
NVall: A Crash-Resistant and Kernel-Compatible
Memory Allocator for NVRAM

Dustin Nguyen
Ole Wiedemann

Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)

Jörg Nolte
Brandenburgische Technische
Universität Cottbus-Senftenberg

(BTU)

Wolfgang
Schröder-Preikschat

Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)

ABSTRACT
Byte-addressable non-volatile memory is essentially persis-
tent, but slower main memory that needs to be managed
accordingly. Typical memory allocators for volatile mem-
ory are highly efficient today, but usually never had to be
designed to keep their state in main memory consistent at
all times against the background of system crashes. In this
paper we present NVall, a crash-resistant kernel-level mem-
ory allocator for non-volatile RAM (NVRAM). The allocator
works in a transactional manner, uses existing volatile mem-
ory to improve the performance of normal operation and is
able to recover its volatile state from persistent data after a
system crash. We implemented the allocator for the FreeBSD
kernel and compare its performance against the standard
(non-crash-resistant) in-kernel allocator of FreeBSD.

KEYWORDS
Operating System, NVRAM, Memory, Storage, FreeBSD

1 INTRODUCTION
Upscaling memory capacity to DRAM can be expensive in
terms of performance and cost. DRAM refresh power scales
proportionally with memory capacity, also further downscal-
ing of capacitor size is difficult. This speaks in favor of replac-
ing DRAM as main memory. Its high density, low standby
power and low cost per bit make NVRAM a promising al-
ternative to DRAM. Nevertheless, the access latency can
be much higher than with DRAM, in addition to the lower
bandwidth and asymmetric read/write performance [14].
However, these hardware-related handicaps can be com-

pensated to a certain extent, by integrating NVRAM into
the virtual memory with problem-aware handling in the
operating system (OS). Following the pattern of [15], the
latter includes the OS together with all machine programs
controlled by it residing directly in NVRAM and executing
there—as in the early days of computing technology based

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License. DOI: https://doi.org/10.18420/fgbs2023h-02. FGBS
’23, September 28–29, 2023, Bamberg, Germany

only on core memory. But this is only half the truth: Whether
such an approach is worthwhile also depends on the over-
head that certain OS functions imply in order to be able to
run them correctly in the NVRAM in exceptional cases.

An important and exemplary function in this context con-
cerns the efficient and kernel-compatible dynamic memory
management, that is, a crash-resistant NVRAM-based mem-
ory allocator (NVall), which is the focus of the paper. The
allocator is integrated into the FreeBSD OS and can be used
by its modules to store and retrieve data with NVRAM, so
that they can also utilize the memories characteristics.

Non-volatile main memory. For the most part NVRAM can
be treated like any other volatile RAM, such as DRAM (from
here on used as synonym for volatile RAM). The obvious
distinction between NVRAM and DRAM are the persistence
properties. Any data written by regular store instructions
on memory locations mapped to NVRAM is deemed persis-
tent. With more recent implementations of Intels Optane Per-
sistent Memory, also all data residing in CPU caches is also
considered persistent [17]. Even though NVRAM is reason-
ably fast as memory, its access speed is slower than DRAM.
In addition, performant NVRAM access is more complex, as
the read and write latency differ greatly between random
and sequential access [19].
Kernel relation. An NVRAM allocator allows the kernel

to access a huge amount of storage with very little latency,
when compared to any other persistent storage. In addition
the minimal dependency of NVRAM allows the kernel to
persist data even during the early startup of the OS and the
shutdown procedure. The only requirement for accessing
NVRAM is a virtual address mapping.

With such a mapping NVall can also be integrated into the
early bootstrapping stage, to make data stored by the kernel
available to the boot loader. For example, this can be used for
suspending the whole OS to NVRAM (as opposed to DRAM),
shutting the system down and resuming computation (as
viewed by user space) without interruption at a later time.

