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Abstract: There are several models for the evolutionary process forming a species
tree. We examine the Birth-and-Death model (BDM), the Proportional-to-Distinguish-
able Arrangements (PDA) model, the Kirkpatrick and Slatkin (KS) model, the Beta-
Splitting (BS) model and a model where birth rates evolve according to a Geometric
Brownian Motion Process (GBM). For testing and calibrating the models, we evaluate
tree topologies from TreeBASE and a large tree provided by the Tree of Life project.
In a simulation we compare the distribution of tree topologies generated by the models
with tree topologies of observed trees. For describing the distribution of topologies we
use the tree imbalance statistics B1, Colless’C and Shao and Sokal’s N, and calculate
the maximum-likelihood estimate of 3 from the BS model. Further we explore the
splitting pattern of the generated trees. From the observed trees we show that trees
generated by the BDM are too balanced and trees generated by the PDA model are too
imbalanced. The BS model with 5= —1, the KS model with ratio 1:2 and an adjusted
GBM model represent better fitted models for reproducing the imbalance in observed
tree topologies.

1 Introduction

A frequently used assumption in evolutionary biology is that a set of species can be re-
lated by a common tree. This implies that the species under consideration must have a
unique common ancestor, representing the root of the tree. From this ancestor, branching
events in the tree correspond to the speciation of a lineage in consecutive lineages. Several
models are suggested to imitate the macro-evolutionary process forming such a species
tree ([Pin03]). These models can be used as priors in Bayesian methods for reconstructing
phylogenetic trees from sequence data. Even if no prior distribution on the space of trees is
explicitly modeled, typically a uniform distribution on trees is implicitly assumed, which
might be a cause of unwanted bias. Furthermore there is a need to have an appropriate null
model in statistical tests ((CMO02]).

Two often used models for the topology of a tree, are the Birth-and-Death model (BDM)

*linhi @cs.uni-frankfurt.de
T metzler@cs.uni-frankfurt.de

101



with equal rates and the Proportional-to-Distinguishable Arrangements (PDA) model. The
BDM model ([Ken48]) is a branching process. Each lineage [ undergoes speciation of rate
A; and extinction of rate ;. Here we restrict on a special case of the general Birth-and-
Death model, sometimes called Equal-Rates Markov model, where the birth rate A\ and
death rate y are constant among lineages and in time. The PDA model was introduced
by [Ros78]. Every leaf-labeled tree topology has the same probability under the PDA
model. A class of tree-generating processes inducing the same probability distribution on
tree topologies as the PDA model is discussed in [MS01] and [Pin03]. The topology of a
tree is the unlabeled topological branching pattern, excluding temporal information, also
called shape. It is repeatedly reported that the distribution of tree topologies generated
by the BDM tends towards too balanced tree topologies and the PDA tends towards too
unbalanced tree topologies ([Hea96], [AldO1] and [Pin03]). To correct this, a couple of
models were proposed to reproduce the typical balance in observed trees ([KS93] and
[Ald96]).

There are only a few studies taking into account the huge amount of todays reconstructed
trees. Blum and Francois ([BF06]) use the collection of tree topologies stored in the Tree-
BASE, which is a public online database for phylogenetic trees' ((SDPE94] and [Mor96]).
They compare the observed topologies with tree topologies resolved by the BDM, PDA
and Beta-Splitting (BS) model with parameter 3 = —1 ([Ald96]), using a tree topology
statistic whose P-values should be normally distributed under the correct tree generat-
ing mechanism. Their study supports that the BS model with 5 = —1 shows a good fit
to the observed trees. Ford ([For05]) introduces a tree topology generating model with
one parameter, called alpha model, which encompasses the BDM and the PDA model for
appropriate parameters. From the TreeBASE trees he estimates the parameter for the ob-
served trees, which lies between the parameters of the BDM and the PDA model. Matsen
([Mat06]) presents a genetic algorithm to receive an optimal statistic over a class of tree
shape statistics to differentiate between the observed trees in the TreeBASE and the BS
model with 5= —1. He finds that the BS model with 3= —1 is highly significant rejected.

For our study we also use tree topologies in TreeBASE. Additionaly we use subtrees from
the large tree given by the Tree of Life project®. This project aims to provide information
about all living organisms and their evolutionary history ([MS06]).

