined connection object, as it is typically used in Python and specified by PEP
2498, Grizzly produces standard SQL with vendor-specific statements to create functions
or access external data as we will discuss below. The vendor-specific statements are taken
from templates defined in a configuration file. By providing templates for the respective
functions one can easily add support for arbitrary DBMSs. We currently support Actian
Vector and PostgreSQL.

Besides the plain SQL queries, Grizzly needs to produce additional statements in order to

8 https://wuw.python.org/dev/peps/pep-0249/
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set up user-defined functions and connectors to external data sources. If the Python code
uses, e.g., UDFs, this function must be created in the database system before it can be used
in the query. Thus, Grizzly produces a list of so-called pre-queries. A pre-query to create
a UDF is the CREATE FUNCTION statement including the corresponding function name,
input and output parameters as well as the function body of course. For an external data
source, the pre-query creates the necessary DBMS-specific connection to the data source,
as described in the next section.

One design goal of the Grizzly framework is to serve as a drop-in replacement for Pandas
in the future. Being under active development, we did not yet reach a state of full API
compatibility. For operations that are not supported yet or can not be expressed in SQL, one
might fallback to either Pandas operations by triggering the execution inside the DBMS
and proceed with the intermediate result in Pandas, or exploit the Python UDF feature of
modern DBMS to execute operations as described in Section 5.

4 Support for External Data Sources

In typical data analytics tasks data may be read from various formats. On the one hand,
(relational) database systems are used to store and archive large data sets like company
inventory data or sensor data in [oT applications. On the other hand, data may be created by
hand, exported from operational systems or shared as text files like CSV or JSON. For these
files it is not always necessary, intended or beneficial to import them into a database system
first, as they might be only for temporary usage or need to be analyzed before loading them
into the database. As a consequence, there is a gap between tables stored in a database
system and plain files in the filesystem, and both sources need to be combined. In Pandas,
one would need to read the data from the database as well as the text files and combine them
in main memory. Since it is our goal to shift the complete processing into the DBMS, the
files need to be transferred and imported into the DBMS transparently. In our framework,
we achieve this by using the ability of many modern DBMS to define a table over an external
file as defined in the SQL/MED standard from 2003 [Mel+02].

As an example, PostgreSQL offers foreign data wrappers (FDW) to access external sources
such as files, but also other database systems. A PostgreSQL distribution includes FDWs for,
e.g., CSV files, files in HDFS as well as other relational and non-relational DBMSs. Own
FDWs for other sources can easily be installed as extensions. Internally, the planner uses the
access costs to decide for the best access path, if such information is provided by the FDW.

Besides PostgreSQL, Actian Vector offers the external table feature, which is realized using
the Spark-Vector-Connector®. Here Vector handles external tables as meta data in the catalog
with a reference to a file path in the local filesystem or HDFS. Whenever a query accesses
an external table, Vector exploits the capabilities of Apache Spark to read data efficiently in
parallel, leading to fast scans of external tables.

9 https://github.com/ActianCorp/spark-vector
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In Grizzly, we offer easy-to-use operations to access external data sources. These operations
return a DataFrame object and are the leaves of the operator lineage graph described in
Section 3, similar to ordinary database tables. Here a user has to specify the data types of
the data in the text files as well as the file path. During SQL code generation, a pre-query
is automatically generated that creates the external table/foreign data wrapper for each of
these leaves. As the syntax of these queries might be vendor-specific, we maintain templates
to create an external data source in the configuration file. The pre-queries are then appended
to the pre-query list described in Section 3, so they are ensured to be executed before the
actual analytical query is run. In the actual query, these tables are then referenced using
their temporary names.

An important point to highlight here is that the database server must be able to access the
referenced file. We argue that with network file systems mounts, NAS devices or cloud file
systems this is often the case. Even actively copying the file to the server is not a problem
since such data files are rather small, compared to the amount of data stored in the database.

5 Support for Python UDFs

Another important part of data analytics is data manipulation using user-defined functions.
In pandas, users can create custom functions and apply them to DataFrames using the map
function. Such functions typically perform more or less complex computations to transform
values or combine values of different columns. These UDFs are a major challenge when
transpiling Pandas code to SQL, as their definitions must be read and transferred to the DBMS.
This requires that the Python program containing the Pandas operations can somehow access
the function’s source code definition. In Python, this can be done via reflection tools'©. Most
DBMS support stored procedures and some of them, e.g., PostgreSQL and Actian Vector,
also allow to define them using Python (language PL/Python). This way, functions defined
in Python are processed by Grizzly, transferred to the DBMS and dynamically created as a
(temporary) function. Note that most systems only offer scalar UDFs at the moment, which
produce a single output tuple from a single input tuple. Consequently, Grizzly only supports
this class of functions and does not offer any support for table UDFs, which produce an
output tuple for an arbitrary number of inputs.

The actual realization of the UDF support is hereby different for different DBMS and shows
some limitations that needs to be considered. First, Python UDFs are only available as a
beta version in PostgreSQL and Actian Vector. The main reason for this is that there are
severe security concerns about using the feature, as especially sandboxing a Python process
is difficult. As a consequence, users must have superuser access rights for the database or
demand access to the feature from the administrator in order to use the Python UDF feature.
While this might be a problem in production systems, we argue that this should not be an
issue in the scientific use cases where Python Pandas is usually used for data analytics.