Particular challenge. The targeted FreeBSD OS already
offers a multitude of performant allocators which are build
with awareness of NUMA-induced latency [11] and cache
efficiency [6] in mind. However none of them can be used
to administer NVRAM, if durability of data is desired.

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://doi.org/10.18420/fgbs2023h-02

Dustin Nguyen, Ole Wiedemann, Jörg Nolte, and Wolfgang Schröder-Preikschat

Any allocator managing NVRAM in a durable way has to
store its own state in NVRAM as well, otherwise a recon-
struction of said state (e.g. after a power failure) would not be
possible. This makes it difficult for NVRAM data structures
to embed any kind of locking for handling concurrent access.
Any mutex becomes a problem during state reconstruction
when restarting after a system failure, since locked mutexes
cannot be released without potentially leaving guraded the
data in an invalid state. Even though locks can be designed
to have their state in NVRAM, such as generational locks [5],
they seem to be tailored towards the specific use case. Others
require their own runtime and compiler support [3].

As the allocators are designed for DRAM with low latency
access to data and no consequences in case of sudden inter-
ruptions of operation with intermittent memory loss (such
as with repeated power outages or severe environmental dis-
turbances), some data structures used for management are
very large. This can decrease performance with the slower
NVRAM, especially if durability has to be guaranteed. Fi-
nally, the allocator has to be capable to repair the state of a
previous run, in order to be consistent and durable.

All of these aspects are currently not covered by the exist-
ing memory infrastructure. Thus, it is necessary to extend
the FreeBSD kernel with an allocator filling the gap.

About this paper. We propose NVall, a crash-resistant, per-
sistent memory capable page frame allocator. Its design goals
focus on crash consistency, portability and reduced NVRAM
accesses per allocation. These goals lead to a versatile allo-
cator with reasonable execution speed that can be used in
other system software beyond the FreeBSD kernel.

2 FUNDAMENTALS AND METHODOLOGY
The following describes our assumptions about the runtime
environment followed by the goals we want to achieve.

2.1 System Model
We assume that most systems using NVRAM will use multi-
ple kinds of memory simultaneously—meaning both volatile
and non-volatile memory. This matches currently available
server hardware which can be equipped with NVRAM in
addition to mandatory RAM. With mixed kinds of mem-
ory, the difference in characteristics, aside from persistence,
get more relevant. They may range from strongly varying
performance on parallel workloads, to reduced random ac-
cess performance due to NVRAM-internal write amplifica-
tion [19]. With bandwidth and latency of Optane PMEM
beeing worse than DRAM [9], it is advisable to split data
structures in persistent and volatile portions, using both
kinds of memory[1, 4].

We assume an NVRAM memory model that ensures that
(1) stores of naturally aligned pointer sized types are atomic,

(2) cache lines can be written to NVRAM wholly and atom-
ically, (3) the order of cache line flushes can be enforced,
and (4) any data written back from cache to NVRAM is
considered persistent. These requirements are met by In-
tel Optane PMEM. There are various machine instructions
for writing cached data back to memory (such as clflush,
clwb) and ordering these (sfence) [17]. Additionaly there are
non-temporal stores that are written directly to the backing
(non-volatile) memory, circumventing the cache[17]. How-
ever they rely on vector registers [7], which are typically not
used within OS software to avoid storage and restoration of
their state [2].

With atomic load/stores and controlled write back of cache
lines it is possible to model transactions on NVRAM [10].
This approach ensures that any memory requested from
the proposed allocator is either served and reachable by the
client, or the request failed and must be repeated.

2.2 Design goals
NVall is supposed to be a lightweight allocator with minimal
dependencies, so that it can be ported to other system soft-
ware as well—this includes other kernels and bootloaders.
In addition, the implementation has to be robust. It must be
able to serve concurrent requests and always be in a valid
state, even if allocations are interrupted by unexpected and
abnormal system events. More specifically, no memory must
be leaked or marked as free, while being in active use on
power failure. The lifetime of all served page frames range
from allocation until release by the actor, meaning they stay
valid across reboots. Our implementation works with Intel
Optane, but is supposed to support any byte-addressable
non-volatile memory that satisfies the requirements from
Section 2.1. NVall should have a minimal state that must be
persistent and valid. All other data structures can be held in
volatile RAM for increased performance.

