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Empirical Evaluation of LBP-Extension Features for Finger
Vein Spoofing Detection

Daniel Kocher,! Stefan Schwarz! and Andreas Uhl

Abstract: Biometric systems based upon finger vein images have been shown to be vulnerable
to presentation attacks. For this paper, we consider a variety of methods extending local binary
patterns (LBP) which can be used to distinguish between fake and real finger vein images. In the
experiments, it is not only the accuracy of the respective methods as compared to baseline LBP which
is documented, but also the impact of two further criteria: (1) The influence of selecting training
& test samples non-randomly, i.e., selecting training samples in person-specific and size-varying
manner, and (2) the impact of lowering the feature dimensionality by considering only uniform
patterns. Our results show that these two criteria have to be considered if one wants to apply finger
vein anti-spoofing mechanisms while the baseline LBP technique turns out to be competitive to
almost all of its “improvements”. As subject specific training data is usually not available, our results
underpin the importance of using sufficiently sized training data when aiming for high spoofing
detection accuracy.
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1 Introduction

Biometric traits have emerged to replace or at least complement the traditional authentica-
tion methods (e.g. passwords). One biometric trait enjoying more and more popularity are
veins. One advantage of veins over other biometric traits is the fact that they are embed-
ded inside the human body, as opposed to traits like fingerprints or faces. Moreover, vein
images can be acquired in an unintrusive manner which is not the case for other biometric
traits, such as iris acquisition. However, despite being resistant to tampering, vein-based
authentication is vulnerable to presentation attacks [TVM14]. In this paper, we focus on
finger veins (FVs) as biometric traits.

In general, counter-measures to presentation (or spoofing) attacks in biometrics can be cat-
egorised in (1) liveness-based, (2) motion-based and (3) texture-based methods. Liveness-
based methods, e.g., [Ral5], use signs of vitality to ensure that the image is captured
from a living human being. In contrast, motion-based methods utilise unnatural move-
ments on scenes as indication of spoofing, e.g. caused by hand motion when presenting a
photo or a display to the sensor. Texture-based methods aim to explore textural artifacts
in the images captured by the sensor (e.g. caused by recapturing artifacts). Texture-based
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techniques have been proven to be applicable to the imagery in the FV-Spoofing-Attack
database [Tol5] for evaluation, in particular baseline LBP [RB15].

In 2015, the first competition on counter-measures to finger vein spoofing attacks took
place [Tol5]. The competition baseline algorithm looks at the frequency domain of vein
images, exploiting the bandwidth of vertical energy signal on real finger vein images,
which is different for fakes ones. Three teams participated in this competition. The first
team (GUC) uses binarised statistical images features (BSIF). They represent each pixel
as a binary code. This code is obtained by computing the pixel’s response to a filter that
are learnt using statistical properties of natural images [To15]. The second team (B-Lab)
uses monogenic scale space based global descriptors employing the Riesz transform. This
is motivated by the fact that local object appearance & shape within an image can be rep-
resented as a distribution of local energy and local orientation information. The best ap-
proach (team GRIP-PRIAMUS) utilises local descriptors, i.e., local binary patterns (LBP),
and local phase quantisation (LPQ) and Weber local descriptors (WLD). They distin-
guish between full and cropped images. LBPs and LPQ/WLD are used to classify full
and cropped images, respectively.

However, counter-measures to finger vein spoofing attacks were/are already developed
prior or independent to this competition. In 2013, the authors of [Ng13] introduced a fake
finger vein image detection based upon Fourier, and Haar and Daubechies wavelet trans-
forms. For each of these features, the score of spoofing detection was computed. To decide
whether a given finger vein image is fake or real, an SVM was used to combine the three
features.

The authors of [Til5] propose windowed dynamic mode decomposition (W-DMD) to be
used to identify spoofed finger vein images. DMD is a mathematical method to extract the
relevant modes from empirical data generated by non-linear complex fluid flows. While
DMD is classically used to analyse a set of image sequences, the W-DMD method extracts
local variations as low rank representation inside a single still image. It is able to identify
spoofed images by capturing light reflections, illuminations and planar effects.

A detection framework based on singular value decomposition (SVD) is proposed in a
rather confused paper [MS15]. Finger vein images are classified based on image qual-
ity assessment (IQA) without giving any clear indication about the actual IQA and any
experimental results.

Finally, [RB15] proposes a scheme using steerable pyramid is used to extract features.
Steerable pyramids are a set of filters in which a filter of arbitrary orientation is synthe-
sised as a linear combination of a set of basis functions. This enables the steerable pyra-
mids scheme to compute the filter response at different orientations. This scheme shows
consistent high performance for the finger vein spoofing detection problem and outper-
forms many other texture-classification-based techniques. It is compared to techniques
from [Tol5], including two LBP variants, and to quality-based approaches computing
block-wise entropy, sharpness, and standard deviation.
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In this paper, inspired by the success of basic LBP techniques [MS15, Tol5] in finger vein
spoofing detection and the availability of a wide variety of LBP extensions and general-
isations in literature, we empirically evaluate different features obtained by using these
more recent LBP-related feature extraction techniques for finger vein spoofing detection.
The feature histograms are used as input for a linear support vector machine. Further, the
evaluation shows the influence of (1) randomisation of the persons which are selected for
training & test data, and (2) using uniform patterns rather than the whole feature vector.