10 Using the inspect module: https://docs.python.org/3/library/inspect.html
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Second, the actual architecture of running Python code in the database differs in the systems.
While some systems start Python processes per-query, other systems keep processes alive
over the system uptime. The per-query approach has the advantage that it offers isolation in
the Python code between queries, which is important for ACID-compliance. As a drawback,
the isolation makes it impossible to cache user-specific data structures in order to use it
in several queries, which is of major importance when designing the model join feature
in Section 6. On the contrary, keeping the Python processes alive allows to cache such a
user context and use it in several queries. However, this approach violates isolation, so UDF
code has to be written carefully to avoid side effects that might impact other queries.

Although the DBMS supports Python as a language for user defined code, SQL is a strictly
typed language whereas Python is not. In order to get type information from the user’s
Python function, we make use of type hints, introduced in Python 3.5. A Python function
using type hints looks like this:

def repeat(n: int, s: str) -> str:
r = nxs # repeat s n times
return r

Such UDFs can be used, e.g., to transform, or in this example case combine, columns using
the map method of a DataFrame:

# apply repeat on every tuple using columns name, num as input
df['repeated'] = df[['num', 'name']] .map(repeat)

Using the type hints and a mapping between Python and SQL types, Grizzly’s code generator
can produce a pre-query to create the function on the server. For PostgreSQL, the generated
code is the following:

CREATE OR REPLACE FUNCTION repeat(n int, s varchar(1024))
RETURNS varchar (1024)

LANGUAGE plpython3u

AS 'r = n*s # repeat s n times

return r'

Currently, we statically map variable-sized Python types to reasonable big SQL types, which
is a real limitation and should be improved in the future. The command to create the function
in the system is vendor-specific and therefore taken from the config file for the selected
DBMS. We then extract the name, input parameters, source code and return type using
Python’s inspect module and use the values to fill the template. The function body is also
copied into the template. Similar to external data sources in Section 4, the generated code is
appended to the pre-query list and executed before the actual query. The map operation is
translated into a SQL projection creating a computed column in the actual query:

SELECT t0.*, repeat(tO.num, tO.name) as repeated
FROM ... tO

As explained above, the previous operation from which df was derived will appear in the
FROM clause of this query.
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6 Machine Learning Model Join

In Grizzly, we expand the API of Python Pandas with the functionality to apply different
types of Machine Learning models to the data. In the following, we name this operation of
applying a model to the data a “model join”. Instead of realizing this over a map-function
in Pandas, which leads to a client-side execution of the model join and therefore faces the
same scalability issues as Pandas, we exploit the recent upcome of user-defined functions
in popular database management systems and realize the model join functionality using
Python UDFs. As a consequence, we achieve a server-side execution of the model join
directly in the database system, allowing automatic parallel and distributed computation.

Note that we talk about the usage of pre-trained models in this section, as database systems
are not optimized for model training. However, applying the model directly in the database
has the advantage that users can make use of the database functionality to efficiently perform
further operations on the model outputs, e.g., grouping or filters. Additionally, users may
use publicly available, pre-trained models for various use cases. For our discussions, we
assume that necessary Python modules are installed and the model files are accessible from
the server running the database system. In the following, we describe the main ideas behind
the model join concept as well as details for the supported model types, their characteristics
and their respective runtime environments, namely PyTorch, Tensorflow, and ONNX.

6.1 Model join concept

Performing a model join on an DataFrame triggers the generation of a pre-query as
described in Section 3, which performs the creation of the respective database UDF. As the
syntax for this operation is vendor-specific, the template is also taken from the configuration
file. The generated code hereby has four major tasks:

1. Load the provided model.

2. Convert incoming tuples to the model input format.

3. Run the model.

4. Convert the model output back to an expected output format.

While steps 2-4 have to be performed for every incoming tuple, the key for an efficient model
join realization is caching the loaded model in order to perform the expensive loading only if
necessary. (Re-)Loading the model is necessary if it is not cached yet or if the model changed.
These cases can be detected by maintaining the name and the timestamp of the model file.
However, such a caching mechanism must be designed carefully under consideration of the
different, vendor-specific Python UDF realizations discussed in Section 5.

We realize the caching mechanism by attaching the loaded model, the model file name and
the model time stamp to a globally available object, e.g., an imported module in the UDF.
The model is loaded only if the global object has no model attribute for the provided model
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file yet or the model has changed, which is detected by comparing the cached timestamp
with the filesystem timestamp. In order to avoid that accessing the filesystem to get the file
modification timestamp is performed for each call of the UDF (and therefore for every tuple),
we introduce a magic number into the UDF. The magic number is randomly generated for
each query by Grizzly and cached in the same way as the model metadata. In the UDF code,
the cached magic number is compared to the magic number passed and only if they differ,
the modification timestamps are compared and the cached magic number is overwritten by
the passed one. As a result, the timestamps are only compared once during a query, reducing
the number of file system accesses to one instead of once-per-tuple. With this mechanism,
we automatically support both Python UDF realizations discussed in Section 5, although
the magic number and timestamp comparisons are not necessary in the per-query approach,
as it is impossible here that the model is cached for the first tuple. We exploit the isolation
violation of the second approach that keeps the Python process alive and carefully design
the model join code to only produce the caching of the model and respective metadata as
intended side effects.

6.2 Model types

Grizzly offers support for PyTorch!!, Tensorflow!? and ONNX® models. All three model
formats have in common, that the user additionally needs to specify model-specific conversion
functions for their usage in order to specify how the expected model input is produced and
the model output should be interpreted. These functions are typically provided together with
the model by creators. With A, B, C, D being lists of data types, the conversion functions
have signatures in_conv : A — B and out_conv : C — D, if the model converts inputs
of type B into outputs of type C. With A and D being set as type hints, the overall UDF
signature can be infered as A — D as described in Section 5. With this, applying a model
to data stored in a database can be done easily and might look like the example in Listing 1.