Allocations served by NVall should satisfy multiple con-
straints, such as the amount of allocated page frames, the
selected page granularity (i.e. 4𝐾𝑖𝐵, 2𝑀𝑖𝐵, 1𝐺𝑖𝐵) and align-
ment. Independent of their granularity, it shall be possible
to link all allocations together via pointers written to the
memory. Resizing of allocated and already used memory is
explicitly not within the scope of NVall. Finally, it should be
possible to release memory and reseting NVall, dropping all
state in NVRAM.

3 IMPLEMENTATION
The page frame allocator is embedded into FreeBSD and
accessible from the kernel. Within the kernel it is integrated
into the virtual memory subsystem, which is one of the first
subsystems within the kernel to be initialised. Thus, it is
available very early during the boot process of the OS.

NVall: A Crash-Resistant and Kernel-Compatible Memory Allocator for NVRAM

Allocated Range Manager
Allocation Cache

Free Range ManagerA
PI

H
el
pe
r

uses

Figure 1: Rough overview of NVall divided into persis-
tent data () and reconstructable data ().

NVall is split up in managing specific root-objects, identi-
fied by name, and allocations which are assigned to either
root-objects or a non-volatile memory region managed by
NVall. As such, any module that uses NVall has to generate
a unique name that can be used to (re-)gain access to previ-
ous allocations and request more memory. A fundamental
concept of NVall’s design is the way any allocation result is
handled. NVall will not return a plain pointer (as it would be
the case with POSIX’ malloc/free), since any such pointer
returned to the requesting thread may be lost due to a power
failure before the pointer itself can be written to persistent
memory. Instead any memory allocation request is modeled
as a transaction where the memory reference is written to a
logically non-volatile type nv_ptr, passed to NVall functions.
The transaction either succeeds and stores a non-NULL value
in nv_ptr or fails. In case of the latter no memory can be
leaked.

All allocations have their pointer embedded in non-volatile
memory as nv_ptr—additionally the very first object in a
line of allocations, which serves as root-object and can be
retrieved by name. Thus, each root-object can be the root of
an Directed Acyclic Graph (DAG) of allocations.
NVall adopts the notion of Selective Persistence for better

performance. This concept distinguishes between primary
data which must be complete and consistent at all times and
any other data which can be rebuilt based on the primary
data. The primary data has to reside in NVRAM, while other
data structures required for faster access, such as lookup
tables and caches, can be stored in volatile RAM [1, 12].
On every boot NVall reserves a configurable amount of

NVRAM. Based on the persistent data structures contained
therein, NVall performs a self-check for consistency and
reconstructs its volatile parts.

3.1 Architectural Overview
As described in Figure 1, NVall offers an API for access-
ing previously allocated and additional memory. The API
functions are built on top of an Allocated Range Manager,
responsible for managing all previous allocations, as well
the transient Free Range Manager for fast discovery of free
memory. In addition, there is a transient Allocation Cache

1 int example(void) {

2 struct example {

3 nv_ptr next;

4 unsigned value;

5 } *ptr;

6 nv_ptr parent;

7
8 nv_store_resolve("example", &parent);

9 if (* parent == NULL)

10 nva_alloc(parent , 2, NVA_SIZE_4K , NVA_FLAG_ALIGN);

11 ptr = *(struct example **) parent;

12 if (ptr ->next == 0)

13 nva_alloc (&ptr ->next , 1, NVA_SIZE_4K , NVA_FLAG_ALIGN);

14 ptr ->value ++;

15 struct memory_range_nv r = {ptr , ptr +1};

16 nv_persist_range (&r);

17 return ptr ->value;

18 }

Listing 1: NVall used for a persistent counter value.

for fast retrieval of currently active objects. The modules
use helper functions to achieve persistence. These helper
functions are also exposed to the user via the API, to ease
the usage of NVRAM.

