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Networks
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Abstract: The classification of human-made acoustic events is important for the monitoring and
recognition of human activities or critical behavior. In our experiments on acoustic event classification
for the utilization in the sector of health care, we defined different acoustic events which represent
critical events for elderly or people with disabilities in ambient assisted living environments or patients
in hospitals. This contribution presents our work for acoustic event classification using deep learning
techniques. We implemented and trained various convolutional neural networks for the extraction
of deep feature vectors making use of current best practices in neural network design to establish
a baseline for acoustic event classification. We convert chunks of audio signals into magnitude
spectrograms and treat acoustic events as images. Our data set contains 20 different acoustic events
which were collected in two different recording sessions combining human and environmental sounds.
Our results demonstrate how efficient convolutional neural networks perform in the domain of acoustic
event classification.
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1 Introduction

The demographic change in the European Union (EU) will increase the number of elderly
people rapidly. Since older people suffer from several chronic conditions and often stay in
their own homes, they require a long-term care solutions [St07]. The observation of the
activities and health status of elderly people using automatic systems is very important,
because the long-term nursing care at home is very expensive. The recognition of human
activity can be realized using acoustic and/or visual information which is obtained by
microphones and/or video cameras installed in the homes to assist the daily living by the
collection of individual information for monitoring systems. Acoustic monitoring includes
recognition and detection of acoustic events which indicate critical events for elderly or
people with disabilities in Ambient Assisted Living (AAL) environments or by patients
in hospital. Most people feel that acoustic monitoring has little impact on privacy in

I Chemnitz University of Technology, D-09107 Chemnitz, Germany, {stefan.kahl, enniyan.thangaraju,
danny.kowerko, maximilian.eibl } @informatik.tu-chemnitz.de

2 Department of Literary Studies, Free University of Berlin, 14195 Berlin, Germany, hussein @zedat.fu-berlin.de

3 Intenta GmbH, D-09125 Chemnitz, Germany, {e.fabian, j.schlosshauer} @intenta.de

E©®® doi:10.18420/in2017_217


https://creativecommons.org/licenses/by-nc/3.0/
hussein@zedat.fu-berlin.de
https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.18420/in2017_217

2178 S. Kahl, H. Hussein, E. Fabian, J. SchloBhauer, E. Thangaraju, D. Kowerko, M. Eibl

comparison to video-based surveillance. The automatic recognition of specific acoustic
events in an audio stream is important for the analysis of human activities. Acoustic Event
Classification (AEC) deals with isolated acoustic event segments (offline), Acoustic Event
Detection (AED) includes the identification of timestamps as well as types of acoustic
events in continuous audio streams (online or live recordings) [Te06].

Many applications implement classification and detection of different types of acoustic
events. AEC is often utilized in scene recognition to recognize the location of scenes (e.g.
outdoor or indoor) [Ril5]. Additionally, AEC is often applied to the field of AAL and health
care environments, e.g. the recognition of activities that occur inside a bathroom [Ch05]
and in critical and threatening health situations [Hul6b]. Another application for AEC is in
smart homes to detect different types of events, for example, speech, walking steps, coffee
spoon jingle and mouse clicks [Ts14] as well as in meeting room environments to detect
events such as speech, paper work, chair movements and key jingle [Te06].

The process of event recognition is based on feature extraction and classification. Various
features and classifiers have been proposed for the classification of acoustic events. Fea-
tures in the frequency-domain, time-domain and cepstral features are extracted and used
stand-alone or in combination. Mel Frequency Cepstral Coeflicients (MFCCs) are the most
popular speech perception features which are utilized with Hidden Markov Models (HMMs).
However, speech features are not necessarily suitable for the classification of acoustic
events [ZhO8][CNKO09]. The most common classification techniques used are HMMs
[ChO5][Te06][ErO6][TRF15], Gaussian Mixture Models (GMM) [Pe02][Ch06][Ral5], the
Support Vector Machine (SVM) classifier [Te06][ChO6][Hul6b], the K-Nearest Neighbor-
hood (KNN) classifier [Pe02][Er06][ChO6][Hul6b], and in recent years, neural networks
[Pil5].

In 2012, Convolutional Neural Networks (ConvNets, CNNs) started to outperform traditional
image processing methods one by one. Since then, almost every traditional technique has been
rendered obsolete when it comes to semantic image understanding. With rapid evolution,
more powerful neural net architectures have been introduced (e.g. [Rel5] for object
detection, [RFB15] for image segmentation and [KFF15] for image captioning). Adapting
those architectures for the audio domain has become common practice, mostly due to the
overwhelming success of CNNs for image processing. Training and classification of visual
representations of raw audio signals has proven to be very effective for different scenarios
such as bird identification in sound recordings [Kal7] or acoustic scene classification
[HL16].