As the conversion functions are typically provided along with the model, users only need
to write a few lines if code. It is thereby mandatory to specify the input parameter types
of the input_to_model function as well as the output type of the model_to_output
function. In this example, the resulting UDF would have signature str -> str. Running
this example, Grizzly automatically generates the UDF code and triggers its creation in the
DBMS before executing the actual query. The produced query along with the pre-query to

setup the UDFs in PostgreSQL is shown in Listing 2.
The actual code for model application is generated from templates and varies for the different

model types described in the following.

PyTorch The PyTorch library is based on the Torch library, originally written in Lua.
PyTorch was presented by Facebook in 2016 and has gained popularity as it enabled

U https://wwu.pytorch.org/
2 https://www.tensorflow.org/
B https://www.github.com/onnx/
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def input_to_model(a: str):

def model_to_output(a) -> str:

df = grizzly.read_table('tab') # load table

# apply model to every wvalue in column 'col'’

# using provided input and output conversion functions

# store model output in computed column 'classification’

df ['classification'] = df['col'].apply_model("/path/to/model", input_to_model,
< model_to_output)

# group by e.g. predicted classes

df = df.groupby(['classification']).count()

df . show()

Listing 1: Python code of model join example

CREATE OR REPLACE FUNCTION apply_model_123(col varchar(1024))
RETURNS varchar(1024)
LANGUAGE plpython3u AS 'def input_to_model(a: str):

def model_to_output(a) -> str:

#apply model here
' parallel safe;

SELECT t2.classification, count(*) FROM (
SELECT *, apply_model_123(tl.col) as classification FROM (
SELECT * FROM tab tO
) t1
) t2 GROUP BY t2.classification

Listing 2: Generated SQL code of model join example

programs to utilize GPUs and integrate other famous Python libraries. In its core, PyTorch
consists of various libraries for Machine Learning that have different functionality.

A trained model can be saved for later reuse. For saving, two options exist. The first option
is to serialize the complete model to disk. This has the disadvantage that the model class
definition must be available for the runtime when the model is loaded. In Grizzly, this would
mean that users who want to use a pretrained model in their program also need the source
code of the model class. The second option for storing a trained model is to store only the
learned parameters. Although this option is more efficient during deserialization, the user
code must explicitly create an instance of the model class. Thus, the source code of the
model class must be available for the end user. Additionally, in order to instantiate the model
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class, users need to provide initial parameters values to the model’s constructor which may
be unknown and hard to set for inexperienced users.

Besides the challenges for using PyTorch with foreign models, Grizzly allows to load
PyTorch models where only the learned parameters have been stored (option 2 from above).

Tensorflow Tensorflow is a another famous framework for building, training and running
Machine Learning models. Tensorflow models are directed, acyclic graphs (DAGs) that are
statically defined. With placeholder variables attached to nodes of the model graph, inputs
and outputs can be mapped to the graph nodes. A tensorflow.Session object is used as
the main entrance point and allows to run the model after configuring.

During the training phase, arbitrary states of the model graph can be exported as a
checkpoint, which is a serialized format of the graph and its properties. Grizzly supports
these checkpoints as an model type and generates code to restore the model graph as
well as the tensorflow.Session object. However, users have to know the names of
placeholders defined in the model in order to map inputs and outputs to the respective model
nodes. Additionally, users can specify a vocabulary file to translate inputs to an expected
model input format if necessary. As these restrictions require in-depth knowledge about
the model, Grizzly offers additional possibilities to automatically generate the conversion
functions. Nevertheless, this harms the ease-of-use slightly.

Starting with version 2, Tensorflow offers different possibilities to exchange trained models
with the introduction of the Tensorflow Hub* library or support for the Keras!> framework.
In the future, we aim at integrating support for these formats in Grizzly.

ONNX ONNX is a portable and self-contained format for model exchange, that is able to
be executed with different runtime backends like Tensorflow, PyTorch or the onnxruntime’®.
The self-containment and the portability of models makes the ONNX format easy to use,
which meets the design goals of Grizzly. In the generated model code, we rely on the
onnxruntime as execution backend in order to be independent from Tensorflow or PyTorch.
A broad collection of pre-trained models along with their conversion functions is available
in the Model Zoo".

7 Evaluation

In this Section, we compare our proposed Grizzly framework against Pandas version and
Modin, the current state-of-the-art framework for distributed processing of Pandas scripts,
as the other related systems presented in Section 2 do not offer all evaluated features. We
present different experiments for data access as well as applying a machine learning model

“ https://www.tensorflow.org/hub
5https://www.keras.io/

6 https://wuw.github.com/microsoft/onnxruntime
7 https://www.github.com/onnx/models
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Fig. 3: CPU and RAM consumption for Pandas, Modin and our proposed Grizzly framework.

in a model join. Our experiments were run on a server consisting of a Intel(R) Xeon(R) CPU
E5-2630 with 24 threads at 2.30 GHz and 128 GB RAM. This server runs Actian Vector
6.0 in a docker container, Python 3.6 and Pandas 1.1.1. Additionally we used Modin version
0.8 and experimentally configured it to the best of our knowledge, resulting in using Ray as
the backend, 12 cores and out-of-core execution. For fairness, we ran the Pandas/Modin
experiments on the same machine. As this reduces the transfer costs when reading tables
from the database server, this assumption is always in favor of Pandas and Modin.

During our experiments, we discovered a bug in the parallel read_sql implementation of
Modin, which produces wrong results for partitioned databases. The developers confirmed
the issue and planned a fix for the next release. However, we used the parallel read_sql in
order to not penalize Modin in the experiments, not considering the wrong results. This
assumption is therefore also in favor of the Modin results.