An example usage of NVall is given in Listing 1. This exam-
ple is also the basis for Figure 2. With nv_store_resolve it
is possible to retrieve a previously prepared root-object iden-
tified by a key, or to create a new one. The object is stored in a
container. However, a retrieved container may not be linked
to any memory, since it can either be newly created or the
previous run was interrupted before it was filled with mem-
ory. A container can be filled with nva_alloc. This function
requires the amount of memory to be allocated, as well as
a persistent pointer to safely store a reference to NVRAM
in. If the function succeeds, the persistent pointer parent
is linked to memory. Upon restart due to an interruption
during the allocation, the state can be rolled back so that no
memory is lost and the parent pointer will be empty (i.e.
NULL).

3.2 Allocation
NVall offers the function int nva_alloc(nv_ptr parent,
uint64_t pagecnt, int granularity, int flags) as
interface for allocation requests. It can be used to request
pagecnt number of pages of a predefined granularity. At
present, NVall supports requests for 4𝐾𝑖𝐵, 2𝑀𝑖𝐵 and 1𝐺𝑖𝐵
pages, which are the supported (huge) page sizes on x86_64.
The last parameter flags toggles natural alignment of the re-
quested memory, based on the chosen granularity. However,
all allocations are at least aligned to the 4𝐾𝑖𝐵-boundary.
The parent parameter, as shown in Listing 1 in Line 10,

references a container for storing the result of an allocation.
On success, it holds a pointer to the memory, on failure
(indicated by the return value) the value is 0.

Unlike with traditional volatile memory, it is not possible
to recover from errors by rebooting. Instead, any data stored
in non-volatile memory may lead to persistent bugs. Thus, it

Dustin Nguyen, Ole Wiedemann, Jörg Nolte, and Wolfgang Schröder-Preikschat

is important to reduce the risk of errors. As a consequence,
NVall thoroughly verifies all parameters given to its allo-
cation function. These checks include whether the parent
object is actually placed in persistent memory and whether
is was already managed by NVall. In addition the selected
granularity and alignment are checked before the allocation
starts proper.

On any allocation, the Free Range Manager is used to look
up ranges of unassigned memory, satisfying all additional re-
quirements. The Free Range Manager resides in fast volatile
memory and is built from persistent metadata each time
NVall is initialised on startup. Whenever a matching range is
found, the allocation is stored in a persistent NVall-internal
Allocated Range table, as depicted in Figure 2. In addition,
each allocation is connected to a non-volatile container in
which a reference to the allocated memory is stored. This
way, it can be assured that all pointers created by nva_alloc
are also persistent and cannot be lost during a power failure.
The container either references a root-object, or some mem-
ory in a previously allocated object. Details on consistency
follow in Section 3.4.
If required by the actor, the allocator accepts an optional

flag that requests a zero-initialised memory region. This may
be required by some modules, to either simplify working
with NVRAM, or for security concerns if the memory is
mapped into a user address space and must be cleared of any
remnants of kernel data.
Another safeguard makes sure that the containers used

for receiving an allocation result are not already in use. Oth-
erwise, memory might be leaked through actors overwriting
the only “user-facing” pointer for retrieving the associated
memory block.

3.3 root-objects
Any kernel module that wants to use NVRAMmust generate
a unique key that is used by NVall for identifying a root-
object. These root-objects are not distinct from any other
memory served by NVall, except they can not be retrieved
with a pointer stored to persistent memory, but only by
their name. All further allocations which are not root-objects
must have their allocation result (the identifying pointer)
written to non-volatile memory, which is referenced by the
original root object. Currently, this requirement is checked by
NVall at runtime. However, it may also be implemented as an
extension to the type system of the programming language
to enforce static checking at build time.
The root-object can be obtained with int nv_resolve(

const char *name, nv_ptr *parent), which usesmemory
of type nv_ptr as location for the pointer to be stored. The
parameter name serves as a key to identify a single persistent
root-object which are stored by NVall. It may be used in a

parent pointer

"example"
key
Recovery

...

parent size pointer

8Ki
4Ki

Allocated Range
1234

..