2 Tree Imbalance Statistics

Every tree-generating mechanism produces tree topologies with a certain distribution. Be-
cause the space of tree topologies grows overexponentially with the number of leaves
([Hol98]), it is customary to use only specific features of the tree topologies and evaluate
the distribution of this feature under the tree generating process. The most widely used
feature for describing the topology of a tree is its imbalance. The balance of a tree topol-
ogy can be quantified by some real function on the space of tree topologies, deriving a

Isee http://www.treebase.org
Zsee http://www.tolweb.org
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statistic for the underlying tree-generating model. The imbalance statistics used here were
chosen with regard of their explanatory power and their correlation structure, examined in
a simulation study by Agapow and Purvis [AP02].

A rooted binary tree topology with n leaves has (n—1) inner nodes. The size of a tree or
subtree rooted at some inner node ¢ is the number of leaves that originate from the inner
node ¢. Colless’C ([Col82]) is defined as

n—1
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where r; is the number of leaves in the right subtree and I; is the number of leaves in the
left subtree rooted at the inner node i. The more unbalanced the tree is, the bigger is the
difference of the leave size in the daughter species at the inner nodes and the statistic yields
higher values. The statistic is normalised by W in order to get values between 0
and 1.

The measure B; ([SS90]) is defind as

By = Z % )

where M; is the maximal number of edges from the inner node ¢ to the leaves of the
subtree rooted in ¢. The summation is taken over all inner nodes, except for the root.
This definition is taken from [SS90] but it differs from the definition in [AP02], where
summation is taken over all inner nodes 7 with subtree size greater than 3. Since the most
balanced tree minimises the maximal number of nodes to traverse from the root to the
leaves, this statistic yields higher values as the tree becomes more balanced.

Shao and Sokal’s N ([SS90]) gives the mean path length from the leaves to the root of the
tree. It is defined as

_ 1 &
N = — NL', 3
n; 3)

where N; is the number of edges along the path connecting the leave ¢ with the root.
The interpretation is similary to By, however in this case the contributive part is in the
nominator, thus a higher value represents more imbalance in a tree.

Finally, we calculate the maximum-likelihood value for the parameter 5 in Aldous’s BS
model ([Ald96]). The BS model provides a one-parameter family of probability distribu-
tions gg , on {1,2,...,n—1} C N. Given a node v in a binary tree from which n leaves
descend, gg (%) is the probability that v’s outgoing edges split the set of descending leaves
into subsets of ¢ and (n—1) leaves. The split is denoted as {i|(n—1)}. The parameter (3
is in the range between —2 and oco. A higher value of 3 will generate more balanced tree
topologies. Aldous [Ald96] shows that for 3 =0 the BS model generates tree topologies
with the same distribution as the BDM, and for §=—1.5 it generates tree topologies with
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Figure 1: Topologies of size 4. In the caption are the counts from TreeBASE, outgroup-corrected
values from TreeBASE in brackets, and counts from the Tree of Life.

the same distribution as the PDA model. As suggested in [BF06] and [Ald96] we consider
the BS model with fixed parameter 3= —1.

3 Evaluation

We scan all entries in the TreeBASE, included in May 2007. Inner nodes of degree two are
removed in a preprocessing step. We create two data sets containing all obtained trees. In
the first set, we automatically remove from every tree a possible outgroup, if the root node
has a binary split and one of the subtrees contains only one leaf. In that case, the subtree
with one leaf is removed. Because this procedure may incorporate bias, the second set is
not outgroup-corrected, for control. From each dataset we respectively extract all subtree
topologies of sizes 4 and 5. Similarly we use the current XML structure from the Tree
of Life project, encoding the current Tree of Life (May 2007), and extract all subtrees of
sizes 4 and 5. We use only those subtrees, with the highest confidence level, where all
leave nodes were marked as leaves and which contained no extinct subtree or species. The
resulting counts for the multifurcating tree topologies are given in Fig.1 and Fig.2.

In the following we examine the fraction of binary tree topologies to compare and calibrate
our tree topology generating models. Omitting multifurcating tree topologies is not satis-
factory for several reasons. First, we do not want to waste information in the data, in order
to reduce variability in the estimates. Second, multifurcations often reflect uncertainty in
reconstructing the correct evolutionary history. From this point of view it should in prin-
ciple be possible to resolve most multifurcations by binary splits if enough information is
available and if branch lengths can be arbitrarily small. Third, by ignoring multifurcating
subtrees we get a biased answer, because in general we will not get a representative sam-
ple by picking bifurcating subtrees. The assignment of mutlifurcating trees to their binary
counterparts will influence the distribution of topologies.