7.1 Data access scalability

In this first experiment, we want to prove our initial consideration of Pandas’ bad scalability
with a minimal example use case. We used Actian Vector as the underlying database system
and ran a query that scans data with varying size from a table or a csv file and performs a
min operation on a column to reduce the result size. This way, we can compare the basic
read_sql and read_csv operations of Pandas and Modin against Grizzly.

Figure 3 shows the execution time as well as the memory consumption of the evaluated
query. For sql table access, Pandas shows an enormous runtime, linearly growing to
800 s for a data set size of 5 GB. Modin is significantly faster than Pandas and scales better.
However, Grizzly is able to answer this query in a constant, sub-second runtime, as only the
result has to be transfered to the client instead of the full dataset. Additionally, this query
can be answered by querying small materialized aggregates [Moe98], which are used by
default as an additional index structure in Vector. In comparison to Pandas/Modin, this
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shows that with Grizzly queries can also benefit from index structures and other techniques
to accelerate query processing used in database systems. For csv access, we can observe a
similar behavior of Modin being faster and scaling better than Pandas due to its parallel
read_csv implementation. Grizzly again shows a nearly constant runtime slightly higher
than the sql table access but faster than Modin and Pandas. The main reason for this
is that Grizzly uses the external table feature of Actian Vector, which is based on Apache
Spark. As a consequence, the runtime is composed of the fixed Spark delays like startup or
cleanup [WK15] and a variable runtime for reading the file in parallel. As data sized are
small here, the fixed Spark delays dominate the runtime.

Regarding memory consumption, Pandas again scales very poorly and memory consumption
increases very fast, with the read_sql_table consuming more memory than the read_csv
operation for the same data size. As a result, the memory consumption might exceed the
available RAM of a client machine even for a small dataset size. In comparison, Modin
consumes even more memory than Pandas for read_sql and read_csv respectively,
potentially caused by the multiple worker threads. The memory consumption of Grizzly
is mainly impacted by the result size, which is very small due to the choice of the query.
However, this is only half of the truth, as Grizzly shifts the actual work to the DBMS which
also consumes memory. Nevertheless, modern DBMS are designed for high scalability and
are able to handle out-of-memory cases with buffer eviction strategies in the bufferpool or
disk-spilling operators for database operators with a high memory consumption. Therefore,
this is the ideal environment to run complex queries, as it is not limited to the available
memory of the machine. Note that Modin also supports out-of-memory situations by
disk-spilling. Another advantage of Grizzly is that the DBMS can run on a remote machine
while the actual Grizzly script is executed from a client machine, which is then allowed to
have an arbitrary hardware configuration while still being able to run complex analytics.

7.2 Combining data sources

An important task of data analysis is combining data from different data sources. We
investigated a typical use case, namely joining flat files with existing database tables. We
base our example on the popular TPC-H benchmark dataset [BNE14] on scale factor SF100,
which is a typical sales database and is able to generate inventory data as well as update
sets. We draw the following use case: The daily orders (generated TPC-H update set)
are extracted from the productive system and provided as a flat file. Before loading them
into the database system, a user might want to analyze the data directly by combining
it with the inventory data inside the database. As an example query, we join the daily
orders as a flat file with the customer table (1.5M tuples) from the database and determine
the number of orders per customer market segment using an aggregation. The evaluated
Python scripts are similar except the data access methods. While Pandas and Modin use
(parallel) read_sql and read_csv for table and flat file access, Grizzly uses a read_table
and a read_external_table call. This way, an external table is generated in Actian
Vector, encapsulating the flat file access. Afterwards, the join as well as the aggregation are
processed in the DBMS, and only the result is returned to the client.
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external sources

For the experiment, we varied the number of tuples in the flat files. The runtime results in
Figure 4 show that Grizzly achieves a significantly better runtime than Pandas and Modin.
Additionally, it shows that Pandas and Modin suffer from a bad read_sql performance, as
the runtime is already quite slow for small number of external tuples. Regarding scalability
we can observe that runtime in Pandas grows faster with increasing number of external
tuples than in Grizzly, caused by the fast processing of external tables in Actian Vector.
Overall we can conclude that Grizzly significantly outperforms Python Pandas and Modin
in this experiment and offers the possibility to process significantly larger datasets.

7.3 Model Join

There are various applications and use cases where machine learning models can be
applied. As an example use case, we applied a sentiment analysis to a string column. We
therefore used the IMDB dataset [Maa+11], which contains movie reviews, and applied
the state-of-the-art ROBERTa model [Liu+19] with ONNX. The investigated query applies
the model to the review column and groups on the output sentiment afterwards, counting
positive and negative review sentiments. In Grizzly, we therefore use model join feature
described in Section 6, while we handcrafted the function to apply the model for Modin and
Pandas and invoked the function over the map function on the DataFrames after reading
from the database.

Figure 5 shows the resulting runtimes for different number of review tuples. First, we can
observe that Grizzly significantly outperforms Modin and Pandas in terms of runtime and
scalability. For increasing data size Modin is also significantly faster and scales better
than Pandas, while showing some overhead over Pandas for the very small data sets, as
parallelism here introduces more overhead than benefit. While Modin achieves a speedup
by splitting the DataFrames into partitions and applying the machine learning model in
parallel, Grizzly achieves the performance improvement by applying the model directly
in the database system. In Actian Vector, we used a parallel UDF feature and configured
it for 12 parallel UDF workers, showing the best results for our setup in this experiment.
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Additionally, with the Python implementation of Actian Vector, which keeps the Python
interpreters alive between queries, it is possible to reuse a cached model from a former
query, leading to an additional performance gain of around 5 seconds.