This paper is organized as follows: Section 2 gives an overview on the localizelT project
for object tracking and behavior analysis using audio-visual information. The selection
of acoustic events and data acquisition are described in Section 3. Section 4 reviews the
acoustic event classification with convolutional neural networks. The experimental results
are shown in Section 5. Finally, conclusions and future work are presented in Section 6.
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2 LocalizelT

The purpose of the research project localizelT (http://www.localize-it.de) is the
localization and tracking of objects as well as the analysis of object behavior using acoustic
and visual information. We installed passive sensors, including acoustic and optical sensors
(cameras with stereo optics), inside the tracking area of an audio-video laboratory to locate
and track objects in an indoor environment. The analysis of object behavior from acoustic
information can be used and fused with the visual-based object behavior analysis. The
five-year project is funded by the Federal Ministry of Education and Research in the program
of Entrepreneurial Regions.

3 Data Collection

We introduce a novel data set for the purpose of acoustic event classification for AAL
scenarios. The selection of acoustic events and the collection of related data are described
in this section.

3.1 Selection of Acoustic Events

We focused on acoustic events, which are produced by people in critical situations, for
example, calls for help or suffering injuries from collapsing on the floor. There are different
scenarios in which these acoustic events occur. The basic use case is a single elderly person
in a room where he/she dropped on the floor and calls for help. Another use case includes a
confused person in police custody where he/she has to stay alone in a detention cell. A very
important use case applies to hospital facilities where mentally ill patients show critical
behavior in community areas.

For our research, we defined a number of acoustic events, including human and environmental
sounds, which are characteristic for the described use cases. A total of 20 acoustic events
were recorded in two different sessions. In every session we simulated and recorded ten
different acoustic events:

o TUC: The first session included the following acoustic events [Hul6b]: help (calling
of the speech signal “Hilfe” in German), scream, whimper, crying, quiet (long period
of silence detected between audio segments of music, speech or background noise),
strikes (strikes with an open hand on a wood plate), vandalism (destruction of furniture,
strikes on a wood plate and sometimes scream), downfall of plate (downfall of a
wooden plate to the ground), dislocation of furniture (movement of furniture such as
a commode on ground), and chair movement (movement of a chair on ground).

o Intenta: The following acoustic events were recorded during the second session
[Fal7]: movement of window handle, movement of door handle, pen on cup (strike
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the cup with a pen), lighter (set fire with the lighter), sensor bracket, clapping, strikes
of metal to metal, strikes on wall, trampling on carpet, and tongue clicking.

3.2 Data Acquisition

We recorded human sounds for the TUC data set with people of age 25 to 82. Both data
sets are recorded in quiet environments at Chemnitz University of Technology and Intenta
GmbH. The audio files were recorded with an sampling frequency of 44.1 kHz and a
resolution of 16 bit. Two measurement microphones (Behringer ECM-8000) connected to
the audio interface (Focusrite Scarlett 2i2) were used for the recording of audio data of the
first set. The distance between the microphones was set to 20 cm and the distance to the
acoustic source was varying between 20 to 30 cm. The second data set was recorded using
three Schneider Intercom MIC Q400 microphones, which were positioned at about 2.5m
height below the ceiling. The distance between the microphones and the signal source in
this case ranged from 50 cm to 4 m for all signals except the movement of the window and
the door handle. For this two events distance was constantly 4 m. The acquired audio data
was manually annotated using the Folker toolkit [SS10].

3.3 Data Analysis

A total of 58 persons (11 female and 47 male) participated in the first recording session
(TUC) to acquire acoustic events produced by humans, e.g. help, scream, whimper and
crying. The run length of the acquired data for the first ten acoustic events is 54 minutes with
a total of 1612 recording samples. The number of audio files is as follows: help (175), scream
(129), whimper (176), crying (192), quiet (45), strikes (475), vandalism (78), downfall of
plate (84), dislocation of furniture (126), and chair movement (132).

The size of acquired audio data for the second ten acoustic events (Intenta) is 4 minutes
with a total of 704 recording samples. The number of audio files is as follows: movement of
window handle (68), movement of door handle (56), pen on cup (58), lighter (100), sensor
bracket (68), clapping (76), strikes of metal to metal (90), strikes on wall (56), trampling on
carpet (70), and tongue clicking (62).