.

ObjectRoot Object
next

val

D
RA

M

N
VR

A
M

Internal
A
llocations

Figure 2: Memory layout example w.r.t. Listing 1.

structured way to build namespaces, similar to paths in file
systems. If required, additional access control based on the
key and selective mapping into a modules address space is
conceivable.

The parameter parent serves as a container for a pointer
to persistent memory. It can be used for allocation requests
with nva_alloc and will be filled with a reference to the
acquired non-volatile memory. If the dereferenced value of
nv_ptr is already non-NULL prior to any nv_alloc call, it
was initialised in a previous run of the program and can be
used directly.

3.4 Transactions
Based on the system model described in Section 2.1 a three-
staged transaction mechanism is implemented. NVall uses
nv_persist(struct memory_range_nv *) to enforcewrite-
back of all memory within an memory range. It is secured by
a sfence instruction to ensure that the caches are written
to main/persistent memory before the caller proceeds with
other operations.
Based on nv_persist, NVall implements transactional

allocations. In order tomaintain consistency at all time, NVall
has to be able to cope with any kind of interruption during
an allocation. A slightly shortened function for persistence
of an allocation is displayed in Listing 2. The code snippet
picks up the example in Listing 1 and links the persistence
mechanism with metadata displayed in Figure 2. In short,
any failure occurring prior to W 2 will result in an ongoing
allocation to be reverted, while any later interruption can be
tolerated and the result is made durable during a recovery
phase on the next boot.

The routine for making an allocation durable is separated
in three chunks (visually divided by W 1 to W 3) that must
be stored in order. During the first chunk, up to W 1 , the
start- 1 and end-address 2 of a newly allocated block is
written into the persistent Allocated Range Table (as depicted
in Figure 2. For a more concise schematic, the end pointer is
displayed as size field).

NVall: A Crash-Resistant and Kernel-Compatible Memory Allocator for NVRAM

1 // ar: Allocated Range , container: nv_ptr

2 ar->range.end = free_range.end;

3 ar->range.start = free_range.start;

4 nv_persist_range(ar);

5
6 ar->parent = container;

7 nv_persist_range(ar);

8
9 *container = range ->start;

10 nv_persist_range(container);

11

Listing 2: Persistent memory block allocation.

Even after these two pointers have been written persis-
tently into the Allocated Range Table by nv_persist_range
in Line 4, the allocation may still be reverted. Only entries
with a valid parent entry are considered persistent. Thus,
the parent is written between W 1 and W 2 . The order (en-
forced by nv_persist_range) is significant, since a valid
parent field indicates a valid entry.
Finally, the container referenced by the allocation caller

is written with a pointer to the requested memory 4 . This
is necessary to make the allocated memory accessible to the
requesting function. However in terms of consistency, this
store can be done during a recovery phase after a system
crash as described next in Section 3.5.

3.5 Recovery
As already indicated in Section 3.4, some states have to be
rolled back when resuming execution after an system fail-
ure, while others can be completed. Recovery is done during
NValls initialisation. This procedure has to handle the tran-
sient nature of virtual addresses, that are used in the OS.
The FreeBSD kernel is not guaranteed to be mapped at the
same virtual addresses in subsequent startups. Constantly
changing virtual addresses constitute a problem when us-
ing non-volatile memory, since it makes any pointer stored
therein possibly invalid. Thus, NVall has to make sure that
any virtual address used for referencing memory remains
stable across multiple restarts. Therefore, we implemented a
direct mapping of physical addresses to their virtual counter
part, which results in NVall being indifferent about kernel
relocations.