7.4 Resume

In our evaluation, we proved the superiority of our proposed Grizzly framework over Pandas
and Modin, the existing state-of-the-art distributed DataFrame framework. In different
experiments for data access, the combination of different data sources and the application of
pre-trained machine learning models to a dataset we showed that Grizzly has significantly
better query performance as well as scalability, as most operations are executed directly
in the database system. This is reinforced by the fact that query performance benefits
from index structures of the DBMS, while these indexes do not have any impact when
only reading data in a Pandas script and performing operations on the client. Furthermore,
Grizzly enables complex data analysis tasks even on client machines without powerful
hardware by pushing operations towards database servers. Consequently, queries are not
limited to client memory, but are executed inside database systems that are designed to
handle out-of-memory situations.

8 Conclusion

In this paper we presented Grizzly, a scalable and high-performant data analytics framework
that offers a similar DataFrame API like the popular Pandas framework. As Pandas faces
some severe scalability problems in terms of memory consumption and performance, Grizzly
transpiles the easy-to-write Pandas code into SQL in order to push complexity to arbitrary
database systems. This way, query execution is done in a scalable and highly optimized
environment that is able to handle large datasets and complex queries. Additionally, by
pushing queries towards remote database systems, complex analytics can be performed on
client machines without extensive hardware requirements.

We extended the Pandas DataFrame API with several features in order to perform typical
data analytics challenges in an efficient and easy-to-use way. First, Grizzly provides support
for external data sources by exploiting the respective feature of several database systems and
automatically generating code to create necessary tables or wrappers. This way, different
sources like database tables or flat files can be combined and processed directly inside
the DBMS instead of loading them into the client, improving performance and scalability.
Second, Grizzly makes use of the recent upcome of Python user-defined functions in database
systems in order to transparently push the execution of such functions on DataFrames into
the DBMS. Third, applying pre-trained Machine Learning models to data is supported
by Grizzly by automatically generating UDF code for Tensorflow, PyTorch or ONNX
models. Pushing these operations to the database system not only increases performance
and scalability, but also enables efficient processing of further operations on the model
outputs, as they still remain in the database system. This allows a seamless integration of
Machine Learning functionalities towards the vision of ML systems [Rat+19].
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In our evaluation, we compared our proposed Grizzly framework to Pandas and Modin, the
current state-of-the-art framework for distributed execution of Pandas-like DataFrames. In
our experiments on data access scalability, combining different data sources, and applying
Machine Learning models we proved that Grizzly significantly outperforms both systems
while offering higher scalability and an easy-to-use APIL.

For the execution of UDFs and the application of Machine Learning models we rely on the
Python UDF realization of database vendors. Most of them released Python UDFs only
as a beta version until now as they faced security issues as well as performance issues. In
the future, we monitor the development of this feature and aim at actively removing UDF
execution performance as a choke point of query performance.

Additionally, we plan to investigate a different way of handling heterogeneous data sources
in the future. Users may use hybrid warehouse approaches consisting of cloud database
instances as well as on-premise instances to ensure data privacy and data security. This
challenges a frontend framework like Grizzly to query multiple database instances and
combine the results on the client side. In a conceptual view, we plan to extend Grizzly
with an embedded query engine, e.g. DuckDB [RM19] or MonetDBLite [RM18], and a
query optimizer and compare it against existing solutions like the Avalanche hybrid data
warehouse'® or Polystores [Gad+16]. In the query graphs that Grizzly is based on, join
operations between different database instances can then be seen as “pipeline breakers”,
where data needs to be fetched from both join sides and combined locally. Using the query
optimizer, computation effort needs to be pushed into the database instances as much as
possible to reduce intermediate result sizes, transfer costs and the client-side processing
costs.

Grizzly can be used in Jupyter Notebooks, where operations are typically performed
incrementally. This incremental way of computation offers possibilities to further optimize
the Grizzly workflow by, e.g., exploiting materialized views for intermediate results.
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Extended Affinity Propagation Clustering for Multi-source
Entity Resolution

Stefan Lerm! Alieh Saeedi,2 Erhard Rahm?

Abstract: Entity resolution is the data integration task of identifying matching entities (e.g. products,
customers) in one or several data sources. Previous approaches for matching and clustering entities
between multiple (>2) sources either treated the different sources as a single source or assumed that
the individual sources are duplicate-free, so that only matches between sources have to be found.
In this work we propose and evaluate a general Multi-Source Clean Dirty (MSCD) scheme with
an arbitrary combination of clean (duplicate-free) and dirty sources. For this purpose, we extend a
constraint-based clustering algorithm called Affinity Propagation (AP) for entity clustering with clean
and dirty sources (MSCD-AP). We also consider a hierarchical version of it for improved scalability.
Our evaluation considers a full range of datasets containing 0% to 100% of clean sources. We compare
our proposed algorithms with other clustering schemes in terms of both match quality and runtime.
The proposed algorithms outperform previous methods and achieve an excellent precision in MSCD
scenarios.

Keywords: Entity Resolution; Clustering; Affinity Propagation; MSCD-AP

1 Introduction

Entity Resolution (ER), also referred to as record linkage or deduplication, is a main
data integration task. It is used to identify entities, such as specific costumer or product
descriptions, in one or several data sources that refer to the same real-world entity. Most
previous ER approaches focus on finding such matches in either a single source or between
two sources. Multi-source ER aims at finding matching entities in an arbitrary number of
sources which is more challenging than dealing with 1-2 sources since not only the degree
of heterogeneity but also the variance in data quality generally increases with the number of
sources.