3.4 Data Post-processing

The annotated data set only contains the occurrence of single acoustic events without silence
before and after the acoustic event. The length of most of the defined acoustic events is
very short. The average length of selected acoustic events is as follows: strikes (0.15 sec),
movement of window handle (0.45 sec), movement of door handle (0.25 sec), pen on cup
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Fig. 1: Combination of acoustic events. a): original annotated acoustic events. b): post-processed
acoustic events by adding a small pause before and after every acoustic event.

(0.40 sec), lighter (0.15 sec), strikes of metal to metal (0.40 sec), and tongue clicking (0.30
sec).

With real-world applications in mind, we decided to use recordings of at least three seconds
of length. This way, very short recordings can be distributed over a longer period of time,
which does reflect the expected distribution of acoustic events in realistic environments. We
added a small pause with a random length between 0.2 and 0.5 sec before and after every
acoustic event. Thereafter, we combined acoustic events of the same class to generate longer
audio files with varying event distribution. Figure 1 shows the combination of original file
with annotated acoustic events (a) as well as the combination of post-processed annotated
acoustic events with a small pause before and after the acoustic event (b). The first four
acoustic events in Figure 1 (a) are shown in Figure 1 (b) after adding the pauses. The
resulting number of audio files after the combination of acoustic events is 615 and 177 for
TUC and Intenta, respectively.

4 [Experiments

Our experimental workflow consist of four main parts. First, we extract spectrograms from
every audio recording using FFT in order to transfer the input data to the domain of image
processing. Secondly, we extend our training set via data set augmentation. Thirdly, we
train a convolutional neural network with a classic layout and best practice hyperparameter
settings. Finally, we evaluate trained neural nets on a total of 156 test recordings using
average prediction pooling.

4.1 Spectrogram Extraction

We decided to use magnitude spectrograms as visual representation of our training samples.
Our experiments showed that large input resolutions with highly detailed signal transfor-



2182 S. Kahl, H. Hussein, E. Fabian, J. SchloBhauer, E. Thangaraju, D. Kowerko, M. Eibl

e
3 BT ST

=
VY

ik

|
o
(T
\
s

Y =

Fig. 2: Extracted magnitude spectrograms of samples for window handle (top left), calling for help
(top right), vandalism (bottom left) and dislocation of furniture (bottom right). We use the framework
python_speech_features for FFT with a window length of 0.02 and step size of 0.00585 for three-second
chunks of each signal. We use a FFT length of 511 and do not crop high frequencies.

mations lead to better classification results. Most ConvNet architectures from benchmark
evaluations are designed for relatively small input sizes. We decided to use non-square
spectrograms with a resolution of 512x256 pixels (width x height, width being the time
scale), each representing three-second chunks of the source file. Figure 2 shows some
selected spectrograms for different acoustic events.

4.2 Data Augmentation

Choosing the right data set augmentation is vital to reduce the generalization error. Extending
the training data aims to prevent overfitting due to a more diverse data set and should
target properties of the test set underrepresented or missing in the training data. For the
spectrogram domain, data set augmentation has to be selected carefully. Common geometric
transformations such as horizontal flip, zoom, crop or shearing are not suitable as they might
mask the original signal. We decided to use three augmentation methods: Pitch shifting
vertical roll of 5%, time shifting horizontal roll of 50% and random Gaussian noise. Rolling
the input image vertically or horizontally shifts the pixel values in the desired direction and
thus preserves complete information as out-of-border pixel are added to the opposite image
boundary. Neural nets usually learn to ignore random noise during training. We noticed that
artificial noise helps to lower the generalization error despite the lack of heavy noise in the
test data.
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Fig. 3: Proposed ConvNet Architecture. All layers except for input and softmax layers use batch
normalization, ReLu activation and are He-initialized. We use 2x2 strides in the first convolutional layer
to cope with large inputs. MaxPooling of size 2 reduces spatial dimensions after every convolution.

We applied all augmentations at runtime, which significantly speeds up the training process
and is more resource efficient. We implemented a multi-threaded batch loader, that operates
during a forward-backward pass iteration using CPU idle time.

4.3 Training

Training neural nets with large input sizes is considerably harder and requires even better
fine-tuning. We decided to follow common practices in ConvNet design and settled for
a classic approach with no highway connections or shortcuts (Figure 3). Despite the
simplicity of our net architecture, our simple model performed significantly better during
our experiments than implementations of a ResNet-50 [He16] or DenseNet-32 [Hul6a].
This might be due to the homogeneous inputs in the spectrogram domain. Although our
dataset features distinct classes with heterogeneous audio samples, 1-dimensional signal
representations do not allow for much variance; most spectrogram pixels are blank or contain
only little information. This observation is backed by the works of [Sp16] and [Dal7].