3.6 Concurrent Access
When working with NVRAM, concurrent access comes in
multiple flavors. First we have to care about concurrent ac-
cesses on shared data in NVRAM. On the other hand there
is the broken time machine problem, where any sequential
code running in NVRAMmay be confronted with its leftover,
inconsistent state of a previous execution [16].
The first problem is handled with locks, protecting all

metadata from inconsistency due to concurrent access. How-
ever these locks are only part of the volatile data structures,

as their state can only be valid during the current execu-
tion. If a lock were to be placed in NVRAM, it would suffer
from the time machine problem and may already be in a
locked state, when the system restarts. The persistent data
structures are protected against parallel access by the volatile
locks. Protection against power failures, for example, is based
on the transactional behaviour described in Section 3.4.

3.7 Restrictions
NVall does only distribute memory from NVRAM. The re-
cipient of an allocation has to take care to use NVRAM in
a consistent, crash resistant manner: He can do this by re-
sorting to transactions at his own level of abstraction. Even
though NVall does not give any guarantees regarding con-
sistent NVRAM usage, its functions for persistence can be
used by other modules as well to implement transaction-like
behaviour.

Its dependencies are an allocator for its volatile data struc-
tures, a list of memory ranges covered by NVRAM and a
mapping function to set up the identity-mapping.

W 1

W 2

W 3

4 PERFORMANCE CHARACTERISATION
The performance measures were performed on a Dell Pow-
erEdge R650, equipped with two Intel® Xeon® Gold 6330
processors. Each processor has 28 cores and 56 threads, re-
spectively. Their base frequency is 2.0 GHz, even though they
can boost to up to 3.10GHz. The memory is a mix of eight
32GB DDR4 RDIMMs, plus eight DIMMs of OptaneTM Persis-
tent Memory 200 with a capacity of 128GB each. All tests are
performed on a single core during the systems startup with
disabled interrupts, to avoid any interference from userspace
and devices.

In our tests we compare variations of NVall to determine
the additional cost to achieve durability and used different
page granularities. Furthermore, we compare the results with
the FreeBSD pageframe allocator. All tests are done on a mod-
ified FreeBSD 13.1 kernel, that can use NVRAM as its only
main memory [15], so that the kernels .text and .data, as well
as all userspace processes reside in NVRAM. This ensures
comparability of the FreeBSD allocator, that would otherwise
work on faster DRAM. The configuration for NVall uses both
NVRAM and DRAM for testing the separation of internal
data structures. Our benchmarking is set up according to
Intels advisory [13]. As clock we used the processor internal
time stamp counter, which is guaranteed to increment at a
constant rate on the given CPU [8].
The results in Figure 3 show NVall () and NVall with

its persistence based on cache line write back and store or-
dering disabled (). We compare NVall in different con-
figurations with FreeBSDs vm_page_alloc_noobj_contig

Dustin Nguyen, Ole Wiedemann, Jörg Nolte, and Wolfgang Schröder-Preikschat

4𝐾𝑖𝐵
0

1,000

2,000

0

1,9
42

1,5
29
.7
2

80
.7
2

granularity

ns

2𝑀𝑖𝐵
0

10,000

20,000

0

1,9
26
.1
4

1,4
96
.9
8 24
,4
10
.5
1

granularity

NVall NVall w/o durability FreeBSD alloc

Figure 3: Average allocation performance, 1024 runs

allocator (). The different configurations are NVall with all
guarantees regarding durability and a version without cache
line write back.

The most obvious insight is that the FreeBSD allocator is
very well optimised for 4𝐾𝑖𝐵 pages. However, as soon as the
granularity increases, its performance starts to deteriorate.
NVall in contrast does not have such a huge fluctuation in
behaviour. Instead the time remains fairly similar between
the chosen granularities. With NVRAMs great capacity, it
is probable that huge pages will be used more frequently,
making the huge-page behaviour more important in future.