There are two main phases for multi-source ER [Ral6, Sal8, Ch19]. First, similar pairs of
entities are determined over all sources as match candidates. These can be recorded in a
similarity graph where each vertex represents an entity and each edge a match relationship
between two entities. Edges may have a similarity score reflecting the match probability. In
the second phase, the matches are determined by a clustering algorithm on the similarity
graph. All matching entities from any source referring to the same real-world entity are
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grouped in one cluster. There are many possible approaches for this entity clustering,
especially the ones that have been proposed for clustering matches in a single source
[Ha09, SPR17]. In the special case of duplicate-free (clean) sources each cluster contains
at most one entity per source so that the cluster size is limited by the number of sources.
Cluster algorithms that utilize this restriction have been shown to achieve better match
quality than the more general approaches [NGR16, SPR18].

In this paper, we investigate a Multi-Source Clean Dirty (MSCD) entity clustering approach
that can utilize clean sources but can also deal with dirty sources so that only a fraction
(possibly 0%) of the sources have to be clean. The goal is to achieve better match quality
than with a general clustering scheme when there are clean sources while avoiding the
limitation of requiring that all sources have to be clean. While one could first deduplicate
dirty sources and then apply a clustering for clean sources, the effort to determine these
source-specific deduplication approaches is immense and perhaps not completely successful.
We experimented with such an approach for a data integration challenge [OSR19] but it
performed worse than matching dirty sources. Consequently, it is more flexible to support a
mix of both dirty and clean sources. For this purpose, we propose extensions to the Affinity
Propagation (AP) clustering approach [FDO7] that converts the problem of clustering into a
constraint optimization problem. Our extension MSCD-AP adds a new constraint to AP to
deal with clean sources. We also consider a hierarchical variation of MSCD-AP for improved
scalability, provide parallel implementations based on Apache Flink and comparatively
evaluate the new approaches.

We make the following contributions:

e We are the first to consider a mix of clean and dirty sources for multi-source
entity resolution and propose an extended version of affinity propagation clustering,
MSCD-AP, for this purpose.

e For improved scalability, we propose a hierarchical variation, MSCD-HAP, and
provide parallel implementations for the clustering schemes based on Apache Flink.

e We perform a comprehensive evaluation of the match quality, runtimes and scalability

of the new approaches for different datasets and compare them with previous clustering
schemes.

After a discussion of related work, we give a brief summary of the standard AP algorithm in
Section 3. Section 4 presents the new clustering method MSCD-AP in detail while Section 5
describes the scalable approach MSCD-HAP. In Section 6 we present our evaluation.

2 Related Work

Entity resolution has been the subject of a large amount of research as can be seen from
many surveys and books such as [Ch12, Ch19, KR10, GM12, Pal9]. For larger datasets it is
imperative to apply blocking techniques to reduce the number of comparisons of entity pairs.
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There are also many ways to determine match candidates, e.g. match rules requiring that a
combined similarity of selected attributes exceed some threshold or supervised approaches
using training data with both matching and non-matching pairs of entities to determine a
match classifier.

This paper focuses on the final step of the ER pipeline, entity clustering on a similarity
graph, to group together all matches of a real-world object. Clustering can improve match
quality over the binary links in the similarity graph as it is possible to transitively infer
additional links or to eliminate links that are unlikely to be correct. There are numerous
approaches for clustering and also for entity clustering. Most previous entity clustering
approaches focus on finding matches in a single (dirty) source. Example approaches include
Connected Components, Center and Merge-Center clustering [HM09], Affinity Propagation
[FDO7], Ricochet clustering [WB09], Markov clustering [VD00] and Correlation clustering
[BBCO04]. [Ha09] comparatively evaluated many of these algorithms for a single source.

In [SPR17] we have shown that these approaches can be adapted for multi-source entity
clustering and we comparatively evaluated several approaches for such a setting. We further
developed new multi-source entity clustering approaches such as CLIP [SPR18], that work
for clean (duplicate-free) data sources and can outperform the more general approaches
for dirty sources. In our evaluation we will compare the new MSCD entity clustering
approaches based on affinity propagation with these previous methods for dirty and clean
sources. The previous clustering approaches including CLIP have been integrated into
the FAMER* framework [Sal8] for multi-source entity resolution, that is used for our
comparative evaluation. All match and clustering approaches in FAMER are implemented
on top of Apache Flink to achieve a parallel entity resolution on a cluster of machines in
order to reduce runtimes and improve scalability to larger datasets.

3 Affinity Propagation Clustering

The Affinity Propagation clustering algorithm [FDO7] groups entities by identifying
exemplars. An exemplar is the entity that best represents all the entities of a cluster. The
non-exemplar entities are assigned to the most appropriate exemplar. The goal of AP is to
find exemplars and cluster assignments in a way that the sum of similarities inside clusters
are maximized.

In [GF09], AP is solved by the iterative max-sum algorithm on a factor graph. The factor
graph is a bipartite graph between the exemplar assignments (variable nodes) and factor
nodes representing two constraints, called the g- and h-constraints. Figure 1a illustrates
such a factor graph for AP. Variable nodes and factor nodes are represented as circles and
rectangles respectively. For clustering n entities, the factor graph is represented by a n?
binary matrix B. The variable b;; has the value 1 if the datapoint (entity) j is the exemplar

4 https://dbs.uni-1leipzig.de/research/projects/object_matching/famer
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Fig. 1: a) Factor graph of AP [AKK19] b) AP clustering example c) Binary matrix d) Oscillation

of i. The factor nodes g; and /; assure a valid clustering by applying the constraints. The
g-constraint enforces that a datapoint has to have exactly one exemplar. It means in each
row of the binary matrix there must be exactly one variable with value 1. The h-constraint
assures that a datapoint selects itself as its exemplar, if it is already chosen as exemplar
by at least one other datapoint. It means, if there exists at least one 1 in a column of the
binary matrix, then the diagonal element b ; of that column must be set to 1 too. The cluster
assignments are based on the similarities between entities so that similarity values are also
represented as factor nodes (factor node s;; provides the similarity information between the
entities i and j).