Our eight-layer ConvNet uses He-initialization [He15] for all weights, batch normalization
[IS15] and ReLu activation [NH10], except for input and softmax layers. We experimented
with different kernel sizes in the first two convolutional layers and found large receptive
fields in early layers beneficial for the overall classification performance. Therefore, we
used 7x7 and 5x5 kernels for large inputs. Increasing the number of dense units led to
heavy overfitting, so we decided to dial down the number of parameters and added more
convolution filters instead. We conducted several experiments with fully convolutional
neural nets, removing all densely connected layers from our architecture, which further
reduces the parameter count. However, we were not able to achieve the same classification
accuracy with this architecture. Further investigation has to show whether these architectures
are compatible for the domain of acoustic classification.

We used a NVIDIA P6000 GPU for training of 55 epochs with a batch size of 32 for each
data set (TUC, Intenta and both sets combined). Training took 7-9 sec per epoch; we used
early stopping to find the best parameter setting. Reducing the learning rate during training
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is vital to ensure convergence of the optimization process. We used linear interpolation to
lower the learning rate starting at 0.001 down to 0.000001 after each epoch. Despite the
adaptive nature of the ADAM optimizer [KB14], this routine proved to be very effective.

We divided both data sets into a train (80%) and test split (20%). We used a 10% validation
split of the training data to monitor the training process. Training data consisted of 1.725
spectrograms for the TUC set, 436 spectrograms for the Intenta set and 2.161 spectrograms
for both sets combined.

4.4 Source Code

We implemented our code purely in Python using NumPy, Theano [Th16] and Lasagne
[Dil5] for models, objectives and solvers, OpenCV for image processing, scikit-learn for
metrics and Matplotlib for visualizations. A refined and commented version of our code
base is available for free use on GitHub#. We hope to provide a baseline system for further
research regarding acoustic event classification and encourage research groups to contact us
if any questions or remarks concerning the repository arise.

5 Results

Our test samples vary in run length and recording quality. However, since every test
sample was randomly chosen from the original data set, our test set represents the original
data distribution quite well. The proposed neural net architecture has proven to very
efficient for our data set and validation results directly translate to the test files. Table 1
summarizes the results for three different test runs. We extracted consecutive three-second
spectrograms using a two-second overlap for every test file. Combining the predictions of
every spectrogram by simply applying average pooling led to excellent results and almost
perfect predictions for every test sample.

TUC Intenta Combined

Test Samples 123 33 156
Validation Accuracy 97,9% 100% 96,8%
Mean Average Precision | 0,984 1.0 0,991
Precision at 1 0,967 1,0 0,981

Tab. 1: Results of our experiments for the TUC and Intenta training data as well as both sets combined.

Aside from the supposedly fitting model design, several circumstances have to be considered
when interpreting the results. First, all test files contain only one class of acoustic events,
which benefits softmax classifiers. Secondly, all test recordings where done in an artificial
environment without background sounds and very low noise. Lastly, maintaining a very

4 https://github.com/kahst/AcousticEventDetection
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clean data set without distorted labels is key for successful training and classification. Most
publicly available data sets do not comply with this condition. Our results clearly indicate
that training convolutional neural networks for acoustic event detection is possible even with
very limited data sets. Nonetheless, future experiments will have to show if these results
hold up to more noisy environments, simultaneous sounds and most importantly unknown
acoustic events without false detections.

6 Conclusion and Future Work

Real-time monitoring of audio signals demands a fast processing system, which can be
used to extract the features of the signals and classify them effectively. Currently, this is the
most crucial drawback of deep learning techniques as they consume many resources and
require specialized hardware. Manufacturers are advancing their GPU technology further
and eventually will incorporate enough computing power into portable devices. Until then,
choices of portable or semi-portable hardware units for deep learning are limited. The
NVIDIA Jetson TX2 provides the computing power sufficient for the proposed neural
network presented in this paper. It is shipped with a developer board, which allows for
rapid prototyping and implementation of software capable of acoustic event classification.
Our conceptual workflow consists of training ConvNets on powerful GPUs and afterwards
transferring trained models onto the TX2 where an audio stream is recorded and processed
for acoustic events based on the classification of spectrograms. Specialized hardware for
embedded applications like the Xilinx Zyng-7000 SoC ZC702 could be an alternative to
the TX2 despite the lack of raw computing power because of its industry-standard FPGA
Mezzanine Connectors. In any case, the quality of the detections will be influenced by the
quality of the microphones, background noise and limited computing resources. Howeyver,
the results presented in this paper indicate a good overall detection rate, our shallow neural
net design and its small model size are well suited for less powerful devices.
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