We count binary topologies of sizes 4 and 5, and in a second step we assign the multifur-
cating tree topologies by resolving the multifurcations under the hypotheses of the BDM
and the PDA model. The resulting fractions did not differ much whether we outgroup-
corrected the tree topologies or not. The fraction of topologies of size 4 from the outgroup-
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Figure 2: Topologies of size 5. In the caption are the counts from TreeBASE, outgroup-corrected
values from TreeBASE in brackets, and counts from the Tree of Life.

corrected trees and the Tree of Life are given in Tab.1, with multifurcating tree topologies
resolved by the BDM. Note that there is only one multifurcating tree topology of size 4
which is informative, and it is equivalent resolving it by the BDM or PDA model. Tab.2
shows the fractions of topologies of size 5 from the outgroup-corrected trees and the Tree
of Life, with multifurcating tree topologies resolved by the BDM and the PDA model.

4 Calibration and Simulation Results

The BDM, PDA and BS model do not need to be adjusted, because there are no free
parameters. For the calibration of the other models we use the fractions of observed trees
of sizes 4 and 5. In the Kirkpatrick and Slatkin (KS) model ([KS93]) branching events
in lineages may occur at different rates. Every time a branching event appears, the rate
of branching is inherited to the daughter lineages with a deterministic assignment, such
that the sum of the rates in the offspring lineages is twice the rate of the parent lineage.
The only parameter in this model controls the partitioning of the birth rate to the offspring
lineages. From Tab.1 we observe an approximate proportion of unbalanced to balanced
trees of size 4 with ratio 7 : 3 in the TreeBASE. The KS model was calibrated with this
fraction, resulting in a ratio of rates in the daughter lineages of 1:2.

We calibrate a model where birth and death rates for each lineage evolve according to a ge-
ometric Brownian Motion process ([Hea96]), and call it GBM model. A geometric Brown-
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5 | b
TreeBASE 0.707 0.293
Tree of Life 0.754 0.247
BDM 2 =0.667 £ =0.333
Beta-Splitting (3=—1) £ =0727 2 =0.273
PDA 2 =0.800 1 =0.200
Kirkpatrick Slatkin (1:2) || 5 =0.700 | 3 =0.300
3/4 BDM + 1/4 PDA 0.700 0.300
2/3 BDM + 1/3 PDA 0.711 0.289
1/3 BDM + 2/3 PDA 0.756 0.244
GBM model (0=2) sim. 0.778 0.222

Table 1: Fraction of tree topologies for size 4.

TreeBASE (BDM resolved) || 0.422 0.153 0.426
TreeBASE (PDA resolved) 0.441 0.143 0.416
Tree of Life (BDM res.) 0.478 0.157 0.365
Tree of Life (PDA res.) 0.510 0.138 0.352
BDM 2 =0.333 : =0.167 3 =0.500
Beta-Splitting (8=—1) 4% =0436 | £%=0.164 | <5 =0.400
PDA 2 =0.571 1=0.143 2 =0.286
Kirkpatrick Slatkin (1:2) 0.447 0.195 0.357

3/4 BDM + 1/4 PDA 0.393 0.161 0.446

2/3 BDM + 1/3 PDA 0.417 0.159 0.429

1/3 BDM + 2/3 PDA 0.492 0.151 0.357
GBM model (0=2) sim. 0.542 0.163 0.296

Table 2: Fraction of tree topologies for size 5.

106




ian Motion has continuous paths which evolve according to g(t) =exp((u—o?/2)t+0B;),
where B, is a standard Brownian Motion process, 1 >0 is the mean value, and ¢ >0 con-
trols the volatility of the process. We only consider a process with death rate = 0, which
is started with an initial birth rate = 1, and mean value p fixed to be 1. With o = 0 the
model has the same distribution on tree topologies as the BDM. To adjust the GBM model
we simulate small tree topologies with different volatility parameters o. By comparison
with the observed fractions in Tab.1 and Tab.2 it becomes obvious that the trees are too
balanced for ¢ <1 and too imbalanced for ¢ > 4. We calibrate the model with o =2.

Finally we model a mixture (Mix) of the BDM and the PDA model, where we determine
one parameter to specify the probability of choosing between the BDM and the PDA model
in advance. We adjust three different Mix models for comparison by fitting the fractions
given in Tab.1 and Tab.2.