The remainder of this paper is organised as follows. The evaluated LBP features are de-
scribed in Section 2. The experimental setup and the results are described in Section 3
where we also describe the finger vein database used in the evaluation.

2 Local Binary Pattern Extensions

The references and more detailed descriptions of the original LBP scheme and subsequent
LBP variants are provided in [KSU16] due to space restrictions. Also, the parameters of
our implementations as used in the experiments are given in this reference. For our exper-
iments (Section 3), the LBP-based features described in the following are applied to all
pixels of the image except for those which have not enough neighboring pixels available.
Pixels are traversed line-wise and for each feature, a histogram has been constructed.

The traditional Local Binary Pattern operator was originally introduced by [OPH94] in
1994. The authors proposed the operator as a non-parametric 3 x 3 kernel. However, LBP
can be parameterised in two ways, i.e. the number of neighboring pixels P and the radius R
from the center pixel. The P neighboring pixels are distributed evenly spaced on the circle
of radius R with respect to a given center pixel. Using these parameters, the 3 x 3 kernel
has P = 8 neighbors distributed evenly spaced on a circle of radius R = 1. Finally, a LBP is
defined as an ordered set of binary values determined by comparing the values of the center
pixel to the values of each neighboring pixels. When evaluated at each pixel position, the
number of the different patterns found in an image are represented in a histogram.

The Local Line Binary Pattern (LLBP) operator was proposed for face recognition origi-
nally. The benefit of this pattern is that it can emphasise the change in image intensity such
as vertices, edges and corners. The neighborhood shape is a straight line, instead of a circle
shape. The operator consists of two components: a horizontal and a vertical component.

In the completed LBP (CLBP) variant, a region is represented by its center pixel and a so-
called local difference sign-magnitude transform (LDSMT), which decomposes the local
structure into two components, i.e. a difference sign and a difference magnitude compo-
nent, denoted CLBP_S and CLBP_M, respectively. In essence, CLBP_S is equal to the
standard LBP (using -1 instead of 0 to encode a negative difference). The center pixel
component (CLBP_C) is represented by thresholding the local gray level against the aver-
age gray level of the whole image.

The robust LBP variant termed Median Robust Extended LBP (MRELBP) increases the
tolerance to image blur and noise corruption. Different from the traditional LBP and many
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LBP variants, MRELBP compares regional image medians rather than raw image inten-
sities. A multiscale LBP type descriptor can be computed by efficiently comparing image
medians over a custom sampling scheme.

The Local Derivative Pattern (LDP) encodes local higher order derivative information.
While the original LBP encodes the binary result of the first-order derivative among local
neighbors, the LDP is a higher-order local pattern which contains more detailed discrimi-
native features wrt. orientation and higher order derivatives.

Local Radius Index (LRI) is based upon the fact that textures typically contain repetitive
smooth regions and transitions between these regions. The authors introduce an inter-edge
distance, the distribution of which to characterise the texture of an image (actually, two
LRI operators, each of which results in eight integer directional indices for a given pixel
are defined).

Local Graph Structure (LGS) represents each pixel by a graph structure which captures
the spatial information with respect to the neighboring pixels, all neighboring pixels are
thresholded against a source pixel based upon the traversal of the graph structure. Sym-
metric Local Graph Structure (SLGS) is a variant employing a different underlying graph
structure of the neighbourhood.

3 Experiments

3.1 Experimental Setup

All implemented methods are evaluated on the Spoofing-Attack finger vein database cre-
ated by the Idiap Research Institute [TVM14]. This database consists of 440 finger vein
images from 110 subjects. All finger vein images were recorded using the same sensor.

The images are categorised into three sets, i.e., training set and development set (each of
which consists of 120 spoofed and real images, respectively), and test set (200 images).
The three sets are disjoint with respect to the clients. The database provides full printed
(655 x 250 pixels) and cropped images (565 x 150 pixels). In this paper, only the full
printed images were used in the evaluation process. Since the database was used for the 1%
competition on counter measures to finger vein spoofing attacks [Tol5], the test images
are anonymised and thus the database does not provide reference results of the set of
test images. Hence, only the training set of the dataset is used to evaluate the different
approaches.

Those training set images were split into training and test images for our evaluation using
different ratios, ranging from 10%/90% to 90%/10% for training and test images, respec-
tively. Then, the histograms of the features were extracted from all training images in order
to train a SVM. We used a linear SVM for all the experiments. In the next step, the his-
tograms for the test images were generated and the previously trained SVM was used to
classify these histograms (either real or spoofed image). To improve the robustness of the
results, we used five randomly sampled instances per split ratio and feature. The reported
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prediction accuracy is the average prediction accuracy (percentage of correct preditions,
i.e. true positives plus true negatives) over all five instances. Additionally, for most fea-
tures, we computed features with different parameter settings as described in Section 2.
If averaged precision is given in the subsequent figures, we averaged over these different
parameter settings.