The greatest performance impact on NVall allocations are
associated with the additional safeguards we implemented.
With every allocations we check whether the storage for
the allocation result resides in NVall-managed NVRAM. In
addition, we also make sure that no persistent pointer is
overwritten by an allocation. These checks require persistent
hash table lookups and, thus, are the main contributor to
NVall runtime overhead.
When comparing the different NVall configurations, we

can observe the cost of durability due to explicit memory
ordering and cache write back. Since one of the goals was
to reduce the number of stores to NVRAM for performance,
the difference is rather small, even though still measureable.

5 DISCUSSION
With NVall, we have developed an allocator for OS kernels
to manage persistent state across reboots and crashes. This
can be used for implementing state recovery of a whole
system, or for storing kernel data when no other storage
media is present—either due to a fault, or due to inherent
constraints, such as deactivation of modules during shut-
down. The performance, especially for 4𝐾𝑖𝐵-allocations, can
be further improved by using more sophisticated volatile
data structures. The comparison of NVall with and without
explicit write back shows that the goal of seldom NVRAM
access for durability of metadata is met.

6 RELATEDWORK
There has been previous work on allocators for NVRAM,
such as Makalu [1] and NV-Heaps [5]. However, they both
require an garbage collector to avoid dangling pointers and
leakedmemory.Makalu has to search for pointers to NVRAM
in all memory referenced from specific root objects to avoid
memory leaks after recovery from a crash. NV-Heaps, on
the other hand, relies on reference counting, which in turn
requires programming language support (e.g. operator over-
loading) that is not available in all programming environ-
ments. This is especially true for OS kernel development
with C as the most prominent language.

Recent work also wants to make OS kernels to be more
aware of NVRAM pecularities and proposes LLFree, a page-
frame allocator with a design that requires neiter locking, nor
logging [18]. As a result, there are very few write accesses
per allocation on NVRAM, leading to good performance.
However, in contrast to NVall, the interface between actor
and allocator is prone to leak memory on crashes: “While a
crash during a de/allocation would never result in an unre-
coverable allocator state, it could lead to a lost frame. This
would happen if in an allocation the bit has already been
set, but the frame has not yet reached the caller, or if the
deallocation has been invoked but not yet cleared the bit.”

7 CONCLUSION
NVRAM can have capacities in the TiB range these days.
If memory allocators for NVRAM are not able to survive
common system crashes either large amounts of information
are lost or still available memory might simply be forgotten.
Thus, an allocator for NVRAM needs to operate in a strictly
transactional manner and keep its internal state consistent
across system crashes and reboots. NVall can tolerate power
outages and survive all system crashes that are not caused by
or related to memory corruption of the allocator’s metadata.
NVall utilises DRAM whenever possible to speed-up normal
operation and accesses NVRAM only when necessary to
ensure transactional semantics.

AVAILABILITY
The source code of NVall is available under open source
license as a patchset: https://doi.org/10.5281/zenodo.8364439

ACKNOWLEDGMENTS
The author order corresponds to the SDC (sequence deter-
mines credit) model: The first author gets full credit, the
second author half, the third author a third and the fourth
author a quarter. This work was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) – project number 501993201.

https://doi.org/10.5281/zenodo.8364439

NVall: A Crash-Resistant and Kernel-Compatible Memory Allocator for NVRAM

REFERENCES
[1] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. Makalu:

Fast recoverable allocation of non-volatile memory. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016,
pages 677–694, New York, NY, USA, 2016. Association for Computing
Machinery.

[2] Daniel Pierre Bovet, Marco Cassetti, and Andy Oram. Understanding
the Linux Kernel. O’Reilly & Associates, Inc., USA, 2000.

[3] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas:
Leveraging locks for non-volatile memory consistency. In Proceedings
of the 2014 ACM International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA ’14, pages 433–452,
New York, NY, USA, 2014. Association for Computing Machinery.