We perform a goodness of fit analysis with the adjusted models. Using the models we sim-
ulate trees with the same size as all binary trees in the TreeBASE. For every set of trees 7
we evaluate B, Colless’C and Shao and Sokal’s N and estimate the maximum-likelihood
estimator of 3 in the BS model. Because of the dependence of the imbalance statistics on
the tree size, we generate for each model and each statistic a plot in dependence of the size
of the leaves. The outgroup-correction has no remarkable influence on the results. The
plots without outgroup-correction are given in the supplementary material ((HMO7]).

For a visual inspection among the models, we compare the quantiles of B;, Colless’C
and Shao and Sokal’s N, and (3 for the simulated trees against the corresponding quantiles
for the TreeBASE trees. For all statistics, all models lie between the BDM and the PDA
model, where the BDM always generates too balanced trees and the PDA model generates
too imbalanced trees. The Q-Q plot for Colless’C is shown in Fig.3, the other statistics are
shown in the supplementary material ((HMO7]).

For a direct comparison between the trees generated by the adjusted models and the Tree-
BASE trees, we extract for every inner node v, the size of the subtree originating from
v and the size of its greater daughter subtree. From these data we estimate, separately
for every set of trees 7, the distribution of possible splits 87 on {[%],...,(n—1)} for
n=2,...,100, with [z] := min{k € Ny : k <=x}. §7 (i) is the empirical probability of
observing the split {i|(n—4)} or the split {(n—1)|i} at an inner node which gives rise
to a subtree of size n. For every 7 and n € N define I} to be the expected number of
splits in the path from the root of a tree of size n towards the leaves, if always the biggest
subtree is chosen. I can be calculated by the following recursion: I7 =0, I7 =1 and
IT = EZZ[I%] ST 4+1I7) =1+ zg;‘[%%] 87 (i)I7, for n>3. In Fig.4 the values for I7
are plotted for each set of trees. The KSM, GBM and BS model show good accordance
with the observed trees.

We build from each set of trees 7 a 100 x 100-Matrix M7 containing the empirical distri-
butions 57,. The entries of the matrix M are defined to be M , := 57 (i), indexed by the
number of leaves n and all possible bigger subtrees i € {[5],...,(n—1)}. The other en-
tries in the matrix /™ are set equal to 0. We calculate the L1-Norm ([ X[z, = 3, ; i)
of the difference between the submatrices of the first n x n entries from the simulated mod-
els and the observed trees, for n = 3,...,100. The resulting values for the models are
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Figure 3: Q-Q plot Colless’C (see text for explanation).

shown in the supplementary material ((HMO07]). Again the KSM, GBM and BS model
show good accordance with the observed trees.

5 Conclusion

We explored the TreeBASE database and a large tree provided by the Tree of Life project,
to supply tree topologies of size 4 and 5 for the calibration and testing of macro-evolu-
tionary models. The observed distribution of small tree topologies, the evaluation of im-
balance statistics and the splitting pattern comparison, indicates that the BDM generates
too balanced tree topologies and the PDA model generates too unbalanced tree topologies.
The imbalance of a typical tree lies between these two standard models. This observa-
tion agrees with those of [Hea96], [AldO1], [Pin03] and [BF06]. Our simulation confirms
the good fitting of the BS model with 3 = —1, first supposed by Aldous [AldO1] and
supported by the study of Blum and Francois [BF06]. The simulation of tree topologies
with the KSM with ratio 1 : 2 and the GBM model with ¢ = 2 produce more reasonable
tree topologies than the BDM and PDA model. The splitting pattern of the adjusted BS,
KSM and GBM model shows good consistence with the observed imbalance in trees. In
the comparison of the statistics these models are all located between the BDM and PDA
model.

If we restrict on markovian branching processes ([Ald96]) as an adequate model describ-
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Figure 4: Expected Number of Splits in bigger Subtrees (see text for explanation).

splitting structure of a tree, the BS model with 5= —1 seems to be an appropriate
candidate, even if Matsen [Mat06] shows significant discrepancies from this model and
the TreeBASE trees. It would be interesting to investigate if the observed trees bear any
evidence for violating the markovian assumption. As more and more trees with recon-
structed branch lengths are getting available, it should be possible to create and validate

better fitted models by incorporating temporal information.
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