We also evaluated the results for two different splitting modes. In the first mode, the split-
ting into training and test set is done randomly ignoring the subjects in the set. In contrast,
the second mode takes the subjects into account by strongly separating subjects in the
training and test images, i.e. a random image was picked and all remaining images of this
person were also added to the respective set.

Moreover, we compared two LBP modes, i.e. the histograms were composed (1) of all
patterns and (2) only of uniform patterns (i.e. the binary pattern contains at most two
bitwise transitions from 0 to 1 or vice versa, non-uniform patterns are fused into a single
histogram bin).

3.2 Experimental Results

In the following figures, we plot classification rate of real vs. spoofed images against the
rate of training images vs. test images (i.e. 10 Splits means 10% training and 90% test
images, respectively), thus increasing the training data size. Fig. 1a shows the (average)
baseline performance of the considered LBP variants using random splitting. The simple
LBP variant (BaseLBP) is almost top performing in each split scenario (similar to LRI,
LGS, SLGS, and LDP), MRELBP, LLBP and particularly CLBP are clearly worse.

The effect of separating subjects in the training and test images is shown in Fig. 1b. Espe-
cially for small training set sizes (Splits 10 — 30), all techniques exhibit lower classification
accuracy as compared to the purely random sample selection strategy. LGS and LLBP per-
form worse across the entire range of training set sizes. This means that especially in case
of small training set size, unseen subjects are harder to be correctly classified. BaseLBP
and LDP provide the best performance for this scenario and should be used under such
circumstances.

Fig. 2 illustrates the consequences when using uniform patterns only. We consider two
variants of generating histograms without non-uniform patterns: (1) uniform patterns gen-
erated by first concatenating all the histograms involved and then filtering out all non-
uniform patterns (see Fig. 2a) and (2) uniform patterns generated by first filtering out all
non-uniform patterns and then concatenating the resulting histograms (see Fig. 2b). As we
observe, the way of generating uniform pattern makes a difference. For the first generation
type (1), most LBP variants lose classification accuracy as compared to their non-uniform
counterpart (Fig. 1a), in particular MRELBP is severely degraded. However, CLBP signif-
icantly profits from using uniform patterns.
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Fig. 1: Average classification accuracy for complete patterns.

This behavior is mainly due to the fact that the histograms of the respective operators are
concatenated, and the longer the feature vector gets the more non-uniform patterns are
discarded (grouped into the 0 column of the histogram). Hence, although the usage of
uniform patterns reduces the dimensionality of the feature vectors, one may not just use
them for every LBP variant.
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Fig.2: Average classification accuracy for two variants of generating histograms with uniform pat-
terns with random sample selection.

For type (2) uniform patterns (Fig. 2b) we observe that CLBP loses its performance gain
but is still better than with non-uniform patterns (compare Fig. 1a), while MRELBP is
slightly improved compared to type (1). For the other LBP variants we see equal perfor-
mance as for non-uniform patterns, LLBP is even sightly improved. Except for CLBP, type
(2) is clearly the better strategy to generate uniform patterns.

The last plot, Fig. 3, shows the comparison between the classification accuracy of single-
and multi-scale version of some features (multi-scale versions do not make sense for some
patterns, e.g., the LGS). For the single-scale plot, we considered the parameter setting
which performed best with respect to the classification accuracy (e.g., for the CLBP the
instance with R = 1 and P = 8). As one can see, the multi-scale version outperforms the
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best single-scale instance for some features, i.e. standard LBP and LLBP. However, for
some variants, i.e. MRELBP or CLBP, it is obviously better to use the single-scale version.
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Fig. 3: Classification accuracy with random sample selection.

4 Conclusion

In this paper we implemented and empirically evaluated various LBP-extension features
for detecting spoofed finger vein images. Further, we evaluated how some other aspects
influence the prediction accuracy of the respective features, namely (1) the strategy for
choosing samples (random vs. subject-specific), (2) the use of uniform patterns instead
of complete patterns and two different strategies to generate uniform patterns, and (3) the
choice of using single- or multi-scale versions of the features.

Our experiments show that all these aspects have to be considered when assessing finger
vein images wrt. spoofing/presentation attacks. Moreover, the results suggest that more so-
phisticated LBP extensions do not necessarily imply better classification accuracy (at least
not for finger vein spoofing detection), the baseline LBP variant is an excellent choice for
most scenarios considered. For a low amount of training data available, correct classifica-
tion of finger vein data in real and spoofed versions is more difficult for unseen subjects,
thus making the availability of sufficient training data essential for reliable spoofing sam-
ple detection in real world scenarios.
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