Figure 1b illustrates an example clustering of AP where five entities 0-4 from three
(differently colored) sources X, Y and Z are grouped in three clusters. The corresponding
output binary matrix in Figure 1c shows that entities 0, 2 and 3 are the exemplars of the
three clusters. As described above, the rows of the binary matrix illustrate the exemplar
(cluster) assignment while the columns depict the clusters. The group of 1 values in column
J represents the entities of the cluster with exemplar j.

AP aims at finding a cluster assignment maximizing the sum of similarities within clusters.
This optimization problem can be formulated with the energy function [AKK19] shown
in Equation (1). Maximizing the function requires to find an optimal configuration of the
variables in B so that the sum of the similarities between entities and their exemplars is
maximized and the two constraints are met. An exact maximization of the energy function
is computationally intractable because a special case of this maximization problem is the
NP-hard k-median problem [FDO7].

E(B) =) sijbij+ ». gi(B(i,2) + Y h;(BC, /) (M
i J

ij
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with
0 it Y by=1
J

—oco  otherwise

) 0 if b;; = max b;;
gi(B(i,:) = o
—oco  otherwise

h;i(B(:, j)) ={

The proposed iterative max-sum algorithm uses several parameters that affect the clustering
result and that deal with the problem of non-convergence. The most important parameter is
called preference. It defines the self-similarity s;; of an entity i. The higher the preference
value is chosen the more likely the entity becomes an exemplar. Parameters to deal with
non-convergence are the noise level and the damping factor A. AP suffers from oscillation
between solutions that are similarly well suited for optimizing the energy function. For
the similarity matrix in the top portion of Figure 1d, the symmetrical similarity values
between entities 0 and 1 make both equally well suited as an exemplar. In such a situation,
AP does not converge and oscillates between the two solutions with either entity O or 1 as
the exemplar as shown in the bottom part of Figure 1d. Oscillation is avoided by adding a
tiny amount of noise to the similarity values. The damping factor has a similar goal and is
related to the used message passing implementation for the iterative computation. It leads to
an adaptation of values exchanged between iterations. If oscillations nevertheless occur, the
preference or the damping factor must be adapted (see next section).

4 MSCD Affinity Propagation

To cluster mixed datasets of clean and dirty sources, we propose an extension to AP called
MSCD-AP. Since clean sources have no duplicates, every cluster should have at most one
entity of a clean source. This is now controlled by an additional clean-source consistency
constraint. It means that in each column of the binary assignment matrix B, value 1 is
allowed for at most one (row) entity of a clean source.

Figure 2a shows a possible clustering of MSCD-AP for the running example when sources
X and Y are clean. There are four source-consistent clusters with at most one entity per
clean source. In the corresponding binary matrix, each column has at most one entity with
value 1 per clean source. For example, the column (cluster) for exemplar entity 1 has two
associated entities (1 and 2) from different sources.

Our proposed clean-source consistency constraint is expressed in Equation (2). It uses
function ¢ to add a large penalty to the extended energy function in Equation (3) when the
constraint is violated. The constraint requires that for a column j the value 1 is allowed for
at most one datapoint from a clean source Q.

0 if Z bij <1
tgj(B(i€Q,j)= i€Q 2
—oco  otherwise
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Figure 2c illustrates the extension of the AP factor graph to cluster our running example
data. For clean sources X and Y, additional factor nodes 7, and ¢, (marked in red and blue)
are added to each column of the binary matrix. The factor node 7, ; assures the clean-source
consistency constraint for source X and column j. It is connected to the variable node b; ;
only if entity i is from data source X. The clean-source constraint may get in conflict with
the h-constraint of AP. The h-constraint enforces a datapoint to choose itself as its own
exemplar, if it is selected by at least one other datapoint. So the diagonal element b ;; of
column j is enforced to be 1, if there is any other 1 in that column. On the other hand,
the clean-source constraint enforces b;; to be 0, if another datapoint of the same clean
source selected it as its exemplar. So the two constraints enforce different values for b ;
and thus the algorithm may struggle to converge. This situation is simply avoided in our
implementation by not having links between entities of the same clean source which is a
default feature of the linking component of FAMER.

For the traditional AP clustering, the max-sum optimization has been implemented by
a message passing algorithm [GF09]. The messages are exchanged between factor and
variable nodes of the factor graph to reflect the mutual dependencies within an iterative
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process. The messages are computed differently depending on whether the recipient node
is a variable node or a factor node. Figure 2b shows the messages exchanged between the
nodes of the new factor graph of MSCD-AP. The grey-colored factor nodes enforce the g
and / constraints while the new factor node # (marked in orange) applies the clean-source
consistency constraint via the 6 and y messages.

We build on the formulae from [Gil2] to update messages for the original constraints and
specify the new message formulas for our MSCD extension. In the max-sum algorithm,
outgoing messages of a variable node summarize all incoming messages to that node, except
of the node to which the new message will be sent. Due to the new constraint, all outgoing
messages from variable nodes to factor nodes are now modified because the new factor
nodes tp; are additional neighbours of b;;. As sum of the incoming messages from the
neighbouring nodes, except of the recipient, the modified messages 8 and p as well as the
new message vy are easily deduced as listed in Equation (4) - (6).

