
cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 107

GenBenchDroid: Fuzzing Android Taint Analysis
Benchmarks

Stefan Schott1, Felix Pauck2

Abstract: The conventional approach of assessing the performance of Android taint analysis tools
consists of applying the tool to already existing benchmarks and calculating its performance on
the contained benchmark cases. Creating and maintaining a benchmark requires a lot of effort,
since it needs to comprise various analysis challenges, and since each benchmark case needs a well
documented ground-truth — otherwise one cannot know whether a tool’s analysis is accurate. This
effort is further increased by the frequently changing Android API. All these factors lead to the same,
usually manually created, benchmarks being reused over and over again. In consequence analysis tools
are often over-adapted to these benchmarks.

To overcome these issues we propose the concept of benchmark fuzzing, which allows the generation
of previously unknown and unique benchmarks, alongside their ground-truths, at evaluation time. We
implement this approach in our tool GenBenchDroid and additionally show that we are able to find
analysis faults that remain uncovered when solely relying on the conventional benchmarking approach.

Keywords: Fuzzing; Benchmarks; Android Taint Analysis

1 Fuzzing Benchmarks with GenBenchDroid

Taint flows typically consist of a source, which introduces sensitive data to the app, a
sink, which leaks sensitive data to the outside world and some intermediate data flow that
connects source and sink. This data flow often comprises various programming aspects,
like different data structures or multi-threading. The more complex the data flow is, the
harder it is for analysis tools to uncover the taint flow. Thus, a proper benchmark needs
to comprise benchmark cases with various degrees of complexity and analysis challenges
(aspects). To be able to generate such Android apps, that can be used as benchmark cases,
we split aspects that may possibly be contained inside taint flows into a set of modules.
GenBenchDroid [SP22] interweaves these modules by inserting them into a template,
which denotes the starting structure of an Android app. This allows GenBenchDroid to
generate Android apps that comprise taint flows of various complexities.

Figure 1 shows an overview of GenBenchDroid’s architecture. The Fuzzer component
uses a grammar that knows about the aforementioned templates and modules (build-
ing blocks). This grammar is used to generate a Benchmark Case Blueprint (BCB),
1 Paderborn University, Germany, Warburger Str. 100, 33098 Paderborn, Germany, stefan.schott@upb.de
2 Paderborn University, Germany, Warburger Str. 100, 33098 Paderborn, Germany, fpauck@mail.upb.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:stefan.schott@upb.de
mailto:fpauck@mail.upb.de


108 Stefan Schott, Felix Pauck

which specifies building blocks and their desired insertion order. The Benchmark Case
Generator (BCG) component interweaves the building blocks that are specified in
the BCB and generates an Android app, as well as the corresponding ground-truth.

ModulesTemplates

Fuzzer

Grammar 

BCG

Android
Application

Ground-Truth 
GenBenchDroid

1 n

Configurable

BCB

Building Blocks

Fuzzing Generation Outputs
Legend

Fig. 1: Overview of GenBenchDroid

This ground-truth is determined by
generating a graph that represents
the used building blocks and by
finding paths in this graph that
connect source and sink modules.

Benchmark Fuzzing offers many
advantages that can improve and
complement conventional bench-
marking approaches. By design,
benchmark fuzzing decreases the
likelihood of over-adaptation, as
benchmark cases are not known
before evaluation time. Furthermore, our experiments on state-of-the-art taint analysis tools
(FlowDroid [Ar14] and Amandroid [WRO18]) uncovered previously unknown analysis
defects. We were able to uncover a scalability issue in Amandroid by generating benchmark
cases of various sizes. Additionally, we uncovered analysis defects in FlowDroid and
Amandroid that would only show up, if aspects appear in combination inside a single taint
flow. These defects can hardly be uncovered by only relying on conventional benchmarks,
as it is impossible to manually create arbitrary aspect combinations and since these aspects
used in isolation are analyzed correctly by both tools.

2 Data Availability

GenBenchDroid and its source code, as well as all data that is related to our performed
experiments is available at https://doi.org/10.5281/zenodo.7023084. An up-to-date
version of GenBenchDroid can be found on Github (https://github.com/stschott/
GenBenchDroid).

Bibliography
[Ar14] Arzt, Steven; Rasthofer, Siegfried; Fritz, Christian; Bodden, Eric; Bartel, Alexandre;

Klein, Jacques; Le Traon, Yves; Octeau, Damien; McDaniel, Patrick: Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps.
Acm Sigplan Notices, 49(6):259–269, 2014.

[SP22] Schott, Stefan; Pauck, Felix: Benchmark Fuzzing for Android Taint Analyses. In: 22nd
IEEE International Working Conference on Source Code Analysis and Manipulation,
SCAM 2022, Limassol, Cyprus, October 3-4, 2022. IEEE, 2022. To appear.

[WRO18] Wei, Fengguo; Roy, Sankardas; Ou, Xinming: Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of android apps. ACM
Transactions on Privacy and Security (TOPS), 21(3):1–32, 2018.

https://doi.org/10.5281/zenodo.7023084
https://github.com/stschott/GenBenchDroid
https://github.com/stschott/GenBenchDroid