[4] Youmin Chen, Youyou Lu, Fan Yang, QingWang, YangWang, and Jiwu
Shu. Flatstore: An efficient log-structured key-value storage engine
for persistent memory. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’20, pages 1077–1091, New York, NY, USA,
2020. Association for Computing Machinery.

[5] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: Making
persistent objects fast and safe with next-generation, non-volatile
memories. In Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, pages 105–118, New York, NY, USA, 2011. As-
sociation for Computing Machinery.

[6] Matthew Dillon. Design elements of the FreeBSD VM system.
https://cgit.freebsd.org/doc/tree/documentation/content/en/articles/vm-
design/_index.adoc?id=4a95b5409c05615d49b91f155f2fc14bcaa9ba56,
2023.

[7] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual:
Instruction Set Reference, A-Z, Volume 2 (2A, 2B, 2C & 2D)., April 2022.

[8] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual:
System Programming Guide, Volume 3 (3A, 3B, 3C & 3D)., April 2022.

[9] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. Basic performance mea-
surements of the Intel Optane DC persistent memory module, 2019.

[10] Marcel Köppen, Jana Traue, Christoph Borchert, Jörg Nolte, and Olaf
Spinczyk. Cache-line transactions: Building blocks for persistent
kernel data structures enabled by AspectC++. In Proceedings of the
10th Workshop on Programming Languages and Operating Systems,
PLOS’19, pages 38–44, New York, NY, USA, 2019. Association for
Computing Machinery.

[11] Marshall Kirk McKusick, George Neville-Neil, and Robert N.M. Wat-
son. The Design and Implementation of the FreeBSD Operating System.
Addison-Wesley Professional, 2nd edition, 2014.

[12] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. FPTree: A hybrid SCM-DRAM persistent and con-
current b-tree for storage class memory. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 371–386,
2016.

[13] Gabriele Paoloni. White paper: How to Benchmark Code Execution
Times on Intel® IA-32 and IA-64 Instruction Set Architectures. Intel,
September 2010.

[14] Ivy B. Peng, Maya B. Gokhale, and Eric W. Green. System evaluation
of the Intel Optane byte-addressable NVM. In Proceedings of the
International Symposium on Memory Systems, MEMSYS ’19, pages 304–
315, New York, NY, USA, 2019. Association for Computing Machinery.

[15] Jonas Rabenstein, Dustin Nguyen, Oliver Giersch, Christian Eich-
ler, Timo Hönig, Jörg Nolte, and Wolfgang Schröder-Preikschat. On
the performance of NVRAM-based operating systems: A case study
with Linux and FreeBSD. Technical Report CS-2023-01, Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU), Department Infor-
matik, March 2023.

[16] Benjamin Ransford and Brandon Lucia. Nonvolatile memory is a
broken time machine. In Proceedings of the Workshop on Memory
Systems Performance and Correctness, MSPC ’14, New York, NY, USA,
2014. Association for Computing Machinery.

[17] Steve Scargall. Programming Persistent Memory: A Comprehensive
Guide for Developers. Apress Media LLC, 2020.

[18] Lars Wrenger, Florian Rommel, Alexander Halbuer, Christian Dietrich,
and Daniel Lohmann. LLFree: Scalable and Optionally-Persistent
Page-Frame allocation. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23), pages 897–914, Boston, MA, July 2023. USENIX
Association.

[19] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. An empirical guide to the behavior and use of scalable
persistent memory. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 169–182, Santa Clara, CA, February 2020.
USENIX Association.

	Abstract
	1 Introduction
	2 Fundamentals and Methodology
	2.1 System Model
	2.2 Design goals

	3 Implementation
	3.1 Architectural Overview
	3.2 Allocation
	3.3 root-objects
	3.4 Transactions
	3.5 Recovery
	3.6 Concurrent Access
	3.7 Restrictions

	4 Performance Characterisation
	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