The message formulas from factor nodes to variable nodes do not change in AP when a new
factor node is added. Therefore the incoming messages of @ (eq. (7)) and 7 (eq. (8)) remain
unchanged compared to AP. The new incoming message 6 from the new factor node #¢; is
expressed in Equation (9). The more complex derivation of message 6 from the max-sum
algorithm is given in the appendix. The variable assignments that maximize the energy
function are calculated by Equation (10).

Bij=sij+aij+6ij (4 pij=sij+nij+6i; ) vij=sij+aig+ni; o (6)

| By max(0, pi;) i=j ™
/ min[0, p;; + Ypx i, jy Max(0, px;)] T
nij = _Tf;(ﬁik (8 0;; = min(0, —rilil?([}/k D )
1 ii+pi; >0
bl'j — a’l] le (10)
0 aij+ pij < 0

Algorithm 1 lists the pseudo code of MSCD-AP with focus on the parameter adaptation.
There are several inputs for the algorithm. The clustering problem is defined by the similarity
matrix S and the specification of the clean sources (srclnfo). A denotes the damping
factor. The preference can be set separately for dirty (pairsy) and clean (p¢jean) sources.
Random gaussian noise is added to the similarity values at a decimal position specified by
the noiseLevel. Parameter adaption for the preference values and the damping factor is
done stepwise by stepp,.r and stepamp. The adaptation steps are real values in (0,1] that
are used to increase the original values towards the maximum 1 or decrease them towards 0.
As algorithm output the binary matrix B describes the exemplar assignment of every entity.
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Algorithm 1: MSCD-AP

Input: S, srclnfo, A, pdirty, Pclean, NoiseLevel, steppref, stepgmp
Result: B with exemplar assignments
repeat
initializeMessages();
initializeB(Q);
modifyS(pairty, Pcleans noiseLevel, srclnfo);
for iteration =0 : max do
updateMessages(A);
updateB(Q);
if isConverged() then break;

solutionFound <« isSolutionFound(B);
if ~solutionFound then adaptParameters(step pref,St€Pamp);
until solutionFound,

After the initialization of the messages and output matrix (line 2 and 3) the diagonal elements
sjj of the similarity matrix are set to the defined preference values and noise is added
to all similarity values in line 4. The iterative message passing starts in line 5. In each
iteration, the messages are updated in line 6 according to Equation (4) - (8). Additionally, «
and p messages are damped in order to prevent oscillations. Finally in line 7, the binary
matrix values are updated according to Equation (10). If no changes are observed in the
binary matrix after a specific number of iterations, the algorithm converges and is ended
(line 8). Otherwise it ends after a maximal number of iterations. If the algorithm stops
but the solution is not found yet (line 9 and 10), then it has to be restarted with adapted
parameters. For this purpose, function adaptParameters initially decreases the preference
values by preference adaption step (step p,ey ) until the minimum value 0. If convergence is
still not reached, the preference values are then increased step by step until the maximum 1
is reached. In case of no success, the preference values are reset to their original values and
the damping factor A is now increased by damping adaption step (step g, ). This process
continues until the algorithm finds a valid solution.

5 Scalable MSCD Affinity Propagation

Clustering large datasets is a challenge for AP since its time and memory complexity
grows quadratically with the number of entities and thus the data volume?. Liu et al. [Lil3]
proposed Hierarchical Affinity Propagation (HAP) to make AP suitable for clustering
large-scale datasets. Following a divide and conquer strategy, HAP clusters the dataset by
executing AP several times on different hierarchy levels.

5 In the case of a sparse similarity matrix, the time complexity reduces to N klog (N ) with k being the average
connectivity of the similarity matrix [Zh10].
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Figure 3 illustrates the hierarchical clustering for three levels. In the first (lowest) hierarchy
level, the dataset is randomly divided into equal-sized partitions of maximal size M. Then
AP is executed on each partition, resulting into a set of so called local exemplars for each
partition. In the next hierarchy level, the exemplars of the previous level are merged and
again partitioned. This process is repeated until the input size of a hierarchy level is lower or
equal to M. The execution of AP on the top hierarchy level determines the global exemplars
for the dataset. All non-exemplar entities are assigned to the global exemplar with the
highest similarity. Thus AP is executed once for each partition of each hierarchy level with
a complexity of O(M?).

Unfortunately, applying the hierarchical algorithm for MSCD-AP does not guarantee the
clean-source consistency. This is because, the clustering of local exemplars by MSCD-AP
on intermediate hierarchy levels violates the clean-source consistency when two local
exemplars from a previous level are clustered together although they have associated entities
from the same clean source. A naive solution is to extend each local exemplar with the
source information of the entities assigned to it in the previous hierarchy level. This could
be used in subsequent cluster decisions to avoid that more than one entity of a clean source
is assigned to an exemplar. This approach, however, can lead to poor clustering results. A
bad decision in a lower level of the hierarchy, where an entity of a clean source with a low
similarity is assigned to a local exemplar, can prevent that a much more similar entity from
the respective source is merged at a higher level resulting in poor cluster decisions.

A more promising solution is to assign entities to global exemplars separately for clean
and dirty sources. Initially, HAP is executed using MSCD-AP to determine local and
global exemplars on the partitions. As in HAP, dirty source entities are then assigned to
the exemplars with the highest similarity. By contrast, clean source entities are assigned
using the Hungarian algorithm [Ku55, Mu57]. Given the similarities between these entities
and exemplars, the Hungarian algorithm finds a 1:1 assignment between entities of a clean
source and exemplars (i.e., each exemplar is assigned to at most one entity of a clean source)
so that the overall similarity of all assignments is maximized. If the number of entities
from a clean source exceed